

Pressure triggers structural phase transitions in chiral $\text{ErFe}_3(\text{BO}_3)_4$

Yanhong Gu^{†,‡,1}, Fan Yang^{‡,2}, Choongjae Won,^{3,4} Sang-Wook Cheong,^{5,6,3} Turan Birol,² and Janice L. Musfeldt^{1,7,*}

¹*Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA*[†]

²*Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, Minnesota 55455, USA*[‡]

³Lab. of Pohang Emergent Materials, Department of Physics,
Pohang University of Science and Technology, Pohang, 37673 Korea

⁴Max Planck POSTECH/KOREA Research Initiative,

Pohang university of Science and Technology, Pohang, 37673 Korea

⁵*Department of Physics and Astronomy,*

Rutgers University, Piscataway, New Jersey 08854 USA

⁶Keck Center for Quantum Magnetism,

Rutgers University, Piscataway, New Jersey 08854 USA

⁷*Department of Physics and Astronomy,*

University of Tennessee, Knoxville, Tennessee 37996, USA

Abstract

We combined diamond anvil cell techniques, Raman scattering, and near infrared spectroscopies with lattice dynamics calculations and a symmetry analysis to reveal the properties of $\text{ErFe}_3(\text{BO}_4)_3$ under compression. Overall, the system is surprisingly soft with a series of structural phase transitions (but no metallicity) up to 20 GPa. Bringing frequency vs. pressure trends together with a group-subgroup analysis and examination of the energy landscape, we uncover a structural phase transition from $P3_121$ to either $P321$ or $R32$ across the 3.8 GPa transition. The BO_3^{3-} units are robust whereas the Fe helix is soft and flexible. Analysis of the crystal field excitations reveals that the local symmetry of Er^{3+} remains trigonal prismatic until after 8.6 GPa with significantly lower symmetries realized at higher pressures. Evaluation of spin-phonon coupling across the 40 K magnetic ordering transition and spectral modifications through the 450 K structural phase transition place this material on a firm foundation, paving the way for a combination of external stimuli including magnetic field, pressure, and strain.

* musfeldt@tennessee.edu

† Present address: State Key Laboratory of Low Dimensional Quantum Physics, Beijing Tsinghua Institute for Frontier Interdisciplinary Innovation, Beijing 102202, China.

‡ These authors contributed equally.

31 **INTRODUCTION**

32 Chirality, the property of being unable to superimpose an object upon its mirror image,
33 plays a pivotal role in chemistry, biology, medicine, and catalysis^{1,2}, although the topic is
34 under-explored in solids^{3–5}. This is largely due to the limited number of monochiral mate-
35 rials, a lack of sensitivity to the requisite symmetry elements, and the need for improved
36 theoretical frameworks able to predict their properties^{5–10}. One platform of current interest
37 is the borates with chemical formula $RM_3(BO_3)_4$ (R = La - Lu, Y; M = Al, Ga, Cr, Fe, Sc).
38 In these systems, chirality delivers both magnetoelectric coupling and fascinating magnetic
39 behavior. Different combinations of R^{3+} and M^{2+} naturally lead to distinct magnetic con-
40 figurations with spins ordering either in or out of the ab plane^{11–15}, and rare earth size effects
41 cause structural phase transitions at different temperatures^{16–18}. The chemical nature of the
42 metal and rare earth ions determine other properties as well. For instance, aluminum bo-
43 rates are widely used in lasing applications^{19,20} whereas the iron borates host magnetoelectric
44 coupling^{21,22}. Many of the rare earth ferroborates $RFe_3(BO_3)_4$ are non-centrosymmetric mul-
45 tiferroics with chiral crystal structures. $DyFe_3(BO_3)_4$ hosts quadrupole helix chirality which
46 leads to new functionalities including chiral optical activity and the possibility of low power
47 electronics²³. In these systems, directional anisotropy of the chiral Fe chain and single-ion
48 anisotropy of the rare earth centers are the chief contributors to spin behavior^{24,25}. Specif-
49 ically, the Fe sublattice determines the antiferromagnetic ordering temperature (typically
50 near 30 or 40 K). The interaction between rare earth ions is weak, so ordering occurs below
51 10 K²⁶. $Fe \cdots Fe$ and $Fe \cdots R$ interactions are therefore key to understanding and controlling
52 the magnetic properties. Naturally, external stimuli like magnetic field are powerful tools for
53 manipulating the properties of $RFe_3(BO_3)_4$ materials^{21,27–30}. Pressure is another well known
54 tuning parameter that acts directly on bond lengths and angles^{31–35}. By so doing, it can
55 modify properties like structure, spin orientation, and polarization^{36–38} in a manner that is
56 much cleaner than chemical substitution³⁹. $GdFe_3(BO_3)_4$, for instance, displays a polar $R3$
57 space group and ferroelectricity under pressure⁴⁰.

58 We selected $ErFe_3(BO_3)_4$ as a platform for exploring the properties of a chiral mixed
59 metal oxide under compression. The high temperature phase hosts an $R32$ space group
60 with FeO_6 octahedra forming helical chains along the c axis [Fig. 1a]^{41–44}. At the same

time, trigonal prisms of ErO_6 connect three helical FeO_6 chains, although these building blocks remain isolated with no $\text{Er}\cdots\text{O}\cdots\text{Er}$ paths. Decreasing temperature drives an $R32$ to $P3_121$ structural phase transition [Fig. 1b]¹⁶. As part of this process, the Er site symmetry drops from D_3 to C_2 , and the overall number of non-equivalent positions increases. The ErO_6 trigonal prisms and FeO_6 octahedra also become increasingly distorted in the low temperature phase. Planar BO_3 triangles connect the FeO_6 octahedra and ErO_6 trigonal prisms. Their surfaces are roughly parallel to the ab plane depending on the type of triangle (equilateral or isosceles) in both the high and low temperature phases. Ordering of the Fe magnetic moments takes place near 40 K whereas Er moments order at approximately 10 K¹¹. Based upon the $32.1'$ maximal low temperature point group^{11,45} and the fact that neighboring unit cells along the c axis reportedly have exactly opposite spin patterns, the magnetic structure of $\text{ErFe}_3(\text{BO}_3)_4$ is antiferromagnetic. However, since the crystal structure in the paramagnetic phase is chiral to begin with, the lack of an altermagnetic spin splitting is due to the presence of anti-translation (translation followed by time-reversal) only, and any subtle change in crystal structure or spin directions, including any helical character that can be easily induced on the already noncollinear spin structure, is likely to induce altermagnetic spin splittings in this compound.

In this work, we combine diamond anvil cell techniques with Raman scattering and near infrared absorption spectroscopy to unravel a series of pressure-driven structural phase transitions in $\text{ErFe}_3(\text{BO}_3)_4$. Comparison with complementary lattice dynamics calculations allows us to assign the character of various phonons in this system at ambient conditions, and a focus on the first of a total of four compression-induced transitions along with a correlation group analysis and survey of the energy landscape reveals a change in the space group from $P3_121$ to either $P321$ or $R32$ at 3.8 GPa. Remarkably, the modes involving Fe centers in the chiral chain exhibit the most significant changes, while phonons related to the BO_3 triangles and ErO_6 octahedra harden systematically. We conclude that the chiral arrangement of Fe centers is relatively soft and flexible whereas the BO_3 and ErO_6 environments are more rigid. In line with these findings, the rare earth ${}^4\text{I}_{15/2} \rightarrow {}^4\text{I}_{13/2}$ crystal field excitations display only slight frequency shifts under compression up to approximately 8 GPa, suggesting that the local trigonal prismatic symmetry of Er^{3+} remains almost unchanged from ambient conditions. Systematic temperature studies, on the other hand, reveal low frequency Er -

