Finitely Presented Groups in Geometry and Topology

Hassane K. Kone

REU Summer 2007, University of Tennessee at Knoxville

Mentors: Dr. Brodskiy and Dr. J. Conant

Teammates: Kristine B., Tamara D., Elise W.

Abstract: In this paper, my main focus has been to prove that infinite \(\bigoplus_{i=1}^{\infty} (\mathbb{Z}_2) \) is coarsely equivalent to infinite \(\bigoplus_{i=1}^{\infty} (\mathbb{Z}_3) \). Even though I haven’t been able to find an explicit proof, I’ve been able to deduct some nice properties of coarse equivalence.

1 Introduction

In topology, we usually study the properties of geometric forms that remain invariant under certain transformations, as bending or stretching. So we say that two topological spaces \(X \) and \(Y \) are homeomorphic if there exists a function between those spaces that is continuous, one-to-one, and onto, and the inverse of which is continuous. Because of continuity, it’s clear that one restrict itself to small scales. But what can we say about two countable groups?

2 Basic Definitions

Definition 2.1 A metric space consist of a pair \((X,d)\), where \(X\) is a set and \(d : X \times X \to \mathbb{R}\) is a function, called the metric or distance such that: \(\forall x, y, z \in X\)

1. \(d(x, y) \geq 0, \text{ and } d(x, y) = 0 \iff x = y : (PositiveDefiniteness)\)
2. \(d(x, y) = d(y, x) : (Symmetry)\)
3. \(d(x, z) \leq d(x, y) + d(y, z) : (TriangleInequality)\)

Definition 2.2 A metric \(d\) on a vector space \(X\) is said to be left invariant if \(\forall x, y, z \in X\)
\(d(z + x, z + y) = d(x, y)\). On a group \((G,\ast)\) we have \(d(g,h) = d(e, g^{-1} \ast h)\) \(\forall h, g \in G\)

Definition 2.3 A metric \(d\) on a metric space \(X\) is said to be proper if \(|B(x,r)| < \infty \forall x, \in X, \forall r \geq 0\)
On a group \((G,\ast)\) we have \(|B(g,r)| < \infty \forall g \in G\)
Lemma 2.4 Any proper left invariant metric on \(\mathbb{Z} \) comes from applying a function to the usual Euclidean metric of \(\mathbb{Z} \).

Proof Let \(d \) be an arbitrary proper left invariant on \(Z \), then \(d(x, y) = d(0, y - x) \) and \(\exists f : \mathbb{Z} \to \mathbb{R} \) such that \(d(0, s) = f(s) \). But \(f(-s) = d(0, -s) = d(s, 0) = d(0, s) = f(s) \) So \(d(0, y - x) = f(|y - x|) \).

Lemma 2.5 If \(d \) is a proper left invariant metric, Then \(f \) is increasing, \(f(0) = 0 \) and \(f \) is concave \(\Rightarrow f(d) \) is a proper left invariant metric.

Proof For, we just need to check the triangle inequality:
\[
\forall x, y \in \mathbb{Z} \quad (d(x, y) + d(y, z)) \leq f(d(x, y)) + f(d(y, z))
\]

Lemma 2.6 For any set \(A \) and a metric space \((X, d)\), we can define a metric on \(A \) by defining a injective function \(f : A \to X \) by \(d'(x, y) = d(f(x), f(y)) \) where \(x, y \in A \). \(d' \) is proper left invariant \(\iff \) \(f \) is linear.

Proof Since \(f \) is injective then \(x \neq y \) and \(d'(x, y) = 0 \) is remote. we just need to check the triangle inequality again:
\[
d'(x, z) = d(f(x), f(z)) \leq d(f(x), f(y)) + d(f(y), f(z)) = d'(x, y) + d'(y, z)
\]
If \(f \) linear \(\iff f(x-y) = f(x)-f(y) \iff d'(x, y) = d(f(x), f(y)) = d(0, f(y)-f(x)) = d(0, y-x) = d'(0, y-x)
\]

