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1 Abstract

15 Magnetoelectric multiferroics such as rare earth manganites host nonreciprocal be-

16 havior driven by low symmetry, spin-orbit coupling, and toroidal moments, although
17 less has been done to explore whether lanthanides like Er3™ might extend functionality
18 into the hard infrared for optical communications purposes. In this work, we reveal
19 nonreciprocity in the f-manifold crystal field excitations of h-LuggErg1MnQOgs. In addi-
20 tion to contrast in the highest fields, we demonstrate nonreciprocity at technologically-
21 relevant energy scales - specifically in the E-, S-, and C-bands of the telecom wave-
» length range - and at low magnetic fields and room temperature. In fact, the low field
23 behavior is consistent with possible altermagnetism. These findings advance the over-
24 all understanding of localized excitations in rare earth-containing systems and pave

»s  the way for entirely new types of telecom applications.
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INTRODUCTION

Nonreciprocal directional dichroism is a type of asymmetric light absorption that de-
pends upon propagation direction.!? It is a defining feature of materials that simulta-
neously break spatial inversion and time-reversal symmetries.®* Although discovered in
magnetoelectrics including CuB504,%® FeZnMosOg,? LiNiPO4,° LiCoPO4,'t Nd,TiyO7,'?
Pb(TiO)Cuy(POy4)4," and NizTeOg,'* 16 nonrecprocity is under-explored in rare earth-
containing systems. This is because f-manifold crystal field excitations (which are both
spin- and parity-forbidden) have been presumed not to host large nonreciprocal effects even
though mixing of electric and magnetic dipoles at noncentrosymmetric rare earth sites can
generate significant magnetoelectric coupling.!"'” Properties arising from Er3* are especially
relevant to amplifiers, isolators, modulators, and rectifiers at optical communications wave-
lengths.'827 The prospect of integrating additional functionality in the form of nonreciprocity
to the rare earth excitations that power these telecommunications technologies is therefore
both challenging and potentially transformative. Rather than testing drawn quartz fibers

sprinkled with powdered Er,??23

we employed h-LuggErg;MnOj3 as a platform for examining
whether rare earth f-manifold excitations have the potential to host nonreciprocal behavior
in the hard infrared. This system sports a dillute ensemble of Er** ions within a P63mc ma-
trix that combines spontaneous polarization along ¢ (arising from improper ferroelectricity
involving the Mn centers) with antiferromagnetism due to Mn3* ordering (Tx ~ 80 K) and
a rare earth related transition near 30 K [Fig. 1a].2%? In fact, h-LuggEro;MnOj is likely
an altermagnet due to antisymmetric spin splitting in the 6'mm’ magnetic ground state.°
Our work is enabled by the development of monopolar domain single crystals which grow
in a characteristic canopy-like shape [Fig. 1b]. Such a material - if functioning as a secure

communications element - should host higher fidelity and lower loss than glass fibers with

Er randomly distributed throughout.

The symmetry requirements for toroidal nonreciprocity in h-LuggErg;MnO;3 dictate that
polarization, magnetic field, and light propagation direction must be mutually orthogo-
nal.!*1% We therefore performed magneto-optical spectroscopy in this fashion. Strikingly,
these measurements reveal strong nonreciprocal behavior in the f-manifold crystal field ex-

citations of Er®* that persists not only at high fields but also at modest magnetic fields and
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even up to room temperature. At 1525 nm, we find a contrast of 3.2% at 1.2 T and 296 K.
These findings challenge the conventional wisdom about localized excitations, opening the

door to entirely new types of nonreciprocal behavior and applications.