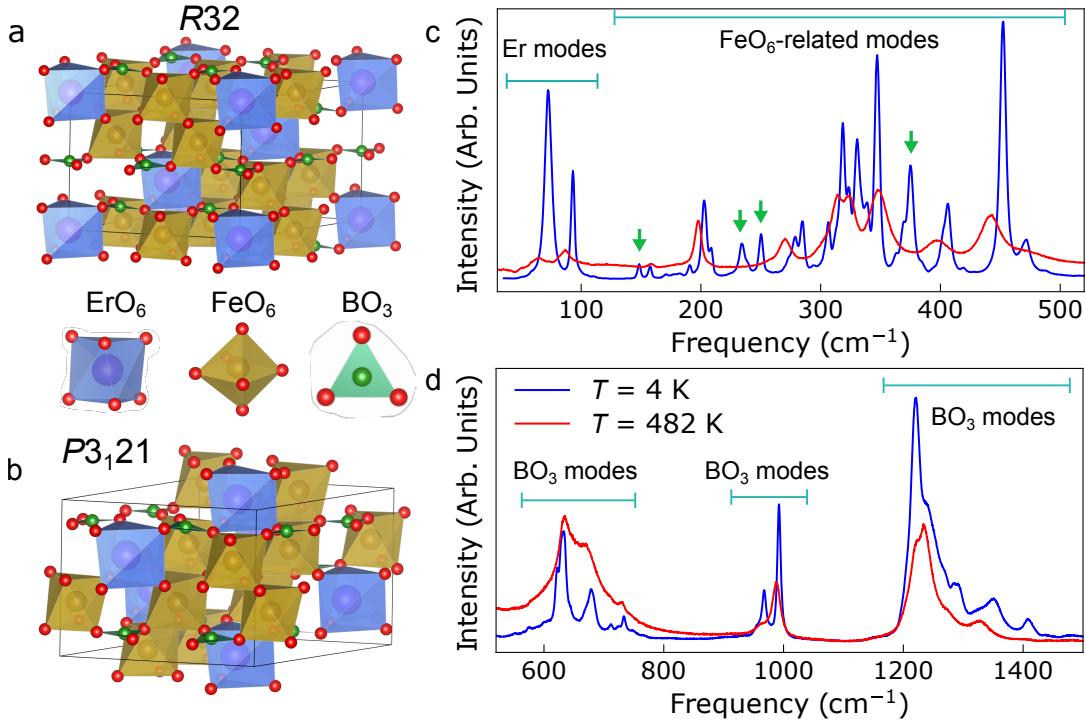


FIG. 1. Crystal structures and Raman-active vibrational modes of $\text{ErFe}_3(\text{BO}_3)_4$. a,b Crystal structures in the $R32$ and $P3_121$ space groups^{41,42,44} corresponding to the high and low temperature phases along with an illustration of the ErO_6 , FeO_6 , and BO_3 building blocks. There are both equilateral and isosceles BO_3 units. c,d Raman-active modes of $\text{ErFe}_3(\text{BO}_3)_4$ in the $P3_121$ (4 K) and $R32$ (482 K) space groups, collected on a single crystal with a random orientation. These features are assigned based upon our lattice dynamics calculations which reveal a clear separation of energy scales and a strong clustering of related motions. Green arrows indicate new modes that appear in the low temperature phase.

92 containing phonons with strong precursor effects on approach to the 450 K structural phase
 93 transition. These precursor effects coordinate with well-defined jumps of selected FeO_6 - and
 94 BO_3 -related modes to lower frequencies at the transition itself. The spin-phonon coupling
 95 constants that we extract across the 40 K magnetic ordering transition are essentially zero.
 96 Taken together, our findings demonstrate that tunability in iron borates can be extended
 97 beyond magnetic field^{46,47} to include both pressure and temperature effects.

98 **RESULTS AND DISCUSSION**

99 **Raman scattering response of $\text{ErFe}_3(\text{BO}_3)_4$ and vibrational mode assignments**

100 Figure 1 displays the Raman scattering response of $\text{ErFe}_3(\text{BO}_3)_4$ in the high and low
101 temperature phases. These spectra were collected on a random surface of the single crystal
102 to reveal as many peaks as possible. The space group in the high temperature phase is $R\bar{3}2$
103 whereas that in the low temperature phase is $P\bar{3}_121^{16,44,48,49}$. A group theoretical analysis
104 has been presented in prior work¹⁶. As a reminder, the primitive cell of the $R\bar{3}2$ structure
105 contains 20 atoms which gives rise to 57 vibrational modes including 12 infrared-active
106 and 45 Raman-active features. The low temperature primitive cell of the $P\bar{3}_121$ structure
107 contains 60 atoms resulting in 32 infrared-active and 145 Raman-active modes. Clearly this
108 is a complicated situation. To support these measurements, we performed lattice dynamics
109 calculations to reveal the mode displacement patterns. Even so, it is challenging to make
110 unambiguous mode assignments with so many features in close proximity. We therefore
111 assign the excitations as consistently as possible based upon the mode groupings. The
112 approach works because there is a clear separation of energy scales and “clustering” of the
113 various types of vibrations. This allows us to classify the general character of the motion.
114 For instance, according to the phonon density of states from our density functional theory
115 (DFT) calculations, the lowest frequency peaks are clearly due to Er vibrations whereas
116 FeO_6 motion resides between approximately approximately 200 and 500 cm^{-1} . The borate
117 units^{16,50–52} have well known features near 650, 980, and 1220 cm^{-1} . These assignments
118 are discussed in detail in the Supplementary information. The other interesting aspect of
119 Fig. 1 c,d is that several of the Raman-active modes in the 4.2 K spectrum disappear in
120 the high temperature phase. These features - all below 400 cm^{-1} - are marked with green
121 arrows. A more detailed discussion of the temperature dependence of these features across
122 the magnetic and structural phase transitions is given below.

123 **Pressure triggers a series of structural phase transitions**

124 Figure 2a summarizes the Raman scattering response of $\text{ErFe}_3(\text{BO}_3)_4$ as a function of
125 pressure between 0 and 20 GPa. The pressure vs. frequency trends (plotted as green cir-

126 cles) are shown in Fig. 2b. Here, color represents mode intensity. As usual, we define
127 the critical pressures (P_C 's) from an analysis of the peak splitting, shifting, and recombina-
128 tion under compression^{53,54}. These changes can be connected with symmetry breaking and
129 restoration through a correlation group analysis. We find four structural phase transitions
130 in $\text{ErFe}_3(\text{BO}_3)_4$ ($P_{C,1} = 3.8$, $P_{C,2} = 8.3$, $P_{C,3} = 12.7$, $P_{C,4} = 15.6$ GPa) as indicated by the
131 horizontal dashed lines in Fig. 2b. In addition to the $P3_121$ state at ambient pressure, the
132 critical pressures define four new structural phases marked as HP1, HP2, HP3, and HP4. In
133 order to focus our attention, we concentrate on unraveling the symmetry properties across
134 $P_{C,1} = 3.8$ GPa. A similar distortion is likely to be triggered by small strains as well.

135 The ambient pressure $P3_121$ space group (No. 152) hosts Er^{3+} ions with C_2 site symmetry
136 and Fe^{2+} ions with both C_2 and C_1 site symmetries. The Fe framework forms a three-fold
137 screw axis whereas the Er centers host two-fold rotational symmetry. Examination reveals
138 that the peaks at 400 and 470 cm^{-1} disappear across the structural phase transition at 3.8
139 GPa. At the same time, two new features appear near 430 and 570 cm^{-1} . These are iron
140 oxide bending motions. The number of low frequency Er-containing modes below 100 cm^{-1}
141 as well as the overall quantity of high frequency borate-related modes remain similar. We
142 can immediately see that the borate framework is quite robust under compression, so the
143 symmetry elements that these phonons represent are unchanged. The helical iron oxide
144 framework is significantly softer.

145 Symmetry and energy landscape analysis in $\text{ErFe}_3(\text{BO}_3)_4$ under pressure

146 Based upon the overall number of phonon modes in the Raman scattering spectrum across
147 $P_{C,1}$, the new high pressure phase of $\text{ErFe}_3(\text{BO}_3)_4$ (which we label as HP1) should contain a
148 similar number of atoms in the primitive cell. A symmetry analysis^{55–57} yields five candidate
149 space groups: $P321$ (No. 150), $P3_112$ (No. 151), $P3_221$ (No. 154), $P6_1$ (No. 169), and
150 $P6_4$ (No. 172). Crystals that form an enantiomorphous pair, i.e. a crystal and its mirror
151 image with opposite chirality, have the same excitation spectrum. Hence, they exhibit the
152 same peaks in the Raman spectrum^{58,59}. The observed splitting and merging of modes in
153 our spectra suggest that the transition from the ambient right-handed space group is not
154 a simple flipping of handedness. Thus, the left-handed space group $P3_221$ (No. 154) can