Definition 2.7 A metric space \((X, d)\) is called ultrametric if
\[
\forall x, y, z \in X \quad d(x, z) \leq \max\{d(x, y), d(y, z)\}
\]

Properties of ultrametrics \(\forall x, y, x, \in X, r, s \in R \)

- Every triangle is isosceles; i.e. \(d(x, y) = d(y, z) \) or \(d(x, z) = d(y, z) \) or \(d(x, y) = d(z, x) \).
- Every point inside a ball is its center; i.e. if \(d(x, y) < r \) then \(B(x; r) = B(y, r) \).
- Intersecting balls are contained in each other; i.e. if \(B(x; r) \cap B(y; s) \) is non-empty then either \(B(x, r) \subseteq B(y; s) \) or \(B(y, s) \subseteq B(x, r) \).

Definition 2.8 A map \(r : X \to X \) is called a retraction if \(r(x) = x, \forall x \in r(X) \). A subspace \(A \subseteq X \) is called a retraction of \(X \) if there exists a retraction on \(X \) onto \(A \).

Example \(\mathbb{Z} \hookrightarrow \mathbb{R}, z \mapsto z \) is a retraction.

Definition 2.9 A map \(f : X \to Y \) of metric spaces is called lipschitz if there is a constant \(\lambda > 0 \) such that the inequality \(d_Y(f(x), f(y)) \leq \lambda d_X(x, y) \) holds \(\forall x, y \in X \). \(f \) is called \(\lambda \) – lipschitz if we need to specify the constant \(\lambda \). \(f \) is called \(\lambda – bi \) – lipschitz if both \(f \) and \(f^{-1} \) are \(\lambda \) – lipschitz.
3 Growth of a group

Definition 3.1 Let X be a group $f: \mathbb{R}(or \mathbb{Z}) \rightarrow \mathbb{Z}, r \mapsto |B_d(0,r)|$ is called the growth function of G. d is assumed to be a proper left invariant.

Lemma 3.2 \mathbb{Z} has linear growth.

Proof It’s sufficient to look at the Euclidian metric, the other metrics just depend upon it. $x \in B(0,r) \Rightarrow d(0,x) = |x - 0| = |x| \leq r$. So we have $-r, -r + 1, ..., 0, ..., r - 1, r$. Remark that if r is not an integer then will be looking at the ball of radius $[r]$ and in this case we’ll have at least $(2r - 1)$ elements: still linear.

For any proper left invariant metric ρ on \mathbb{Z}, $d'(0,x) \leq d'(0,1) + ... + d'(x-1,x) = |x|d'(0,1) = k|x|

Definition 3.3 Let X be a group. X is said to have quadratic growth if for any left invariant metric d on X, $|B(0,r)| \geq q(r)$ where q is a quadratic function.

Lemma 3.4 $\mathbb{Z} \oplus \mathbb{Z}$ has quadratic growth.

Proof Let d' be a left invariant metric on $\mathbb{Z} \oplus \mathbb{Z}$ then
\[
d'((0,0),(x,y)) \leq d'(0,0) + ... + d'(y-1,0)
\]
\[
|u|d'(0,1) + |v|d'(0,1) \leq (|x| + |y|) \max\{u,v\}
\]
where $u = d'((0,0),(0,1))$ and $v = d'((0,0),(1,0))$
So calling $d(x,y) = |x| + |y|$(taxicab metric), we have $|B_d(0,r/\max\{u,v\}| \leq |B_{d'}(0,r)|$ and since $|B_d(0,r/\max\{u,v\}|$ has quadratic growth, that completes the proof.

Theorem 3.5 $\mathbb{Z} \oplus \mathbb{Z} \ldots \oplus \mathbb{Z}$, has order n^{th} order growth.

Proof Same as the the previous 2 above.

Conjecture: $\bigoplus_{i=1}^{\infty}(\mathbb{Z})_i$ has exponential growth. Incomplete proof:
\[
\bigoplus_{i=1}^{\infty}(\mathbb{Z})_i=\bigoplus_{i=1}^{n}(\mathbb{Z})_i \oplus \bigoplus_{i=1}^{n}(\mathbb{Z})_i \oplus \bigoplus_{i=1}^{n}(\mathbb{Z})_i \oplus \ldots
\]
For any n, which would mean that it grows faster than any polynomial.