RESULTS AND DISCUSSION

Er’t crystal field excitations in the hard infrared

Figure 1c,d displays the near infrared absorption of A-Lugg¢Erg;MnO3 as a function of
temperature. This particular wavelength range focuses on the Er** f-manifold crystal field
excitations in the E-, S-; and C-bands of the telecom range. These excitations are well-known
to be sharp and highly localized. The clusters of peaks between 1440 and 1540 nm can be
assigned as 4[5 2 — 5 /2. This set of excitations is well-studied in Er-containing oxides,
chalcogenides, and silica glasses?®2>3! because the excitations are responsible for the sub-
stantial gain near 1550 nm in Er-doped fiber amplifiers for long-range optical communication.
h-Lug 9Erg 1 MnOj contains two unique Er** centers, each with seven primary */15/2 — %115/
excitations at base temperature, with additional features arising from temperature-induced
population effects. The two Er®* sites and the combination of both ab-plane and c-oriented
excitations add to the complexity of the 4 K data. The impact of population effects along
with the Er3*-related and Mn®" magnetic ordering transition is evident in the contour plot

as wel].30:32

Nonreciprocity in f-manifold crystal field excitations

In order to explore how low symmetry and spin-orbit coupling impact the properties
of f-manifold crystal field excitations, we measured the magneto-optical response of h-
LuggEryg1MnO3 at base and room temperatures and calculated the nonreciprocity which
is defined as Aanpp = a(+H, +k) - a(—H, +k). Figure 2 summarizes these results in the
form of contour plots. As anticipated, the excitations shift linearly in magnetic field with
different slopes given by the respective g factors. We find features that cross and merge as
well as excitations that host avoided crossings. The latter defines critical fields at 6 and 30

30,32

T, in line with the magnetization of h-ErMnO; as well as our own measurements of h-

3
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Lug gErg1MnOj [Fig. S6, Supplementary Information]. The key point is that nonreciprocity
is observed at both low fields and high temperatures and is sensitive to the development of

different field-induced magnetic states.

Figure 3 summarizes the dichroic spectra of h-LuggErg;MnOs. These data were taken
in the toroidal configuration with +H which is symmetrically equivalent to +k [Fig. S2,
Supplementary Information].?® As a reminder, toroidal dichroism occurs when light propa-
gation is along the toroidal moment 7, (E | 7= P x M, where P and M are the electric
polarization and magnetic moment).?34%3% We polished and mounted our crystal consistent

with this configuration [Fig. S1, Supplementary Information)].

Figure 3a displays the nonreciprocal directional dichroism of h-LuggFErg;MnO;3 at 5.5 K,
well below the Er*-related transition and magnetic ordering temperature of Mn®**. The
dichroic response is unexpectedly large (18.8% at 1516 nm and 55 T) for such a highly
localized set of excitations. These results unequivocally confirm that f-manifold crystal field
excitations in a magnetoelectric material can host nonreciprocity. The effect is sharp and
clear, with a very systematic response as a function of applied magnetic field. Even more
remarkably, we find that this system does not need the highest fields to reveal functionality.
Aanpp is approximately 10.4% at 1525 nm and 1.2 T. That such a well-defined nonreciprocal
effect can be observed in the telecom wavelength range allows us to conceive of a number of

unique opportunities.

To test the impact of magnetic ordering on the dichroic effect, we performed similar
experiments at elevated temperatures. Figure 3b,c displays the nonreciprocal directional
dichroism of h-LuggErg1MnO3 at 31 and 186 K, respectively. There is no rare earth ordering
at 31 K332 although the Mn®T centers are still magnetically ordered (Tx = 80 K). Even so,
nonreciprocity is surprisingly strong. Increasing temperature to 186 K eliminates magnetic
ordering involving the Mn3* sites as well. The consequence is a substantial decrease in
the size of the dichroic signal. The overall shape changes due to population effects as well.

Clearly, Er- - -Mn interactions are important - but not essential - for this process.

4
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Nonreciprocity at room temperature

Inspired by the possibility that a well-ordered magnetic state is not required for the devel-
opment of nonreciprocity in f-manifold crystal field excitations, we measured the magneto-
optical properties of h-LuggErg;MnO3 at room temperature. As a reminder, nonreciprocal
directional dichroism requires magnetoelectric coupling. This is because the magnetoelec-
tric susceptibility x7§ is proportional to (0|FP,|n)(n|Mg|0), so both the polarization and
magnetization matrix elements must be non-zero.!