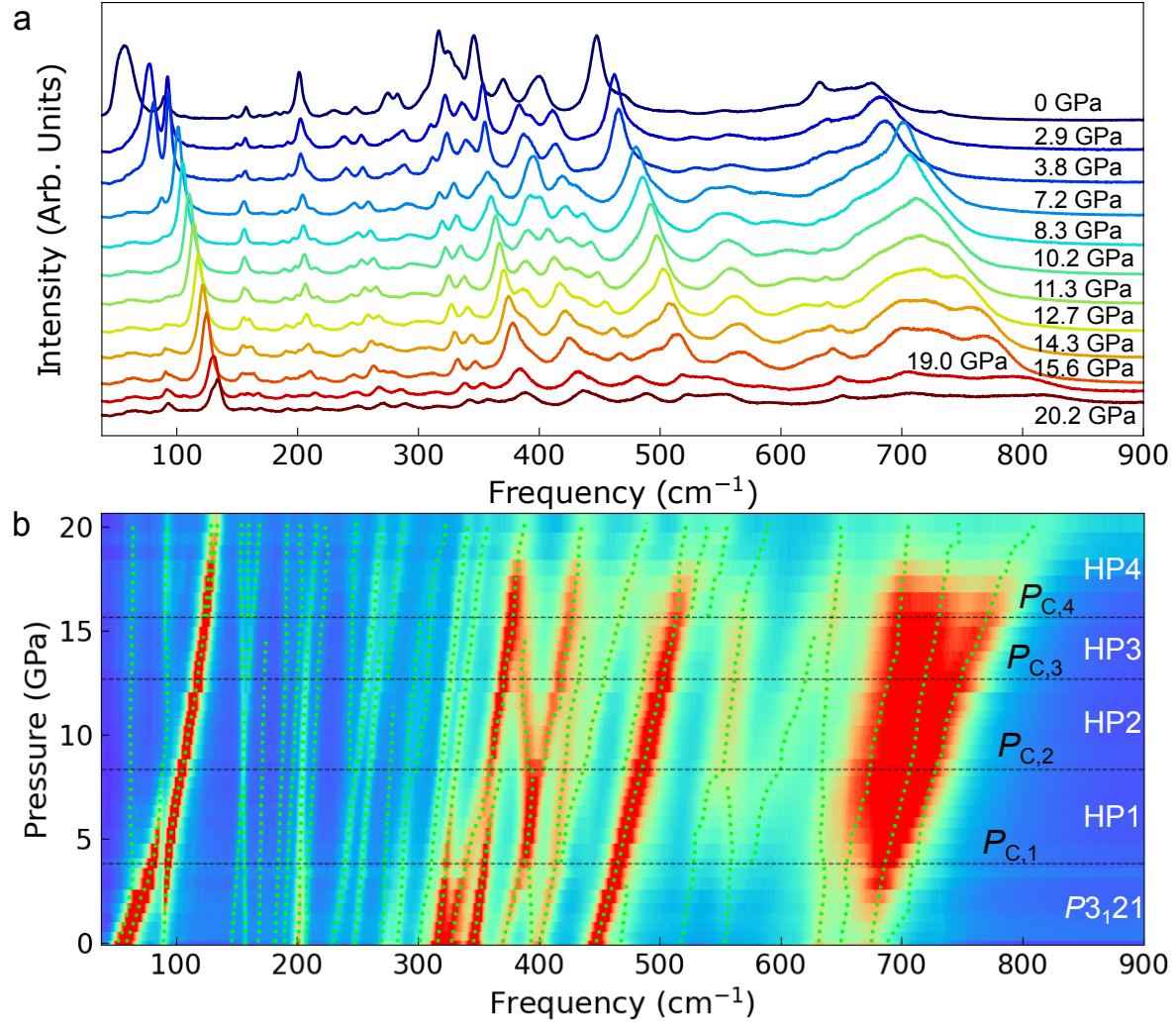


FIG. 2. Raman scattering response under pressure. a Raman scattering response of $\text{ErFe}_3(\text{BO}_3)_4$ under compression from 0 (top, dark blue) to 20.2 GPa (bottom, dark red) at room temperature. These spectra are reversible upon release of the pressure up to 20 GPa. b Contour plot of the Raman spectra as function of pressure. In addition to the ambient pressure phase, Four new states are induced by pressure and marked by the horizontal dashed lines. They are labeled HP1, HP2, HP3, and HP4. A close-up view of panel b is shown in Fig. S3, Supplemental information.

155 be excluded from further analysis. $P6_1$ (No. 169) contains only C_1 site symmetry, and
 156 compared with the 3_1 screw, requires a helical Fe chain that has 6 planes of Fe atoms in
 157 each unit cell. As a result, this group requires at least a doubled unit cell with significant
 158 re-arrangement of atoms, and would yield many more peaks. It is therefore excluded from

159 further consideration based on the overall number of site symmetries. For $P6_4$ (No. 172),
 160 there is no in-plane two-fold rotational symmetry axis, which contradicts the observation that
 161 the Er-related modes maintain their character in the HP1 phase. In other words, because
 162 the number of Er-related modes remains the same across $P_{C,1}$, it is likely that the in-plane
 163 two-fold rotation symmetry is preserved at Er sites - despite the frequency shift and change
 164 in intensity. A symmetry analysis of the spectroscopic results therefore suggests that the
 165 most likely candidates for HP1 are either $P321$ (No. 150) or $P3_12$ (No. 151).

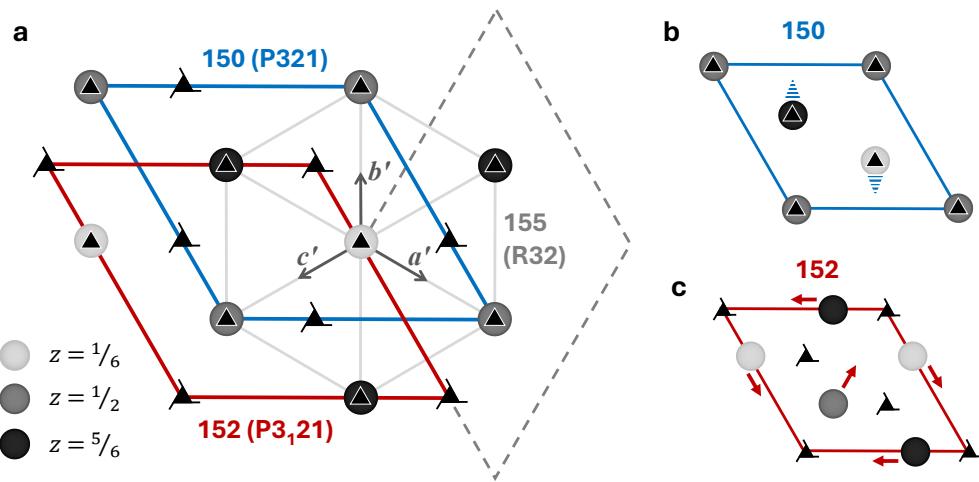


FIG. 3. Symmetry relationship among space groups $R32$ (No. 155), $P321$ (No. 150) and $P3_121$ (No. 152). a Unit cells of $P321$ (blue) and $P3_121$ (red) superimposed on the $R32$ unit cells, primitive (solid grey lines) and conventional (dashed grey lines). C_3 rotational axes and 3_1 screw axes in $R32$ are labeled with corresponding symmetry symbols (with 3_2 axes and C_2 axes omitted for simplicity). Grey balls with different shade levels represent Er atoms at different z -levels. b,c Boundary phonon modes in $R32$ that lead to $P321$ (No. 150) and $P3_121$ (No. 152), respectively. Shaded triangles represent out-of-plane displacements; solid arrows represent in-plane displacements.

166 To more deeply examine the possible structures across 3.8 GPa, we performed first-
 167 principles calculations using density functional theory (DFT) by building candidate struc-
 168 tures in space groups $P321$ (No. 150), $R32$ (No. 155) and $P3_12$ (No. 151) in the ferromag-
 169 netic configuration. For space group $P3_12$, the only likely structure we can find with the
 170 same stoichiometry as $\text{ErFe}_3(\text{BO}_3)_4$ stabilizes into a very different configuration where each
 171 B atom is coordinated by four O atoms⁶⁰, leading to dramatic softening of BO_x phonons