4 Coarse equivalence

Definition 4.1 We call a map $f: X \rightarrow Y$ of metric spaces bornologous (or large scale uniform) if there is a function $\rho: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $d_Y(f(x), f(y)) \leq \rho(d_X(x,y))$, $\forall x, y \in X$. Then f is said to be ρ – bornologous

Remark ρ – bornologous functions are just generalization of lipschitz functions since for the lipschitz case $\rho(t) = \lambda t$
Example The application $f : \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto ax + b$ is ρ-bornologous where $\rho(t) = kt, \forall k \geq |a|$ since $d(f(x), f(y)) = d(ax + b, ay + b) = |a|d(x, y) \leq kd(x, y)$

Remark that function of the type $f(x) = x^\alpha$ where $\alpha \leq 1$ are ρ-bornologous

Definition 4.2 Two maps $f : X \rightarrow Y$ and $g : X \rightarrow Y$ are said to be C-close if there exist $C > 0$ such that $d_Y(f(x), g(x)) \leq C, \forall x \in X$

Definition 4.3 Two metric spaces X and Y are said to be coarsely equivalent if there exist $f : X \rightarrow Y$ and $g : Y \rightarrow X$ that are ρ-bornologous and there exist $C > 0$ such that $d_X(x, gof(x)) \leq C$ and $d_Y(y, fogy) \leq C$ are said to be C-close if there exist $C > 0$ such that $d(f(x), g(x)) \leq C, \forall x \in X$

Example \mathbb{Z} is coarse equivalent to \mathbb{R}
For, let $f : \mathbb{Z} \hookrightarrow \mathbb{R}, n \mapsto n$ and $g : \mathbb{R} \rightarrow \mathbb{Z}, x \mapsto \text{int}(x)$
these two functions are clearly bornologous and $d_X(n, gof(n)) = d_X(n, n) = 0 \leq 1$
$d_Y(x, \text{int}(x)) \leq 1$

An intuitive understanding of coarse equivalence is to see if two spaces that look different from a small scale, look the same if we very far away.

Proposition 4.4 Coarse equivalence is an equivalence relation.

Proof Reflexivity. If (X, d) is a metric space Then define $f : X \rightarrow X, x \mapsto x$ and $g = f$ for all $x \in X$.

ρ-bornologous

$d(f(x), f(x')) = d(x, x')$ and same for $d(g(x), g(x')) = d(x, x')$. Setting $\rho(t) = t$,
f is ρ-bornologous

It is clear that $f \circ f = f \circ g = g \circ f = \text{id}_X$ are C-close to the identity $\forall C \geq 0$.

Symmetry. $X \sim_{\text{coarse}} Y \Rightarrow \exists f : X \rightarrow Y$ and $g : Y \rightarrow X$ such that f, g are ρ-bornologous and $\exists C > 0$ where $f \circ g, g \circ f$ are c-close to the identity map. Just switching the role of f and g gives $Y \sim_{\text{coarse}} X$.

Transitivity. Suppose $X \sim_{\text{coarse}} Y$ and $Y \sim_{\text{coarse}} Z$ Then $\exists f_1 : X \rightarrow Y, g_1 : Y \rightarrow X, f_2 : Y \rightarrow Z, g_2 : Z \rightarrow Y$ where f_1, g_1, f_2, g_2 are ρ-bornologous for some $\rho : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ and $\exists C > 0$ such that $d(x, g_1 \circ f_1(x)) < C, d(y, f_1 \circ g_1(y)) < C$ and $d(y, g_2 \circ f_2(y)) < C$ and $d(z, f_2 \circ g_2(z)) < C$.

