17.2 – Sample Aliasing

Analog to Digital Conversion
- Analog signals are continuous in time and output.
- Digital signals are broken into discrete “steps”

Conversion Issues – How many of these “steps” are required to accurately represent an analog signal? This depends on:
1) Frequency content of measure analog system
2) Increment size between each discrete sample
3) The total sample period
4) Behavior of signal to be measured (periodic?)

Sampling Rate and Aliasing

Sample Rate
\[f_s = \frac{1}{d t} \]

Aliasing
If an insufficient sample rate is used the signal measured will differ from the actual signal.

Nyquist Sampling Theorem
A sample rate of at least two times the maximum signal frequency is required to prevent aliasing.
\[f_{sc} > 2f_n \]

Nyquist Frequency
\[f_N = \frac{f_s}{2} \]
7.3 Digital devices

Systems use:

- discrete steps in time and amplitude.
- binary system
 - Base 2 system. It is on or off.
 - A digit or bit is the smallest unit of measure (0, 1)
 - A word is a collection of bits used to express a number.
 - An 8 bit word is a byte.
- a physical location used to store a word is a register.

- We use different combinations of bits to form words representing decimal (base 10) numbers.

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Combinations</th>
<th>Decimal Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 bit</td>
<td>$2^2 = 4$</td>
<td>0, 1, 2, 3</td>
</tr>
<tr>
<td>4 bit</td>
<td>$2^4 = 16$</td>
<td>0 to 15</td>
</tr>
<tr>
<td>8 bit</td>
<td>$2^8 = 256$</td>
<td>0 to 256</td>
</tr>
<tr>
<td>16 bit</td>
<td>$2^{16} = 65,536$</td>
<td>0 to 65,535</td>
</tr>
</tbody>
</table>

- Conversion from Binary to Decimal
 a) Straight Binary Code (5 bit example)

<table>
<thead>
<tr>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x $2^4 = 16$</td>
<td>0 x $2^3 = 0$</td>
<td>1 x $2^2 = 4$</td>
<td>0 x $2^1 = 0$</td>
<td>1 x $2^0 = 1$</td>
</tr>
<tr>
<td>16 + 0 + 4 + 1 = 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Binary Coded Decimal

- In this system, each digit of a decimal number is individually coded into binary.
- EX. 532 is represented by

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Using the Folding Diagram

- $f_s(f_s/2)$ is the maximum frequency that can be represented (measured).
- If the signal is a higher frequency, this will result in an aliased signal with an output < f_s.

Example

- Actual Signal to be Measured
 - $f_{signal} = 168$ Hz
- Sample Frequency
 - $f_s = 200$ Hz
- Nyquist Frequency
 - $f_N = f_s/2 = 100$ Hz
- Result
 - Divide f_{signal} by f_s to get $f_{signal}/f_s = 1.68$
 - *find this point on the folding diagram and drop straight down to get 0.32
 - *So, our output (what we read) will be 0.32f_s = 32 Hz, so $f_{measured} = 32$ Hz!!!
 - Due to low sampling rate, we measure a wave with $f = 168$ Hz as $f = 32$ Hz!!!
7.4 Transmitting Digital Numbers

- Binary code is signaled using voltage "switches"
- High voltage represents 1 (on) and low 0 (off)

![Image](image)

7.5 Voltage Measurements

Analog to Digital Converter
- Analog Side: E_{FSR} (Full Scale Range)
 - Ex. 10 V
- Digital Side: 2^M binary numbers
 - Ex. 8 bit (256 steps)
- Resolution

$$ Q = \frac{E_{FSR}}{2^M} = \frac{10V}{2^8} = 0.03906 \text{ V/count} $$

Saturation

If a signal that is above or below the E_{FSR} is measured it will be converted at the limit value.
- Ex. 11 V will give the same reading as 10 V

A/D Errors

1) **Quantization**
 - Error between the actual voltage and the indicated voltage.
 - Ex. 3 V at 2^2 give outputs of 0, 1, 2, 3

Ex. 0-4 Volt board with a 0-10 "count" output.

2) **Saturation Error**
 - Error associated with exceeding the limits of the A/D converter.
 - Ex. Using the above, 5 V will be converted as 3 V for an error of $5 - 3 = 2$ V

3) **Conversion Error**
 - A/D Problems such as settling time, signal noise, temperature effects, power fluctuations, etc.
 - Yield errors like hysteresis, linearity, zero drift, repeatability

A/D Errors (cont.)

Signal-to-Noise Ratio (SNR) due to Quantization

Consider the power of the signal given by Ohm’s law

$$\frac{E^2}{R}$$

and the power that can be resolved by the converter

$$\frac{E^2}{R2^M}$$

(where M is the number of bits)

then the ratio of these in terms of decibels is

$$\text{SNR}[\text{dB}] = 20 \log(2^M)$$