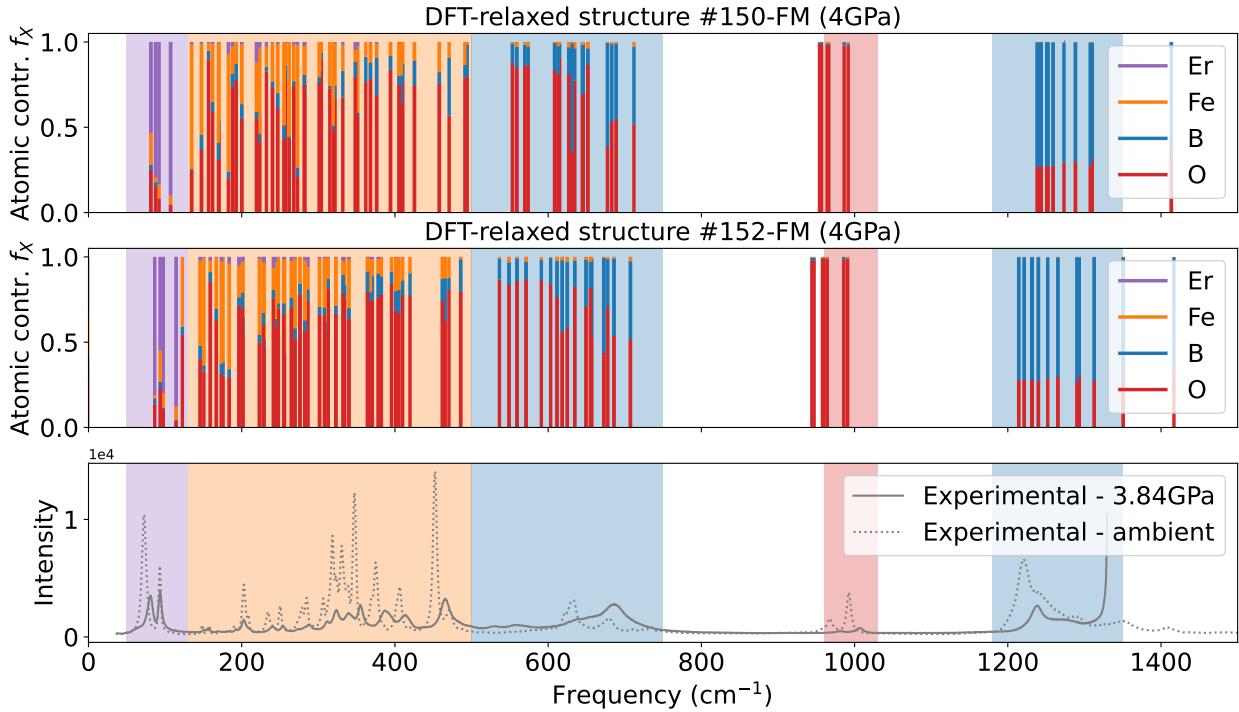


FIG. 4. DFT-predicted Raman-active phonon modes of $\text{ErFe}_3(\text{BO}_3)_4$ and corresponding atomic contributions in ferromagnetic $P321$ (No. 150) and $P3_121$ (No. 152) phases under 4GPa. Shaded regions correspond to (purple) ErO_6 modes, (orange) FeO_6 -related modes, (blue) BO_3 modes and (red) O-dominant modes. Calculation details can be found in Supplemental information.

172 in high frequency region. This rules out $P3_12$ as a candidate for HP1. $P321$ and $R32$ are
 173 both able to stabilize in structures similar to the ambient $P3_121$ phase with only minor dis-
 174 placements in atomic positions. Symmetry analysis reveals that $R32$ (No. 155) is a common
 175 supergroup of $P321$ (No. 150) and $P3_121$ (No. 152, the ambient phase). All three sys-
 176 tems share very similar crystal structures with some transformation of unit cells, and $P321$
 177 and $P3_121$ are accessible from $R32$ through two different boundary phonon modes [Fig. 3].
 178 Energetically, DFT predicts $P3_121$ to be the most favorable phase throughout the pressure
 179 range from 0 to 4 GPa, followed by $R32$ with a difference of approximately 200 meV per
 180 primitive cell in free energy. Although DFT apparently does not predict a phase transition,
 181 the metastable phases captured by it can nevertheless be used to provide some insight into
 182 possible high pressure structure candidates which are expected to be at similar energy levels
 183 as the ambient phase around the transition point. $P321$ cannot be stabilized over $R32$ in a

ferromagnetic configuration and always relaxes into the higher-symmetry *R*32 structure during the structural optimization process in DFT. However, we do not rule out the possibility that *P*321 may be stable in other magnetic configurations. Regarding Raman spectra, our calculations confirm the same grouping of Raman-active phonon modes in *P*3₁21 and *P*321, with observable differences in frequency distribution between 300 and 600 cm⁻¹ [Fig. 4]. *R*32 has a much smaller primitive cell and thus many fewer Raman-active phonon modes, however, given the almost indistinguishable crystal structures of *R*32 and *P*321 obtained from our calculations, the zone boundary modes in *R*32 which fold onto Γ and become visible in *P*321 are expected to be very weak in intensity, leading to highly similar spectral patterns for the two candidates in practice. As a result, we maintain both *P*321 (No. 150) and *R*32 (No. 155) as possible candidates for the space group above 3.8 GPa.

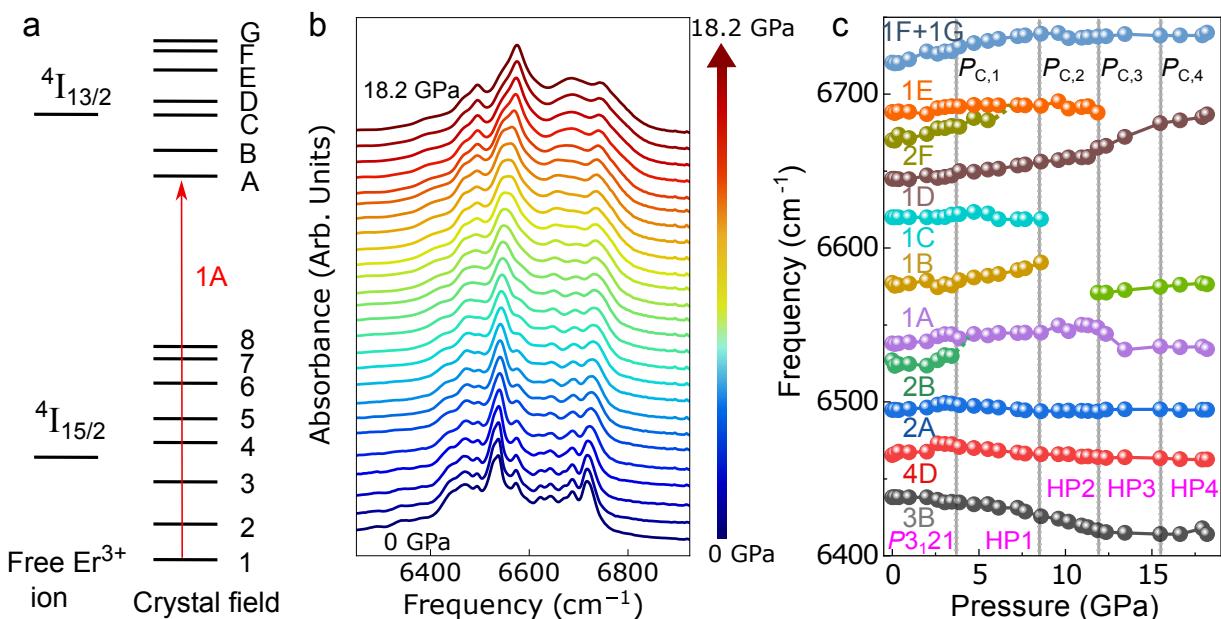


FIG. 5. *f*-manifold excitations of $\text{ErFe}_3(\text{BO}_3)_4$ under pressure. a Scheme showing the crystal field energy levels of a Er^{3+} ion. b Near infrared absorbance of $\text{ErFe}_3(\text{BO}_3)_4$ at room temperature between 0 (bottom solid line) and 18.2 GPa (top solid line). c *f*-manifold excitations as a function of pressure. Peak 2B is very small and strongly overlaps peak 1A in this range, making it challenging to track in a meaningful way. These spectra are reversible upon release of the pressure.

195 **Analysis of the local rare earth environment**

196 To determine whether the local environment of the rare earth center varies across $P_{C,1}$,
197 we measured the near-infrared absorbance of $\text{ErFe}_3(\text{BO}_3)_4$ as a function of pressure [Fig.
198 5]. These features can be assigned as *f*-manifold excitations of Er^{3+} . As expected, the
199 positions of these crystal field excitations at ambient conditions are consistent with prior
200 reports.^{48,61,62} Figure 5c displays the frequency vs. pressure trends. Importantly, there
201 are no clear anomalies across the structural phase transition at $P_{C,1}$. The overall lack of
202 prominent changes in the *f*-manifold excitations suggests that Er^{3+} remains in a trigonal
203 prismatic environment across $P_{C,1} = 3.8$ GPa. This supports a structural phase transition
204 at $P_{C,1}$ that, from a chemical point of view, primarily involves the Fe helix. The local Er^{3+}
205 environment is more robust, consistent with our analysis above.

206 Finally, we point out that $\text{ErFe}_3(\text{BO}_3)_4$ crystallizes in the *P3₁21* space group at both 300
207 and 4 K at ambient pressure conditions.^{41,42,44} It is therefore very likely that similar behavior
208 persists across the *P3₁21* phase - including at 4 K, although of course magnetic ordering of
209 Er and Fe (and the pressure dependence of these effect) may change this picture somewhat.

210 **Revisiting temperature effects in chiral $\text{ErFe}_3(\text{BO}_3)_4$**

211 Figure 6a summarizes the Raman scattering response of $\text{ErFe}_3(\text{BO}_3)_4$ as a function of
212 temperature. Ours are not the first studies of this type¹⁶, but they are the most complete,
213 allowing us to track the systematic evolution of each phonon and establish the importance
214 of various types of displacements across the magnetic ordering and structural phase tran-
215 sitions. We selected several specific features, plotted in Figs. 6b-g, for a detailed analysis.
216 The low frequency phonons involving Er motion (magenta and red symbols) display the most
217 unusual behavior [Fig. 6b]. Focusing first on the high temperature response, we see that two
218 features near 80 cm^{-1} have a kink at 350 K – likely due to the precursor effects – after which
219 they harden smoothly with increasing temperature across $T_S = 450$ K. This rising trend is
220 unusual. All of the other phonons display typical anharmonic behavior as well as a sharp
221 drop across T_S as marked by the red dashed line [Figs. 6c,d and f,g]. This softening occurs
222 at slightly higher temperature than in prior reports¹⁶ – probably due to superior crystal
223 quality.