We need to find two functions $f : X \rightarrow Z$ and $g : Z \rightarrow X$ that are ρ-bornologous and such that $d_X(x, gof(x)) \leq C'$ and $d_Z(x, fogy) \leq C'$ for some C'. Let $f = f_2 \circ f_1$ and $g = g_1 \circ g_2$

ρ-bornologous

$d(f(x), f(x')) = d(f_2 \circ f_1(x), f_2 \circ f_1(x')) = d(f_2(f_1(x)), f_2(f_1(x'))) \leq \rho(d(f_1(x), f_1(x'))) \leq \rho(\rho(d(x, x'))).$ since ρ is increasing.
Similarly, \(d(g(z), g(z')) = d(g_1 \circ g_2(z), g_1 \circ g_2(z')) = d(g_1(g_2(z)), g_1(g_2(z')) \leq \rho(d(g_2(z), g_2(z')) \leq \rho(\rho(d(x, x'))) = \rho \circ \rho(d(x, x')). \) since \(\rho \) is increasing.

C - closeness

\[d(x, g \circ f(x)) = d(x, g(f(x))) = d(x, g_2 \circ g_1 \circ f_2 \circ f_1(x)) \leq d(x, g_1 \circ f_1(x)) + d(g_1 \circ f_1(x), g_2 \circ g_1 \circ f_2 \circ f_1(x)) (\text{By the triangle inequality, }) \]

And since \(Y \approx Z \) then \(d(y, g_2 \circ f_2(y)) \leq c, \) in particular for \(y = f_1(x) \). So \(d(f_1(x), g_2 \circ f_2 \circ f_1(x)) \leq c, \forall x \in X. \) Since \(g_1 \) is \(\rho - \text{bornologous,} \) applying it to the left side of the previous inequality we have \(d(g_1(g_1(f_1(x))), g_1(g_2 \circ f_2 \circ f_1(x))) \leq \rho(d(f_1(x), g_2 \circ f_2 \circ f_1(x))) \leq \rho(c). \)

So \(d(x, g_1 \circ g_2 \circ f_2 \circ f_1(x)) \leq d(x, g_1 \circ f_1(x)) + d(g_1 \circ f_1(x), g_2 \circ g_1 \circ f_2 \circ f_1(x)) \leq \rho(c). \)

Let \(C' = \rho(C) + C \) then \(d(x, g \circ f(x)) \leq C' \)

Similarly we get that \(d(z, g \circ f(z)) \leq C' \)

Proposition 4.5 Let \(X \) and \(Y \) be two metric spaces. Then \(X \approx_{\text{coarse}} Y \Rightarrow \) the inverse image of each bounded under \(f \) set in \(Y \) is bounded. (Propersness)

Proof Suppose \(X \approx_{\text{coarse}} Y \) then there exist \(f : X \to Y \) and \(g : Y \to X \) such that \(f \) and \(g \) are \(\rho - \text{bornologous} \) and \(d_X(x, g(f(x))) \leq C \) and \(d_Y(y, f(g(y))) \leq C \)

Let \(S = \bigcup \{ y_i \} \) be an arbitrary closed set of \(Y \) \(f^{-1}(\{ y_i \}) = \{ x \in X | f(x) = y_i \}. \)

If \(f^{-1}(\{ y_i \}) \) contains only one element, then nothing to prove.

So suppose \(f^{-1}(\{ y_i \}) \) contains at least two elements \(x \) and \(x'. \)

If \(f^{-1}(S) \) is not bounded, then \(\forall k > 0, d(x, x') > k \) but \(d(x, x') \leq d(x, g \circ f(x)) + d(x', g \circ f(x')) \) since \(g \circ f(x) = g(f(x)) = g(f(x')) = g \circ f(x') \)

So \(d(x, x') \leq d(x, g \circ f(x)) + d(x', g \circ f(x')) \leq C + C = 2C \) Contradiction since \(d(x, x') \) supposed to be greater than any \(k > 0. \)

Definition 4.6 Two Metric spaces \(X \) and \(Y \) are said to be bijectively coarse equivalent if there exist \(f : X \to Y \) and \(g : Y \to X \) that are bijective, \(\rho - \text{bornologous} \) and there exist \(C > 0 \) such that \(d_X(x, g(f(x))) \leq C \) and \(d_Y(y, f(g(y))) \leq C \) are said to be \(C \)-close if there exist \(C > 0 \) such that \(d(f(x), g(x)) \leq C, \forall x \in X \)

