Problems 8.75

Disks A and B have identical masses and mass moments of inertia about their respective mass centers. Point C is both the geometric center and center of mass of disk A. Points O and D are the geometric center and center of mass of disk B, respectively. If, at the instant shown, the two disks are rotating about their centers with the same angular velocity ω_0, determine which of the following statements is true and why:

(a) $|\vec{\omega}_C| < |\vec{\omega}_O|$
(b) $|\vec{\omega}_C| = |\vec{\omega}_O|$
(c) $|\vec{\omega}_C| > |\vec{\omega}_O|$

Disk A

$$H_C = H_G = I_C \omega$$

Disk B

$$H_O = I_C \omega + m \vec{v} \cdot \vec{d}$$
as O is not at the center of mass

So $H_O = H_C + m \vec{v} \cdot \vec{d}$ and answer a is correct

$|\vec{\omega}_C| < |\vec{\omega}_O|$