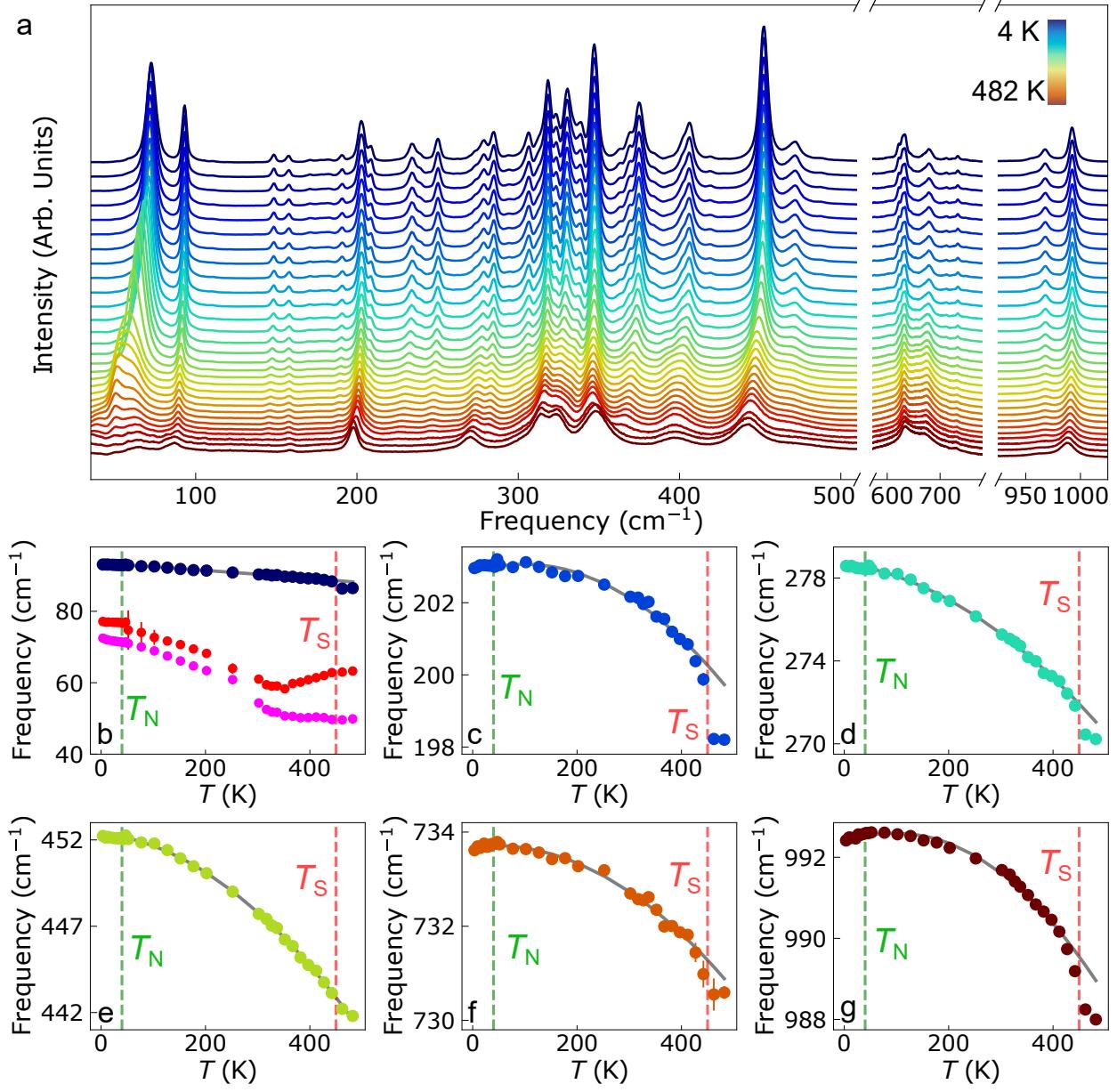


FIG. 6. Temperature dependence of the Raman spectra. a Raman-active phonon modes at various temperatures. b-g Frequency vs. temperature trends. Circles represent experimental data extracted from panel a, and solid gray lines are fits to the anharmonic model. Unless indicated, the error bars are smaller than the symbol size.

²²⁴ $\text{ErFe}_3(\text{BO}_3)_4$ also hosts a magnetic ordering transition T_N near 40 K¹¹ marked by the green
²²⁵ dashed line. We observe very slight mode softenings across this transition. As a reminder,
²²⁶ the phonons in Figs. 6c-e are dominated by Fe atom motion whereas those in Figs. 6f-g

227 correspond to BO_3 motion. Spin is ordered below T_N , causing both Fe-O-Fe and Fe-O-B-
228 O-Fe super-exchange interactions to soften these features [Figs. 6b-g]. We can quantify
229 spin-phonon coupling by fitting frequency vs. temperature data in the nonmagnetic phase
230 with a typical anharmonic model as shown by the solid gray lines⁶³. Given the limiting
231 low temperature value from this fit and an estimate of the spin-spin correlation function
232 between nearest neighbor spins, we can calculate the spin-phonon coupling constants (λ 's) as
233 $\Delta\omega = \lambda \langle S_i \cdot S_j \rangle$ ⁶⁴⁻⁶⁶. The spin-phonon coupling constants that we extract from this model are
234 less than $\pm 0.02 \text{ cm}^{-1}$, meaning that they are almost effectively zero. Additional discussion
235 is given in the Supplementary information. These values are significantly smaller than those
236 in many other heavy and mixed-metal oxides⁶⁷ ruling out a substantial effect of spin-phonon
237 coupling - at least involving the even symmetry vibrational modes - in this system.

238 **SUMMARY**

239 In order to explore the properties of a chiral antiferromagnet, we measured the Raman
240 scattering and near infrared absorbance of bimetallic $\text{ErFe}_3(\text{BO}_3)_4$ as a function of pressure
241 and temperature and compared our findings to first-principles calculations of the lattice
242 dynamics and energy landscape. Overall, phonon modes involving Er^{3+} and BO_3^{3-} are robust
243 under pressure compared to the Fe^{2+} -related features. The FeO_6 -related modes are the first
244 to change under compression because the chiral chain is soft. In line with these findings, the
245 rare earth $^4\text{I}_{15/2} \rightarrow ^4\text{I}_{13/2}$ crystal field excitations display only small shifts in frequency under
246 compression up to 8 GPa, suggesting that the local trigonal prismatic symmetry of Er^{3+}
247 remains almost unchanged from ambient conditions. Higher pressures modify the crystal
248 structure across a series of different space groups up to 20 GPa – although without the
249 appearance of metallicity. We studied temperature trends in this work as well. While spin-
250 phonon coupling is effectively zero across the Fe^{2+} ordering temperature at 40 K, the $P3_121 \rightarrow$
251 $R32$ structural phase transition near 450 K hosts a sharp and systematic softening of the
252 BO_3 and FeO_6 modes as well as two Er^{3+} -containing modes with strong precursor effects
253 that drive the system toward the higher symmetry state. Together, studies of this type have
254 the potential to identify effective methods for achieving switchable polar and antipolar states
255 for device and energy applications.

256 **METHODS**

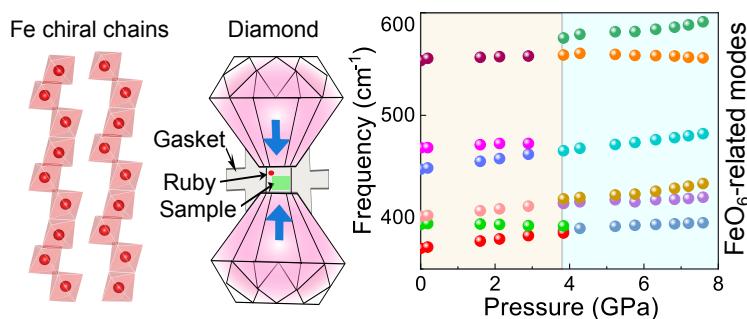
257 **Crystal growth and diamond anvil cell loading:** High quality single crystals of
258 $\text{ErFe}_3(\text{BO}_3)_4$ were grown by flux techniques as described previously⁶⁸. These crystals are
259 monochiral, meaning that there are no chiral domains. For the high pressure Raman scat-
260 tering measurements, a small single crystal was loaded into a symmetric diamond anvil cell
261 suitable for work in the 0 - 20 GPa range. The cell is equipped with low fluorescence dia-
262 monds and 400 μm culets. We also employed a stainless steel gasket with a 100 μm hole,
263 KBr as the pressure medium to assure quasi-hydrostatic conditions, and an annealed ruby
264 ball for pressure determination via fluorescence⁶⁹. Ruby fluorescence spectra are shown in
265 Fig. S1, Supplementary information. For high pressure near infrared measurements, no
266 pressure medium is used; only pure samples and a ruby ball are loaded into the diamond
267 anvil cell. Additional information on hydrostaticity and reversibility is available in Fig. S2
268 Supplementary information.