5 The \(d_L \) Metric

Let \(\bigoplus_{i=1}^{\infty} (\mathbb{Z}_2) \), so elements in \(X \) are under the form \((a_1a_2, ..., a_n, 0, 0, 0,)\) where \(a_i = 0, 1 \) which means that there is some \(n \) after which the \(a_i's \) are zero. We can then compare two elements in \(X \) by looking at the largest index at which they different, this index will be said to the distance between these two points in \(X \).

Example let \(a = (011101000...000...) \) and \(b = (10010001000....000...) \)
then \(d(a, b) = 8 \)

Definition 5.1 We define \(d_L(a, b) = \max \{i | a_i \neq b_i\}. \)

Let \(G \) be a loacally finite group, there is way of defining a proper left invariant metric on \(G \) by considering a filtration \(L \) of \(G \). So if consider a filtration \(L \) of \(G \)
by subgroups \(L = \{ 1 \subset G_1 \subset G_2 \subset G_3 \subset \ldots \} \), we define the metric \(d_L \) associated with this filtration as:
\[
 d_L(x, y) = \min \{ i | x^{-1} y \in G_i \}.
\]

Proposition 5.2 \(d_L \) is an ultrametric

Proof Let’s use the fact that any triangle in an ultrametric space is isosceles. Let consider \(a = (a_1, a_2, \ldots, a_n, 0, \ldots) \), \(b = (b_1, b_2, \ldots, b_m, 0, \ldots) \), \(c = (c_1, c_2, \ldots, c_l, 0, \ldots) \). We need to show that if \(d_L(a, b) \geq d_L(b, c) \) then \(d_L(a, b) = d_L(a, c) \) or \(d_L(a, b) = d_L(b, c) \).

So \(d_L(a, b) = \max \{ n, m \} \) and \(d_L(b, c) = \max \{ m, l \} \) and then \(\max \{ n, m \} \geq \max \{ m, l \} \).

We decompose this inequality in two cases:

- **Case 1:** If \(\max \{ n, m \} = n \) Then \(n \geq l \Rightarrow d_L(a, c) = n = d_L(a, b) \).
- **Case 2:** If \(\max \{ n, m \} = m \) Then \(\max \{ n, m \} = \max \{ m, l \} \Rightarrow m \geq l \) otherwise we will have \(\max \{ m, l \} = l \) and contradiction from \(\max \{ n, m \} = m \geq \max \{ m, l \} = l \).

So \(\max \{ m, l \} = m = \max \{ n, l \} \) and then \(d_L(a, b) = L(b, c) \).

Example A filtration \(L \) of \(\bigoplus_{i=1}^{\infty}(Z_2) \) is \(L = Z_2 \subset Z_2 \oplus Z_2 \subset Z_2 \oplus Z_2 \oplus Z_2 \subset \ldots \).

Let’s find the Growth function of \(\bigoplus_{i=1}^{\infty}(Z_2) \): \(B(0, r) = \{ a \in \bigoplus_{i=1}^{\infty}(Z_2) \} \) \(d_L(0, a) \leq r \). \(d_L(0, (a_1, a_2, \ldots, a_n, 0, 0, 0, \ldots)) \leq r \) \(\Rightarrow n \leq r \) \(\Rightarrow |B(0, r)| = 2^r \) since each time there are 2 ways of picking up the \(a_i \)’s.

Let’s find the Growth function of \(\bigoplus_{i=1}^{\infty}(Z_3) \): \(B(0, r) = \{ a \in \bigoplus_{i=1}^{\infty}(Z_3) \} \) \(d_L(0, a) \leq r \). \(d_L(0, (a_1, a_2, \ldots, a_n, 0, 0, 0, \ldots)) \leq r \) \(\Rightarrow n \leq r \) \(\Rightarrow |B(0, r)| = 3^r \) since each time there are 3 ways of picking up the \(a_i \)’s.