Figure 3d displays the dichroic response of h-Lug gErg1MnO3 at room temperature. Strik-
ingly, the effect is not quenched due to a lack of long-range magnetic order in the Mn frame-
work. This is because the toroidal configuration does not require magnetic order since k [
T = P x M.334%3639 Examination reveals that Aaxpp is still as high as 13.7% at 1516 nm
and full field, although the exact magnitude varies depending upon the excitation, and the
overall size of the spectral features are much more field sensitive than before. Not only is the
signal larger in higher fields, but the highest fields are needed to obtain well-formed peak
shapes. This is likely because larger fields are required to overcome thermal fluctuations,
align Er moments, and break time-reversal symmetry in the paramagnetic phase above the
ordering temperature. Even at 296 K, h-LuggErg1MnO3 continues to host nonreciprocal di-
rectional dichroism at very modest fields. Aanpp at 1.2 T, for instance, is still distinct [inset,
Fig. 3d]. These findings demonstrate that it is indeed possible to realize room temperature

nonreciprocity under low field conditions in the telecom range.

Breaking time reversal symmetry in this system

Thus far, we have seen that at low temperatures, where Mn is antiferromagnetically
ordered, Er- - -Mn interactions break time-reversal symmetry to enable nonreciprocity in the
f-manifold excitations. We speculate that, in the presence of magnetic order, the Mn-induced
local exchange fields on the Er moments cooperate with the external field for an enhanced
dichroic response. This provides a way to understand the dramatic spectral changes across
the Mn ordering temperature. Below the ordering temperature, h-LuggErg;MnOj likely
exhibits By-type symmetry, corresponding to a 6'mm’ magnetic point group, suggesting the

potential for symmetric and antisymmetric spin splitting (S/A-type altermagnetism).4® This
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may provide a possible explanation for the substantial enhancement of the nonreciprocal
signal below Ty [Fig. S4, Supplementary Information]. At higher temperatures, where Mn
is no longer ordered, the applied field acts on the Er moments directly to break time reversal
symmetry, the result generating a smaller, yet still appreciable nonreciprocal signature - even
at room temperature. These effects are well within the limits of our sensitivity. Due to the
low energy scales for f-orbital excitations, small external perturbations lead to a remarkably
large nonreciprocal response, 3.2% at 1525 nm and 1.2 T, even at room temperature.

To summarize, we report the discovery of nonreciprocity in the rare earth crystal field
excitations of an Er3*-containing oxide across the telecom wavelength range. The effect is
surprisingly strong - a finding that we attribute to the ability of the applied field to rotate
Er** moments. At the same time, there is a polar environment around the noncentrosym-
metric rare earth ions leading to the formation of net toroidal moments even in the presence
of very small magnetic fields. While there is some sensitivity to magnetic ordering likely
due to altermagnetic character below Ty, the toroidal configuration generally supports low
loss nonreciprocity in monopolar crystals of h-Lug gErg1MnOs at readily accessible fields and
temperatures - including room temperature. These findings open the door to the develop-
ment of structure-property relations as well as low power devices in this unique application

space.

METHODS

Single crystal growth: h-Lug¢Erg1MnO3 powder was synthesized by sintering a stoichio-
metric mixture of LuyO3, Er,Oz, and Mny;O3 powders at 1350 °C for 30 hours, with two
intermediate grindings. For single crystal growth, the synthesized powder was mixed with
Bi;O3 flux in a molar ratio of 1:10. The mixture was placed in a platinum crucible, heated
to 1100 °C for 10 hours, then cooled at a rate of 2 °C per hour to 800 °C, followed by rapid
cooling at 100 °C per hour to room temperature. The residual flux was removed using dilute
hydrochloric acid to isolate h-LuggErg1MnOg crystals. Compared to previously reported flux
growth methods that yielded multi-ferroelectric-domain crystals, the approach used here in-
corporates a higher ratio of BisO3 flux. As a result, crystallization occurred at the surface

rather than at the bottom of the crucible. This surface crystallization effectively poled the

6
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crystals into a single ferroelectric domain, as confirmed by optical microscope images of the
chemically etched surfaces. The crystals were polished to reveal the c-axis (since the polar
c-axis is normal to the large natural growth face) and to obtain a proper optical density for
our experiments. In this case, the thickness was 230 pm. This configuration is shown in Fig.
S1, Supplementary Information.