269 **Raman scattering spectroscopy:** Raman scattering measurements were performed in
270 the back scattering geometry using a Horiba LabRAM HR Evolution spectrometer equipped
271 with a 532 nm (green) laser, a 50 \times microscope objective, 1800 line/mm gratings, and a
272 liquid-nitrogen-cooled charge-coupled device detector. To minimize heating and maximize
273 signal intensity for this low brightness sample, power was controlled below 2 mW, and the
274 laser was slightly defocused. Each spectrum was integrated for 40 s and averaged three times.
275 Variable temperature work was carried out with a low-profile open-flow cryostat, and high
276 pressure measurements employed a diamond anvil cell as described above. Standard peak
277 fitting techniques were employed as appropriate.

278 **Near infrared spectroscopy:** Near infrared spectra are collected in transmittance
279 mode using a Bruker Equinox 55 FTIR spectrometer with a Bruker IR Scope II. A tungsten
280 source and a liquid N₂-cooled InSb detector are used in the frequency range of 4000–12000
281 cm^{-1} . Spectra were obtained from the sample loaded in the diamond anvil cell with a
282 resolution of 4 cm^{-1} at room temperature.

283 **Lattice dynamics calculations and analysis of the energy landscape:** First-
284 principles calculations were performed using density functional theory as implemented in
285 Vienna *ab initio* simulation package^{70,71} with the projector-augmented wave method⁷² and

286 the Perdew-Burke-Ernzerhof⁷³ exchange-correlation function. The DFT-D2 method⁷¹ was
287 used for the van der Waals correction, and the calculations were performed on a Γ centered
288 $10 \times 10 \times 6$ k -point grid with a plane-wave cutoff energy of 500 eV. The internal coordinates
289 of the experimental structure¹¹ were relaxed with a ferrimagnetic order and the vibrational
290 modes were obtained using the finite difference method. Details pertaining to the structural
291 relaxation and calculation of mode intensities are available in the Supplementary information.


292 **NOTES**

293 The authors declare no competing financial or non-financial interests.

294 **ACKNOWLEDGMENTS**

295 Research at Tennessee is supported by Condensed Matter Physics, Division of Materials
296 Research at the National Science Foundation (DMR-2226109). Work at Rutgers University
297 is funded by a W. M. Keck foundation grant to the Keck Center for Quantum Magnetism.
298 The work at the University of Minnesota (F.Y. and T.B.) was funded by supported by the
299 NSF CAREER grant DMR-2046020. Work at POSTECH was supported by the National
300 Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(No. RS-
301 2022-NR068223).

302 **FOR THE TABLE OF CONTENTS:**

303 Pressure is a powerful tool for manipulating the properties of materials. Here, we demon-
304 strate that compression acts primarily on the chiral Fe chains in the rare earth ferroborate

³⁰⁵ ErFe₃(BO₃)₄. The soft, flexible FeO₆ chains are the key structural element in these materials.

306 (1) Nag, A.; Butt, A. M.; Yang, M. Y.; Managutti, P. B.; Pirzada, B. M.; Mohideen, M.
307 I. H.; Abdelhady, A. L.; Haija, M. A.; Mohamed, S.; Merinov, B. V.; Goddard, W. A. I.;
308 Qurashi, A. Polymorphism of $[\text{Cu}_{15}(\text{PhCH}_2\text{CH}_2\text{S})_{13}(\text{PPh}_3)_6]\text{[BF}_4\text{]}_2$ and double-helical assem-
309 bly of $[\text{Cu}_{18}\text{H}(\text{PhCH}_2\text{CH}_2\text{S})_{14}(\text{PPh}_3)_6\text{Cl}_3]$: origin of two chiral nanoclusters with triple-helical
310 core from intermediates. *ACS Materials Lett.* **2025**, *7*, 442–449.

311 (2) Wang, G.; Qu, A.; Sun, M.; Xu, J.; Kuang, H. Chemical mechanisms and biological effects of
312 chiral nanomaterials. *Acc. Mater. Res.* **2024**, *5*, 1221–1236.

313 (3) Cheong, S.-W.; Xu, X. Magnetic chirality. *npj Quantum Mater.* **2022**, *7*, 40.

314 (4) Bloom, B. P.; Paltiel, Y.; Naaman, R.; Waldeck, D. H. Chiral induced spin selectivity. *Chem.*
315 *Rev.* **2024**, *124*, 1950–1991.

316 (5) Inda, A.; Oiwa, R.; Hayami, S.; Yamamoto, H. M.; Kusunose, H. Quantification of chirality
317 based on electric toroidal monopole. *The Journal of Chemical Physics* **2024**, *160*, 184117.

318 (6) Fecher, G. H.; Kübler, J.; Felser, C. Chirality in the solid state: chiral crystal structures in
319 chiral and achiral space groups. *Materials* **2022**, *15*, 5812.

320 (7) Sun, M.-E.; Wang, Y.; Wang, F.; Feng, J.; Wang, L.; Gao, H.; Chen, G.; Gu, J.; Fu, Y.; Bu, K.;
321 Fu, T.; Li, J.; Lü, X.; Wu, Y. L.; Zang, S.-Q. Chirality-dependent structural transformation
322 in chiral 2D perovskites under high pressure. *J. Am. Chem. Soc.* **2023**, *145*, 8908–8916.

323 (8) Haskel, D.; Won, C.; Joly, Y.; Strempfer, J.; Fabbris, G.; Cheong, S.-W. Deconvolution of
324 X-ray natural and magnetic circular dichroism in chiral Dy-ferroborate. *Sci. Rep.* **2024**, *14*,
325 24453.

326 (9) Horibe, Y.; Yang, J.; Cho, Y.-H.; Luo, X.; Kim, S. B.; Oh, Y. S.; Huang, F.-T.; Asada, T.;
327 Tanimura, M.; Jeong, D.; Cheong, S.-W. Color theorems, chiral domain topology, and mag-
328 netic properties of Fe_xTaS_2 . *J. Am. Chem. Soc.* **2014**, *136*, 8368–8373.

329 (10) Yokosuk, M. O.; Kim, H.-S.; Hughey, K. D.; Kim, J.; Stier, A. V.; O’Neal, K. R.; Yang, J.;
330 Crooker, S. A.; Haule, K.; Cheong, S.-W.; Vanderbilt, D.; Musfeldt, J. L. Nonreciprocal
331 directional dichroism of a chiral magnet in the visible range. *npj Quantum Mater.* **2020**, *5*,
332 20.

333 (11) Ritter, C.; Vorotynov, A.; Pankrats, A.; Petrakovskii, G.; Temerov, V.; Gudim, I.; Szym-

334 czak, R. Magnetic structure in iron borates $RFe_3(BO_3)_4$ ($R = Er, Pr$): a neutron diffraction
335 and magnetization study. *J. Phys.: Condens. Matter* **2010**, *22*, 206002.

336 (12) Golosovsky, I. V.; Mukhin, A. A.; Skumryev, V.; Ressouche, E.; Ivanov, V. Y.; Gudim, I. A.
337 Hidden magnetic instability in the substituted multiferroics $(Nd, Tb)Fe_3(BO_3)_4$. *Phys. Rev.*
338 *B* **2024**, *109*, 014421.

339 (13) Boldyrev, K. N.; Kuz'min, N. N.; Mukhin, A. A.; Ivanov, V. Y.; Dobretsova, E. A.;
340 Popova, E. A.; Gavrilkin, S. Y.; Leonyuk, N. I.; Maltsev, V. V.; Malkin, B. Z.; Popova, M. N.
341 Thermal and magnetic properties and optical spectroscopy of $SmCr_3(BO_3)_4$. *Phys. Rev.*
342 *Mater.* **2021**, *5*, 104413.

343 (14) Popova, M. N.; Malkin, B. Z.; Boldyrev, K. N.; Stanislavchuk, T. N.; Erofeev, D. A.;
344 Temerov, V. L.; Gudim, I. A. Evidence for a collinear easy-plane magnetic structure of multi-
345 ferroic $EuFe_3(BO_3)_4$: Spectroscopic and theoretical studies. *Phys. Rev. B* **2016**, *94*, 184418.

346 (15) Tripathy, A.; Gautam, K.; Dey, K.; Sahu, S. R.; Ahad, A.; Upadhyay, A.; Sagdeo, A.; Fran-
347 coual, S.; Bereciartua, P. J.; Gudim, I.; Strempfer, J.; Sathe, V. G.; Shukla, D. K. Structural
348 and magnetic interplay in multiferroic $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$. *Phys. Rev. B* **2023**, *107*, 214106.

349 (16) Fausti, D.; Nugroho, A. A.; van Loosdrecht, P. H.; Klimin, S. A.; Popova, M. N.; Bezmatern-
350 nykh, L. N. Raman scattering from phonons and magnons in $RFe_3(BO_3)_4$. *Phys. Rev. B* **2006**,
351 *74*, 024403.

