Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products

A.V. Palumbo a,*, J.F. McCarthy b, J.E. Amonette c, L.S. Fisher a, S.D. Wullscherger a, W. Lee Daniels d

a Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038, USA
b Center for Environmental Biotechnology, Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA
c Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
d Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0404, USA

Received 5 September 2002; accepted 22 October 2002

Abstract

Concern for the potential global change consequences of increasing atmospheric CO2 has prompted interest in the development of mechanisms to reduce or stabilize atmospheric CO2. During the next several decades, a program focused on terrestrial sequestration processes could make a significant contribution to abating CO2 increases. The reclamation of degraded lands, such as mine-spoil sites, highway rights-of-way, and poorly managed lands, represents an opportunity to couple C sequestration with the use of fossil-fuel and energy by-products and other waste material, such as biosolids and organic wastes from human and animal sewage treatment facilities, to improve soil quality. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity. Much is known about the methods to improve these soils, but the cost of implementation is often a limiting factor. However, the additional financial and environmental benefits of C sequestration may change the economics of land reclamation activities. The addition of energy-related by-products can address the adverse conditions of these degraded lands through a variety of mechanisms, such as enhancing plant growth and capturing of organic C in long-lived soil C pools. This review examines the use of fossil-fuel combustion by-products and organic amendments to enhance C sequestration and identifies the key gaps in information that still must be addressed before these methods can be implemented on an environmentally meaningful scale.

Keywords: Carbon sequestration; Degraded lands; Fossil-fuel by-products; Soil organic matter; Land restoration

1. Introduction

Atmospheric CO2 concentrations and other so-called greenhouse gases have, due in large part to fossil-fuel combustion, increased considerably since the early to mid 1800s and are projected to accelerate during the coming century (e.g. IPCC, 1995; Houghton et al., 2001). It is estimated that in the United States alone, CO2 emissions increased more than eightfold between 1990 and 1998 (Fig. 1; Marland et al., 2001). Such increases are believed to have the potential to cause unprecedented regional and global climatic and related environmental changes, including increased global temperatures, altered patterns of regional precipitation and cloud cover, rises in sea level, and increased frequency and severity of extreme weather events (e.g. Easterling...
et al., 2000). These projections have prompted scientists from multiple disciplines to consider options for minimizing future increases in global CO$_2$ concentrations through a variety of concepts concerning the implementation and research of mitigation programs. A few of the C management strategies being considered to accomplish this goal include the development of more energy-efficient fossil-fuel-fired power plants, buildings, appliances, transportation vehicles, and more efficient technologies for the production and delivery of electricity and fuels. In addition, increased attention is also being given to the development of renewable energy resources, including solar, wind, geothermal, as well as an emerging emphasis on dedicated bioenergy crops (e.g. Tuskan and Walsh, 2001).

Another potential approach to mitigating rising CO$_2$ concentrations currently of interest, and one that is designed to complement the development of energy-efficient technologies, is the enhanced storage or sequestration of C in terrestrial ecosystems (e.g. Paustian et al., 1998; Reichle et al., 1999). One aspect of the terrestrial sequestration approach envisions the use of soil and vegetation functioning as long-term storage pools for atmosphere-derived C. To accomplish this, increased sequestration of C can be conceptually achieved by enhancing the natural biological processes that assimilate CO$_2$ (i.e. increased productivity of lands) and then allocating the assimilated C to long-lived plant tissues and/or pools of soil organic matter (SOM) resistant to microbial decomposition. Thus, the use of terrestrial C sequestration strategies for slowing increased atmospheric CO$_2$ and its potential environmental and economic consequences would require a plant- and soil-based program of C management that can successfully be implemented across multiple ecosystems and land-use categories. This is especially important if continued fossil-fuel use is necessary during a transition to other types of energy systems (e.g. renewable). Although a key objective in C management research is to enhance the natural capacity of plants and soils to sequester C, the functionality of C storage in terrestrial ecosystems as a whole is a poorly understood process. Many facets of terrestrial C sequestration have been explored, including the use of forest ecosystems, grasslands (Fisher et al., 1994; Richter et al., 1994; Post and Kwon, 2000; Conant et al., 2001), and agricultural applications. However, there is a long history of research on the reclamation of degraded and disturbed lands, and although few of these studies have focused on the effects of amendments on C budgets, there is reason to believe that new C management strategies could enhance C sequestration on such lands (e.g. Akala and Lal, 2000, 2001; Bendfeldt et al., 2001).