Spectroscopic techniques: Spectroscopic measurements at zero magnetic field were per-
formed using a Bruker Equinox 55 Fourier-transform infrared spectrometer across the in-
frared range from 800 - 2600 nm, more than covering the telecom wavelengths (1260 -
1625 nm) and the response of the f-manifold excitations in that vicinity. Unpolarized
light was used for all experiments. The absorption coefficient was calculated as: a(\) =
(—1/d)In(T (X)), where T is the measured normalized transmission, and d is the crystal
thickness. An open-flow cryostat was used for temperature control.

Magneto-optical measurements: Magneto-optical spectroscopy was performed at cryo-
genic temperatures using a 65 T pulsed magnet at the National High Magnetic Field Labora-
tory in Los Alamos, NM. The samples were mounted in the Voigt geometry on a fiber-coupled
probe. Two multi-mode optical fibers were used to deliver broadband, unpolarized, white
light to the sample, and to collect the light transmitted through the sample, respectively.
The collected light was dispersed in a 300 mm spectrometer, using a 600 groove/mm grat-
ing, and was detected by a 1024-pixel InGaAs array detector. We focused on the E-; S-,
and C-bands of the telecom wavelength range (1460 - 1565 nm), achieving approximately
0.1 nm spectral resolution to capture changes in the sharp f-manifold excitations. To test
nonreciprocal directional dichroism, the propagation direction of the light (+k) through the
sample was reversed by switching the delivery and collection fibers and also by reversing
the direction of the magnetic field (£H). A comparison is shown in Fig. S2, Supplemen-
tary Information. We provide an example of the raw data collected at 55 T in Fig. S3,

Supplementary Information.
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FIG. 1. Structure, measurement conditions, and temperature effects in h-

LugoEro;MnOs. a, Crystal structure of h-LuggErgMnOs in the P63mc space group.*! The
Lu/Er, Mn, and O sites are indicated by teal, magenta, and red spheres, respectively. b, Schematic
of the measurement geometry indicating the light propagation k, applied field H, and polariza-
tion P directions (left) and optical microscope image (right) of the ab-plane of the single crystal
revealing the natural canopy-like structure that is indicative of a monopolar domain sample. Our
single crystals were polished to expose the c-axis (which is the direction of polarization) as well
as the Lc direction. Additional information about the orientation [Fig. S1], monopolar domain
character [Fig. S5|, and magnetic properties [Fig. S6] is provided in the Supplementary Informa-
tion. ¢, Absorption of the *I;5 /2 = s /2 Tare earth crystal field excitations in h-LuggErg1MnOs;
as a function of temperature with the corresponding telecom wavelength ranges indicated in green
(E-band), yellow (S-band), and orange (C-band). The spectra are offset for clarity. d, Contour plot
of the spectra in panel ¢ with focus on the C-band features. The horizontal lines indicate Mn3*
antiferromagnetic ordering and the Er®*-related transition.
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FIG. 2. Color contour plots of dichroic effects. Nonreciprocal directional dichroism of h-
LuggErp1MnO3 at a, 5.5 K and b, room temperature (296 K) in a toroidal geometry in pulsed
magnetic fields to 55 T and shown as contour plots. The color indicates the strength and sign of the
dichroic signal. Nonreciprocal directional dichroism Aanpp is calculated as Aaxpp = a(+H, +k)
- a(—H,+k). This quantity is the difference between field pairs.
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FIG. 3. Temperature dependence of nonreciprocal directional dichroism. Nonreciprocal
directional dichroism of h-LuggErp1MnOg3 at a, 5.5 K, b, 31 K, ¢, 186 K, and d, 296 K at selected
fields. The absolute absorption at each temperature is at the bottom of each panel for comparison.
These features are assigned as Ert 41 2 = 4 /2 crystal field excitations. The insets show
Aanpp at 1.2 T.

15