352 (17) Leonyuk, N. Half a century of progress in crystal growth of multifunctional $RAl_3(BO_3)_4$ (R
353 = Y, Pr, Sm – Lu). *J. Cryst. Growth* **2017**, *476*, 69–77.

354 (18) Pavlovskiy, M. S.; Zinenko, V. I.; Shinkorenko, A. S. Effect of a rare-earth ion on the structural
355 instability in $RFe_3(BO_3)_4$ crystals. *JETP Letters* **2018**, *108*, 116–120.

356 (19) Oreshonkov, A. S.; Roginskii, E. M.; Shestakov, N. P.; Gudim, I. A.; Temerov, V. L.; Nemt-
357 sev, I. V.; Molokeev, M. S.; Adichtchev, S. V.; Pugachev, A. M.; Denisenko, Y. G. Structural,
358 electronic and vibrational properties of $YAl_3(BO_3)_4$. *Materials* **2020**, *13*, 545.

359 (20) Boldyrev, K.; Popova, M.; Bettinelli, M.; Temerov, V.; Gudim, I.; Bezmaternykh, L.;
360 Loiseau, P.; Aka, G.; Leonyuk, N. Quality of the rare earth aluminum borate crystals for laser
361 applications, probed by high-resolution spectroscopy of the Yb^{3+} ion. *Opt. Mater.* **2010**, *36*,
362 511–521.

363 (21) Zvezdin, A. K.; Krotov, S. S.; Kadomtseva, A. M.; Vorob'ev, G. P.; Popov, Y. F.; Py-

364 atakov, A. P.; Bezmaternykh, L. N.; Popova, E. Magnetoelectric effects in gadolinium iron
365 borate $\text{GdFe}_3(\text{BO}_3)_4$. *JETP Letters* **2005**, *81*, 272–276.

366 (22) Kadomtseva, A. M.; Popov, Y. F.; Vorob'ev, G. P.; Pyatakov, A. P.; Krotov, S. S.;
367 Kamilov, K. I.; Ivanov, V. Y.; Mukhin, A. A.; Zvezdin, A. K.; Kuz'menko, A. M.; Bezmaternykh,
368 L. N.; Gudim, I. A.; Temerov, V. L. Magnetoelectric and magnetoelastic properties of
369 rare-earth ferroborates. *Low Temp. Phys.* **2010**, *36*, 511–521.

370 (23) Usui, T.; Tanaka, Y.; Nakajima, H.; Taguchi, M.; Chainani, A.; Oura, M.; Shin, S.;
371 Katayama, N.; Sawa, H.; Wakabayashi, Y.; Kimura, T. Observation of quadrupole helix chiral-
372 ity and its domain structure in $\text{DyFe}_3(\text{BO}_3)_4$. *Nat. Mater.* **2014**, *13*, 611–618.

373 (24) Vasiliev, A. N.; Popova, E. A. Rare-earth ferroborates $\text{RFe}_3(\text{BO}_3)_4$. *Low Temp. Phys.* **2006**,
374 *32*, 735–747.

375 (25) Zhang, H.; Liu, S.; Nelson, C. S.; Bezmaternykh, L. N.; Chen, Y.-S.; Wang, S. G.; Lobo, R.
376 P. S. M.; Page, K.; Matsuda, M.; Pajerowski, D. M.; Williams, T. J.; Tyson, T. A. Structural
377 features associated with multiferroic behavior in the $\text{RX}_3(\text{BO}_3)_4$ system. *J. Phys.: Condens.*
378 *Matter* **2019**, *31*, 505704.

379 (26) Popova, M. N.; Chukalina, E. P.; Stanislavchuk, T. N.; Bezmaternykh, L. N. Different types
380 of magnetic ordering in $\text{RFe}_3(\text{BO}_3)_4$, R= Gd, Tb, Er, and Y, as studied by the method of
381 Er^{3+} spectroscopic probe. *J. Magn. Magn. Mater.* **2006**, *300*, e440–e443.

382 (27) Zvezdin, A. K.; Vorob'ev, G. P.; Kadomtseva, A. M.; Popov, Y. F.; Pyatakov, A. P.; Bezmaternykh,
383 L. N.; Kuvardin, A.; Popova, E. A. Magnetoelectric and magnetoelastic interactions in
384 $\text{NdFe}_3(\text{BO}_3)_4$ multiferroics. *JETP letters* **2006**, *83*, 509–514.

385 (28) Popov, Y. F.; Pyatakov, A. P.; Kadomtseva, A. M.; Vorob'ev, G. P.; Zvezdin, A. K.;
386 Mukhin, A. A.; Ivanov, V. Y.; Gudim, I. A. Peculiarities in the magnetic, magnetoelectric,
387 and magnetoelastic properties of $\text{SmFe}_3(\text{BO}_3)_4$ multiferroic. *JETP* **2010**, *111*, 199–203.

388 (29) Popov, Y. F.; Kadomtseva, A. M.; Vorob'ev, G. P.; Mukhin, A. A.; Ivanov, V. Y.;
389 Kuz'menko, A.; Prokhorov, A. S.; Bezmaternykh, L. N.; Temerov, V. L. Observation of
390 spontaneous spin reorientation in $\text{Nd}_{1-x}\text{Dy}_x\text{Fe}_3(\text{BO}_3)_4$ ferroborates with a competitive R-
391 Fe exchange. *JETP Letters* **2009**, *89*, 345–351.

392 (30) Kadomtseva, A. M.; Vorob'ev, G.; Popov, Y. F.; Pyatakov, A.; Mukhin, A. A.; Ivanov, V. Y.;
393 Zvezdin, A. K.; Gudim, I. A.; Temerov, V. L.; Bezmaternykh, L. N. Magnetoelectric and

394 magnetoelastic properties of easy-plane ferroborates with a small ionic radius. *JETP* **2012**,
395 *114*, 810–817.

396 (31) Miao, M.; Sun, Y.; Zurek, E.; Lin, H. Chemistry under high pressure. *Nat. Rev. Chem.* **2020**,
397 *4*, 508–527.

398 (32) Mujica, A.; Rubio, A.; Munoz, A.; Needs, R. High-pressure phases of group-IV, III–V, and
399 II–VI compounds. *Rev. Mod. Phys.* **2003**, *75*, 863.

400 (33) Mao, H.-K.; Chen, X.-J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high
401 pressure. *Rev. Mod. Phys.* **2018**, *90*, 015007.

402 (34) Matsuoka, T.; Kim, H.-S.; Samanta, S.; Musfeldt, J. L.; Mandrus, D. G. MPX₃ van der Waals
403 magnets under pressure (M= Mn, Ni, V, Fe, Co, Cd; X= S, Se). *Front. Mater. Sci.* **2024**, *11*,
404 1362744.

405 (35) Pei, S.; Wang, Z.; Xia, J. High pressure studies of 2D materials and heterostructures: A
406 review. *Mater. Des.* **2022**, *213*, 110363.

407 (36) Coak, M. J. et al. Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet
408 FePS₃. *Phys. Rev. X* **2021**, *11*, 011024.

409 (37) Rocquefelte, X.; Schwarz, K.; Blaha, P.; Kumar, S.; Van Den Brink, J. Room-temperature
410 spin-spiral multiferroicity in high-pressure cupric oxide. *Nat. Commun.* **2013**, *4*, 2511.

411 (38) Aoyama, T.; Yamauchi, K.; Iyama, A.; Picozzi, S.; Shimizu, K.; Kimura, T. Giant spin-driven
412 ferroelectric polarization in TbMnO₃ under high pressure. *Nat. Commun.* **2014**, *5*, 4927.

413 (39) Souza-Neto, N. M.; Haskel, D.; Tseng, Y.-C.; Lapertot, G. Pressure-induced electronic mixing
414 and enhancement of ferromagnetic ordering in EuX (X = Te, Se, S, O) magnetic semicon-
415 ductors. *Phys. Rev. Lett.* **2009**, *102*, 057206.

416 (40) Lyubutin, I. S.; Gavriliuk, A. G.; Andryushin, N. D.; Pavlovskiy, M. S.; Zinenko, V. I.;
417 Lyubutina, M. V.; Troyan, I. A.; Smirnova, E. S. Pressure-induced structural transition to
418 the polar phase in GdFe₃(BO₃)₄. *Cryst. Growth Des.* **2019**, *19*, 6935–6944.

419 (41) Campá, J. A.; Cascales, C.; Gutiérrez-Puebla, E.; Monge, M. A.; Rasines, I.; Ruíz-Valero, C.
420 Crystal structure, magnetic order, and vibrational behavior in iron rare-earth borates. *Chem.*
421 *Mater.* **1997**, *9*, 237–240.

422 (42) Hinatsu, Y.; Doi, Y.; Ito, K.; Wakushima, M.; Alemi, A. Magnetic and calorimetric studies on
423 rare-earth iron borates LnFe₃(BO₃)₄ (Ln= Y, La–Nd, Sm–Ho). *J. Solid State Chem.* **2003**,

424 172, 438–445.