Proposition 5.3 If \((X, d) \) is a group with \(d \) the taxicab metric and \(d' \) is any proper left invariant metric other than \(d \) then \(X, d \) \(\simeq \text{coarse} \) \((X, d') \).

Proof Define \(f : (X, d) \rightarrow (X, d'), x \mapsto x \) and \(g : (X, d') \rightarrow (X, d), x \mapsto x \).

\(\rho - \text{bornologous} \)

Let \(\lambda_1 = \max \{ d(0, e_i) : e_i \text{, generators } \in X \} \) and \(\lambda_2 = \frac{1}{\lambda_1} \).

Then from the proof of **Lemma 3.4**

\(d'(f(x), f(y)) = d(x, y) = d(0, y - x) \leq \lambda_1.d(0, y - x) = \lambda_1.d(x, y) \)

Similarly,

\(d(g(x), g(y)) = d(x, y) = d(0, y - x) \leq \lambda_2.d'(0, y - x) = \lambda_2.d'(x, y) \)

So \(f \) is \(\rho_1 - \text{bornologous} \) and \(g \) is \(\rho_2 - \text{bornologous} \) where \(\rho_1(t) = \lambda_1.t \) and \(\rho_2(t) = \lambda_2.t \).

\(C - \text{closeness} \)

\(d(x, g \circ f(x)) = d(x, g(x)) = d(x, x) = 0 \) and \(d'(x, f \circ g(x)) = d'(x, f(x)) = d'(x, x) = 0 \)

So it’s sufficient to take \(C = 0 \).

Corollary 5.4 If \(G \) is a group and \(L = G_0 \subset G_1 \subset \ldots \) and \(L' = G'_0 \subset G'_1 \subset \ldots \) two filtrations of \(G \), then \((G, d_L) \) and \((G, d_{L'}) \) are bijectively coarse equivalent.
Proof \((G, d_L) \simeq^{\text{coarse}} (G, d)\) and \((G, d) \simeq^{\text{coarse}} (X, d_L')\)

Now since \(\simeq^{\text{coarse}}\) is an equivalence relation (proposition 4.4), we just proved that \((G, d_L) \simeq^{\text{coarse}} (G, d_L')\). It’s bijective since we’re just using the identity map on \(G\).

6 Problems and Properties

6.1 \(\bigoplus_{i=1}^{\infty} (\mathbb{Z}_2)_i\) and \(\bigoplus_{i=2}^{\infty} (\mathbb{Z}_2)_i\) coarsely?

Proof Define
\[f : \bigoplus_{i=1}^{\infty} (\mathbb{Z}_2)_i \to \bigoplus_{i=1}^{\infty} (\mathbb{Z}_2)_i \quad a = (a_1 a_2, ..., a_n, 0, 0, 0, ...) \mapsto (0, a_2, ..., a_n, 0, 0, 0, ...) \]
\[g : \bigoplus_{i=2}^{\infty} (\mathbb{Z}_2)_i \hookrightarrow \bigoplus_{i=1}^{\infty} (\mathbb{Z}_2)_i \quad \text{the canonical inclusion.} \]
\(\rho\) - bornologous
\[d(f(a), f(b)) = d((0, a_2, ..., a_n, 0, 0, 0, ...), (0, b_2, ..., b_m, 0, 0, 0, ...)) \leq \max\{m, n\} \]
And \(d(a, b) = d((a_1 a_2, ..., a_n, 0, 0, 0, ...), (b_1 b_2, ..., b_m, 0, 0, 0, ...)) = \max\{n, m\} \)
So taking \(\rho(t) = t \Rightarrow d(f(a), f(b)) \leq \max\{m, n\} \leq \rho(d(a, b)) \)
\[d(g(a), g(b)) = d((0, a_2, ..., a_n, 0, 0, 0, ...), (0, b_2, ..., b_m, 0, 0, 0, ...)) = d(a, b) \]
So by taking \(\rho(t) = t\) we have \(d(g(a), g(b)) \leq \rho(d(a, b))\). - closeness
\[d(a, g \circ f(a)) = d((a_1 a_2, ..., a_n, 0, 0, 0, ...), (a_2, ..., a_n, 0, 0, 0, ...)) = 1 \]
\[d(a', f \circ g(a')) = d((0, a'_2, ..., a'_n, 0, 0, 0, ...), (0, a_2, ..., a_n, 0, 0, 0, ...)) = 0 \]
So by taking \(C = 1\) we have \(g \circ f \simeq_{\text{closeness}} 1d_{\bigoplus_{i=1}^{\infty} (\mathbb{Z}_2)_i}\) and \(f \circ g \simeq_{\text{closeness}} 1d_{\bigoplus_{i=2}^{\infty} (\mathbb{Z}_2)_i}\).

