Lecture Notes before Annotations

Lecture Notes after Annotations

\[\sigma^2 \leftarrow s^2 \]

\[\times \quad \text{s.d.}(x) = \frac{s}{n} \]

Estimation of \(\sigma^2 \)

\[s^2 = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2} = \frac{\sum_{i=1}^{n} (y_i - [\hat{\beta}_0 + \hat{\beta}_1 x_i])^2}{n-2} \]

This estimate has \(n-2 \) degrees of freedom because two unknown parameters are estimated.

\[y = b_0 + b_1 x \]

\(\mu_x, \sigma \)

\(\sigma \) does not depend on \(x \)

\[y = \beta_0 + \beta_1 x \]

\[H_0: \text{a curve is linear} \]

\[\beta_1 = 0 \]
If \(P \)-value < 0.05 then your chances of rejecting a true null hypothesis is less than 0.05

A Type I error occurs when one rejects a true null hypothesis.
A Type II error occurs when one does not reject a false null hypothesis.

The \(p \)-value is a measure of confidence in our rejection of the null hypothesis.

\[
H_0: \beta_1 = 0 \\
H_0: \beta_1 = 0
\]

Test of Hypothesis for \(\beta_0 \) and \(\beta_1 \)
\[
H_0: \beta_1 = 0 \text{ vs. } H_1: \beta_1 \neq 0
\]
Reject \(H_0 \) at \(\alpha \) level if \(|t| = \left| \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} \right| > t_{\alpha/2}
\]

Tire example:
\[
\left(\frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \right) = \left(\frac{-7.28}{0.614} \right) = -11.86, \quad t_{0.025} = 2.365
\]

Strong evidence that mileage affects tread depth.
(Two-sided p-value)

\[
\alpha = 0.05, 0.01, 0.10
\]

Reject if \(P \)-value \(\leq \alpha \)

\[
M_y = \beta_0 = \text{constant}
\]

If \(P \)-value < 0.05 then your chances of rejecting a true null hypothesis is less than 0.05

\[
\begin{array}{c}
\frac{t}{\overline{50}} \quad \frac{t_0}{\overline{50}}
\end{array}
\]

Analysis of Variance
\[
H_0: \beta_1 = 0 \text{ vs. } H_0: \beta_1 \neq 0
\]
\[
\nu = \frac{\text{MSR}}{	ext{MSE}}
\]

The Mean Square (MS) is the Sums of Square divided by its degrees of freedom, e.g.
\[
\text{MSE} = \text{SSE/(df = 2531.529/7 = 361.6}
\]
\[H_0 : \beta_1 = 0 \text{ vs. } H_0 : \beta_1 \neq 0 \]

\[F = \frac{\text{MSR}}{\text{MSE}} \]

\[\frac{5087.2}{361.6} = 140.71 \]

\[F = 140.70 \]

\[(-11.8621) \]

\[r^2 = 1 \]

\[m_y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \]

\[H_0 : \beta_1 = 0 \text{ vs. } H_a : \beta_1 \neq 0 \]

ANOVA Test

\[H_0 : \beta_1 = \beta_2 = 0 \]

Prediction of a Future y or Its Mean

For a fixed value of \(x \), are we trying to predict
- the average value of \(y \)?
- the value of a future observation of \(y \)?

Example:

- Do I want to predict the average selling price of all 4,000 square feet houses in my neighborhood.

- Or do I want to predict the particular future selling price of my 4,000 square feet house?

Which prediction is subject to the most error?
Prediction of a Future y or Its Mean: Prediction Interval or Confidence Interval

For a fixed value of x^*, are we trying to predict
-the average value of y?
-the value of a future observation of y?

\[
\hat{y} = 4 + 5 \cdot x
\]
\[
x = 400 \Rightarrow \\
\mu_y = 4 + 5(400) = 2004 \\
\mu_\hat{y} = 4 + 5(400) = 2004
\]
JMP: Prediction of the Mean of y

\[y = b_0 + b_1 x \]

JMP: Prediction of a Future Value of y
Formulas for Confidence and Prediction Intervals

A 100(1 - α)% CI for μ^* is given by

$$\hat{\mu}^* - t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}} \leq \mu^* \leq \hat{\mu}^* + t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}}$$ \hspace{1cm} (10.18)

where $\hat{\mu}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$ and $\bar{x} = \sqrt{\text{MSE}}$ is the estimate of σ.

A 100(1 - α)% PI for Y^* is given by

$$\hat{Y}^* - t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}} \leq Y^* \leq \hat{Y}^* + t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}}$$ \hspace{1cm} (10.19)

where $\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$.

Prediction Interval of Chapter 7:

$100(1 - \alpha)%$ PI for a future observation $X \sim N(\mu, \sigma^2)$ is given by

$$\bar{x} - t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{1}{n}} \leq X \leq \bar{x} + t_{n-1,\alpha/2} \sqrt{\frac{1}{n} + \frac{1}{n}}$$
Confidence and Prediction Intervals with JMP
CI for Mean for \(\mu^* \)

<table>
<thead>
<tr>
<th>Mileage (in 1000 Miles)</th>
<th>Grove Depth (in mile)</th>
<th>Predicted Grove Depth (in mile)</th>
<th>Lower 95% Mean Grove Depth (in mile)</th>
<th>Upper 95% Mean Grove Depth (in mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>394.33</td>
<td>332.997636</td>
<td>398.296983</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>329.5</td>
<td>331.514187</td>
<td>339.535999</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>291</td>
<td>300.391687</td>
<td>293.431448</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>265.17</td>
<td>273.269167</td>
<td>267.194859</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>229.33</td>
<td>244.146867</td>
<td>229.157298</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>204.83</td>
<td>215.024187</td>
<td>198.949859</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>179</td>
<td>195.901567</td>
<td>186.941448</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>183.81</td>
<td>158.779167</td>
<td>133.800899</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>150.33</td>
<td>127.569687</td>
<td>108.917836</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>*</td>
<td>*(179.621042)</td>
<td>*(198.738823)</td>
</tr>
</tbody>
</table>

Date: 6/20/2012

Unit 10 - Stat 571 - Ranaei V. Leva
Prediction Interval for Y^*

<table>
<thead>
<tr>
<th>Miles (in 1000)</th>
<th>Grove Depth (in mts)</th>
<th>Predicted Grove Depth (in mts)</th>
<th>Lower 95% Indiv Grove Depth (in mts)</th>
<th>Upper 95% Indiv Grove Depth (in mts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>394.33</td>
<td>360.639667</td>
<td>413.419682</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>329.5</td>
<td>331.514167</td>
<td>301.01534</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>281</td>
<td>302.911667</td>
<td>281.012993</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>255.17</td>
<td>273.391667</td>
<td>235.514439</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>220.33</td>
<td>244.149667</td>
<td>196.74812</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>204.83</td>
<td>215.024167</td>
<td>167.269439</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>179</td>
<td>185.901667</td>
<td>137.099817</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>163.83</td>
<td>156.779167</td>
<td>106.28034</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>150.33</td>
<td>127.656667</td>
<td>74.8735513</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>*</td>
<td>(175.621042)</td>
<td>(<227.7884)</td>
</tr>
</tbody>
</table>
Prediction for the Mean of Y or a Future Observation of Y

- Point estimate prediction is the same in both cases: 178.62
- But the error bands are different
 - Narrower for the mean of Y: [158.73, 198.51]
 - Wider for a future value of Y: [129.44, 227.80]