425 (43) Graf, D.; Bradley, W. The crystal structure of huntite, $Mg_3Ca(CO_3)_4$. *Acta Cryst.* **1962**, *15*,
426 238–242.

427 (44) Alekseeva, O. A.; Smirnova, E. S.; Frolov, K. V.; Lyubutina, M. V.; Lyubutin, I. S.;
428 Gudim, I. A. Crystal structure dynamics of $RFe_3(BO_3)_4$ single crystals in the temperature
429 range 25–500 K. *Crystals* **2022**, *12*, 1203.

430 (45) Popova, E. A.; Vasiliev, A. N.; Temerov, V. L.; Bezmaternykh, L. N.; Tristan, N.; Klingeler, R.;
431 Büchner, B. Magnetic and specific heat properties of $YFe_3(BO_3)_4$ and $ErFe_3(BO_3)_4$. *J. Phys.:
432 Condens. Matter* **2010**, *22*, 116006.

433 (46) Boldyrev, K. N.; Malkin, B. Z.; Popova, M. N. Magnetic-field-tunable intensity transfer
434 from optically active phonons to crystal-field excitations in the reflection spectra of the
435 $PrFe_3(BO_3)_4$ antiferromagnet. *Crystals* **2022**, *12*, 392.

436 (47) Nelson, C. S.; Bezmaternykh, L. N.; Gudim, I. A. Temperature- and magnetic-field-tuning of
437 magnetic phases in multiferroic $NdFe_3(BO_3)_4$. *JKPS* **2013**, *62*, 1410–1413.

438 (48) Erofeev, D.; Jablunovskis, A.; Chukalina, E. Optical spectroscopy of $ErFe_3(BO_3)_4$: detection
439 of phase transitions and crystal-field levels of the Er^{3+} ground multiplet. *EPJ Web Conf.*
440 **2018**, *185*, 07002.

441 (49) Popova, M. N.; Chukalina, E. P.; Erofeev, D. S.; Jablunovskis, A.; Gudim, I. A.; Malkin, B. Z.
442 High-resolution optical spectroscopy and modeling of spectral and magnetic properties of
443 multiferroic $ErFe_3(BO_3)_4$. *Phys. Rev. B* **2020**, *101*, 205108.

444 (50) De Andres, A.; Agullo-Rueda, F.; Taboada, S.; Cascales, C.; Campa, J.; Ruiz-Valero, C.;
445 Rasines, I. Raman active phonons of $RFe_3(BO_3)_4$, $R = La$ or Nd , single crystals. *J. Alloys
446 Compd.* **1997**, *250*, 396–399.

447 (51) Moshkina, E.; Krylov, A.; Sofronova, S.; Gudim, I.; Temerov, V. Crystal growth and Raman
448 spectroscopy study of $Sm_{1-x}La_xFe_3(BO_3)_4$ ferroborates. *Cryst. Growth Des.* **2016**, *16*, 6915–
449 6921.

450 (52) Krylov, A. S.; Sofronova, S. N.; Gudim, I. A.; Vtyurin, A. N. Magnetoelastic interactions in
451 Raman spectra of $Ho_{1-x}Nd_xFe_3(BO_3)_4$ crystals. *Solid State Commun.* **2013**, *174*, 26–29.

452 (53) Clune, A.; Harms, N.; O’Neal, K. R.; Hughey, K.; Smith, K. A.; Obeysekera, D.; Haddock, J.;
453 Dalal, N. S.; Yang, J.; Liu, Z.; Musfeldt, J. L. Developing the pressure–temperature–magnetic

454 field phase diagram of multiferroic $[(\text{CH}_3)_2\text{NH}_2]\text{Mn}(\text{HCOO})_3$. *Inorg. Chem.* **2020**, *59*, 10083–
455 10090.

456 (54) Clune, A. J.; Harms, N. C.; Smith, K. A.; Tian, W.; Liu, Z.; Musfeldt, J. L. Pressure–
457 temperature–magnetic field phase diagram of multiferroic $(\text{NH}_4)_2\text{FeCl}_5\cdot\text{H}_2\text{O}$. *Inorg. Chem.*
458 **2024**, *63*, 11021–11029.

459 (55) Ivantchev, S.; Kroumova, E.; Madariaga, G.; Pérez-Mato, J. M.; Aroyo, M. I. *SUBGROUP-*
460 *GRAPH*: a computer program for analysis of group–subgroup relations between space groups.
461 *J. Appl. Cryst.* **2000**, *33*, 1190–1191.

462 (56) Ivantchev, S.; Kroumova, E.; Aroyo, M. I.; Perez-Mato, J. M.; Igartua, J. M.; Madariaga, G.;
463 Wondratschek, H. *SUPERGROUPS* – a computer program for the determination of the su-
464 pergroups of the space groups. *J. Appl. Cryst.* **2002**, *35*, 511–512.

465 (57) Tasci, E. S.; Elcoro, L.; Perez-Mato, J. M.; de la Flor, G.; Aroyo, M. I. *SUBGROUPS*: a
466 computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or
467 distorted structures. *Appl. Cryst.* **2024**, *57*, 1650–1666.

468 (58) Spirito, D.; Marras, S.; Martín-García, B. Lattice dynamics in chiral tellurium by linear
469 and circularly polarized Raman spectroscopy: crystal orientation and handedness. *J. Mater.*
470 *Chem. C* **2024**, *12*, 2544–2551.

471 (59) Ishito, K.; Mao, H.; Kobayashi, K.; Kousaka, Y.; Togawa, Y.; Kusunose, H.; Kishine, J.-i.;
472 Satoh, T. Chiral phonons: circularly polarized Raman spectroscopy and ab initio calculations
473 in a chiral crystal tellurium. *Chirality* **2023**, *35*, 338–345.

474 (60) The crystal structure of $\text{KMg}_3(\text{SiO}_3)_4$ is used as a starting guess for the first principles relax-
475 ation of this structure.

476 (61) Popova, M. N.; Chukalina, E. P.; Erofeev, D. S.; Jablunovskis, A.; Gudim, I. A.; Malkin, B. Z.
477 High-resolution optical spectroscopy and modeling of spectral and magnetic properties of
478 multiferroic $\text{ErFe}_3(\text{BO}_3)_4$. *Phys. Rev. B* **2020**, *101*, 205108.

479 (62) Popova, E. A.; Chukalina, E. P.; Boldyrev, K. N.; Jablunovskis, A.; Gudim, I. A. Magnetic
480 structure of $\text{ErFe}_3(\text{BO}_3)_4$: Spectroscopic and thermodynamic studies. *J. Magn. Magn. Mater.*
481 **2020**, *500*, 166374.

482 (63) Balkanski, M.; Wallis, R.; Haro, E. Anharmonic effects in light scattering due to optical
483 phonons in silicon. *Phys. Rev. B* **1983**, *28*, 1928.

484 (64) Lockwood, D. J.; Cottam, M. G. The spin-phonon interaction in FeF_2 and MnF_2 studied by
485 Raman spectroscopy. *J. Appl. Phys.* **1988**, *64*, 5876–5878.

486 (65) Suzuki, N.; Kamimura, H. Theory of spin-dependent phonon Raman scattering in magnetic
487 crystals. *J. Phys. Soc. Jpn.* **1973**, *35*, 985–995.

488 (66) Gu, Y.; Smith, K. A.; Saha, A.; De, C.; Won, C.-j.; Zhang, Y.; Lin, L.-F.; Cheong, S.-W.;
489 Haule, K.; Ozerov, M.; Birol, T.; Homes, C.; Dagotto, E.; Musfeldt, J. L. Unconventional
490 insulator-to-metal phase transition in $\text{Mn}_3\text{Si}_2\text{Te}_6$. *Nat. Commun.* **2024**, *15*, 8104.

491 (67) Park, K.; Kim, J.; Choi, S.; Fan, S.; Kim, C.; Oh, D. G.; Lee, N.; Cheong, S.-W.; Kiryukhin, V.;
492 Choi, Y. J.; Vanderbilt, D.; Lee, J. H.; Musfeldt, J. L. Spin–phonon interactions and magne-
493 toelectric coupling in $\text{Co}_4\text{B}_2\text{O}_9$ ($B = \text{Nb}, \text{Ta}$). *Appl. Phys. Lett.* **2023**, *122*, 182902.

494 (68) Leonyuk, N.; Leonyuk, L. Growth and characterization of $\text{RM}_3(\text{BO}_3)_4$ crystals. *Prog. Cryst.*
495 *Growth Charact. Mater.* **1995**, *31*, 179–278.

496 (69) Mao, H.; Bell, P.; Shaner, J. T.; Steinberg, D. Specific volume measurements of Cu, Mo, Pd,
497 and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. *J.*
498 *Appl. Phys.* **1978**, *49*, 3276–3283.

499 (70) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations
500 using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

501 (71) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and
502 semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.

503 (72) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.;
504 Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and
505 Surfaces. *Phys. Rev. Lett.* **2008**, *100*, 136406.

506 (73) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.
507 *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.