6.2 If \(H_1, H_2\) are two finite groups and \(G\) a group. Then \(H_1 \oplus G \simeq^{\text{coarse}} H_2 \oplus G\)

Proof Let \(f : H_1 \oplus G \to H_2 \oplus G, (h_1, g) \mapsto (0, g)\) and
\[g : H_2 \oplus G \to H_1 \oplus G, (h_2, g) \mapsto (0, g) \quad \text{where} \quad h_1 \in H_1, h_2 \in H_2, g \in G \]
\(\rho\) - bornologous
\[d(f(h_1, g), (h_1', g)) = d((0, g), (0, g)) = 0 \leq d((h_1, g), (h_1', g)), \forall (h_1, g), (h_1', g) \in H_1 \oplus G \] and similarly
\[d(f(h_2, g), (h_2', g)) = d((0, g), (0, g)) = 0 \leq d((h_2, g), (h_2', g)), \forall (h_2, g), (h_2', g) \in H_2 \oplus G \]
So taking \(\rho(t) = t\) is more than sufficient.
\(C\) - closeness
Let’s denote \(D_1 = \max\{d(h_1, h_1') : h_1, h_1' \in H_1\}\) and \(D_2 = \max\{d(h_2, h_2') : h_2, h_2' \in H_2\}\) which we know exist since and \(H_1, H_2\) are two finite groups.
Let \(C = \max\{D_1, D_2\}\) then
\[d(h_1, g \circ f(h_1)) \leq C \quad \text{since} \quad h_1, g \circ f(h_1) \in H_1. \]
Similarly \(d(h_2, f \circ g(h_2)) \leq C \quad \text{since} \quad h_2, f \circ g(h_2) \in H_2. \]

So, \(H_1 \oplus G \simeq^{\text{coarse}} H_2 \oplus G\)

Example \(Z_a \oplus \bigoplus_{i=1}^{\infty} (\mathbb{Z}_c)_i \simeq^{\text{coarse}} Z_b \oplus \bigoplus_{i=1}^{\infty} (\mathbb{Z}_c)_i\)

Proof \(Z_a = \{\bar{0}, \bar{1}, ..., a - \bar{1}\}\) and \(Z_a = \{\bar{0}, \bar{1}, ..., b - \bar{1}\}\) The rest is the same as the previous proof by letting \(\bigoplus_{i=1}^{\infty} (\mathbb{Z}_c)_i = G\).
Example: $\bigoplus_{i=1}^{n}(Z_a)_i \oplus G \simeq^{coarse} \bigoplus_{i=1}^{m}(Z_b)_i \oplus G$

Proof: Same proof by letting $H_1 = \bigoplus_{i=1}^{n}(Z_a)_i$, and $H_2 = \bigoplus_{i=1}^{m}(Z_b)_i$.

Example: $\mathbb{Z}_3 \oplus \bigoplus_{i=1}^{\infty}(Z_2)_i \simeq^{coarse} \bigoplus_{i=1}^{\infty}(Z_2)_i$

Proof: Same by letting $H_1 = \bigoplus_{i=1}^{n}(\mathbb{Z}_3)_i$, and $H_2 = \{0\}$ and $G = \bigoplus_{i=1}^{\infty}(\mathbb{Z}_2)_i$.

6.3 [Dr. Conant: Property \star]: A space X is said to have property \star if $\forall c > 0, \exists R > 0, \exists x_0 \in X$ such that $X \backslash B_R(x_0)$ is not c-connected.

Proposition 6.1 (Dr. Conant): If X has property $\star \Rightarrow X$ is unbounded.

Proof: Suppose X is not unbounded, then $D = diam(X) < \infty$, so $X \backslash B_R(x_0) \subset X$ for any $B_R(x_0)$ and then $X \backslash B_R(x_0)$ is $D - connected$. Remark that I am assuming that $X \backslash B_R(x_0) \neq \emptyset$.

6.4 Theorem [Dr. Conant]: \mathbb{Z} is not coarsely equivalent to $\mathbb{Z} \oplus \mathbb{Z}$

Proof (Dr.Conant) Suppose otherwise. Then we have maps $f: \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ and $g: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ such that $g \circ f$ and $f \circ g$ are c-close to the identity and f and g are $\rho - bornologous$. Let B be a ball of radius R centered at 0 in \mathbb{Z} such that Z is not $(\rho(1) + c) - connected$.

Claim 1: There exists an S such that $\rho(t) \geq S - c \Rightarrow t > R$.

There are two cases. If there are no t such that $\rho(R) < \rho(t)$, then choose S so that $S > \rho(R) + c$. Then there are no t satisfying $\rho(t) \geq S - c$, so that the implication $\rho(t) \geq S - c \Rightarrow t > R$ is vacuously true. On the other hand, if there is some t_0 such that $\rho(t_0) > \rho(R)$, then let $S = \rho(t_0) + c$. Then if $\rho(t) \geq S - c$, that implies that $\rho(t) \geq \rho(t_0) > \rho(R)$ which implies that $t > R$ as desired since ρ is an increasing function.

Let $B' \subset Z \oplus Z$ be a ball around $f(0)$ of radius S, as in the previous claim.

Claim 2: We have $g(\mathbb{Z} \oplus \mathbb{Z} \backslash B') \subset \mathbb{Z} \backslash B$. Let $y \in \mathbb{Z} \oplus \mathbb{Z} \backslash B'$, then $d(y; f(0)) > S$.

Now $\rho(d(g(y); 0)) \geq d(f(g(y); f(0)) \geq |d(f(g(y); y) - d(y; f(0))| \geq S - c$

So by claim 1, with $t = d(g(y); 0)$, we have $d(g(y); 0) > R$. So $g(y) \in Z \backslash B$.

Now choose $x, x' \in Z$ which cannot be connected by a $c + \rho(1) - chain$, and which are sufficiently far from $\{0\}$ such that $f(x); f(x') \notin B'$. (Since B' is bounded, we know that $f^{-1}(B)$ is a bounded set.) In $g(\mathbb{Z} \oplus \mathbb{Z} \backslash B')$, we can connect $f(x); f(x')$ by a 1-chain:

$f(x) = y_0; y_1; y_2; \ldots; y' = f(x')$ where $d(y_i; y_{i+1}) \leq 1$. Then we know $g(f(x)); g(y_0); \ldots; g(y_{i-1}); g(f(x_0))$ is a $\rho(1) - chain$, which lies in $\mathbb{Z} \backslash B$.

Prepending x to the beginning and appending x' to the end, we get a $c + \rho(1)$ chain connecting x to x', which is a contradiction.
6.5 Question [Dr. Conant]: Is the growth function conserved by Coarse equivalence? i.e. $X \simeq_{\text{coarse}} Y$ and X has n^{th} order growth degree $\Rightarrow Y$ has n^{th} order growth.

It works for Z and $Z \oplus Z$ since Z has linear growth and $Z \oplus Z$ has quadratic growth and that they are not coarsely equivalent. But about in general?

6.6 Question [Dr. Conant]: Is Property \star conserved by Coarse equivalence? i.e. $X \simeq_{\text{coarse}} Y$ and X has Property \star $\Rightarrow Y$ has Property \star.

It works for Z and $Z \oplus Z$ since Z has Property \star and $Z \oplus Z$ doesn’t have Property \star and that they are not coarsely equivalent. But about in general?

References