Worldwide, for example, nearly 2×10^8 ha of lands are considered to be degraded to some degree (Oldeman and Vanengelen, 1993) and may be capable of sequestering as much as 3 PgC yr$^{-1}$ (Lal et al., 1998). In the United States, approximately 4×10^6 ha ($\sim 0.4\%$ of the surface area of the United States) consists of previously mined lands (USDA, 1979) or rural highway rights-of-way (US DOT, 1999; calculated assuming a 10- to 20-m average width of non-road right-of-way). If we estimate that poorly managed lands account for 1.4×10^8 ha of US land (based on world estimates of degraded land at $\sim 15\%$, Oldeman and Vanengelen, 1993) and use the estimates for C sequestration potential by degraded lands...
Fig. 2. Accumulation of SOC in reclaimed mine soils planted as forest in southeastern Ohio during a 21-year period after reclamation (Akala and Lal, 2001). The control plot was a 65-year-old forest.

(i.e. 1.5 MgC yr$^{-1}$ ha$^{-1}$) derived from Akala and Lal (2000), degraded lands in the United States could sequester approximately 11 PgC over 50 years, which is a small but significant fraction of the total needed to stabilize global atmospheric CO$_2$ levels.

Despite the fact that degraded mine lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity (Barnhisel et al., 2000), there does appear to be significant C sequestration potential (e.g. Akala and Lal, 2001). Addition of energy-related by-products can address these adverse conditions through a variety of mechanisms, including improvement of the soil structure, direct or indirect contribution to the releasing of nutrient elements in the soil, and the stabilization of toxic metals in soil.

The additional costs associated with more intensive reclamation strategies may be counterbalanced if coupled with the additional objective of C sequestration. Indeed, various countries are considering programs of long-term economic incentives for C sequestration and these could be available in the future (e.g. Walsh, 1999). Thus, a focus on C sequestration may ensure the long-term success of soil reclamation efforts as the potential for C accumulation in reclaimed soils under forests appears great (e.g. Fig. 2).

In this review, we explore the prospects for enhancing both C sequestration and the reclamation of degraded lands with fossil-fuel combustion by-products. Our approach is to suggest that restoration of degraded soils represents a unique opportunity to couple C sequestration with the use of fossil-fuel combustion by-products and other waste materials while achieving ecological, environmental, and societal benefits. Although gains in C sequestration potential for degraded lands in the continental United States may be relatively modest, the use of industrial by-products to restore degraded lands offers both environmental and economic benefits as well as scientific challenges.

2. Fossil-fuel combustion by-products as amendments

The two major coal combustion by-products that have potential for use in prompting C sequestration are fly ash and flue-gas desulfurization (FGD) by-products. Fly ash is a coal combustion residue with an aluminosilicate composition comparable to that of soil (Adriano et al., 1980; El-Mogazi et al., 1988; Qafoku et al., 1999; Dick et al., 2000). Variable amounts of unburned C is present with quartz, mullite, hematite, and magnetite, but the majority of fly ash consists of amorphous aluminosilicate glassy spheres (Qafoku et al., 1999). FGD by-products, which are produced by newer SO$_2$ scrubbing technologies, such as pressurized fluidized bed combustion (PFBC) and lime injection multistage burners (LIMB), are primarily composed of alkaline materials consisting of excess sorbent (calcite or dolomitic limestone, CaO, Ca(OH)$_2$ and MgO), S-bearing compounds (CaSO$_4$, CaSO$_3$ and MgSO$_4$), and fly ash (Crews and Dick, 1998). In 1996, 54 Mg of fly ash and 22 mg of FGD by-products were produced in the United States, of which less than 25% of the fly ash and less than 7% of FGD by-products were reused (American Coal Ash Association, 1997). The remainder was disposed in landfills. Whereas fly ash is used mainly for engineering purposes to modify texture in soils and as a source of...
trace nutrients for plants, FGD by-products are of interest mainly as liming agents and sources of divalent cations for improvement of soil pH and aggregation (American Coal Ash Association, 1997).

Low pH appears to be a major negative determinate in natural revegetation of surface-mined coal lands (Skousen et al., 1994). Coal combustion residues can contribute Ca\(^{2+}\) and other basic cations to improve soil structure and increase the pH of acidic soils. FGD has been able to supply base cations and trace elements for growth of commercially important tree species (Crews and Dick, 1998). For example, sulfur present in FGD by-products can offer nutritional value for plants (increases in barley production have been observed with fly ash addition in Se-deficient soil (Sale et al., 1996)). In addition, coal combustion by-products can supply micronutrients to areas where plant growth is limited by specific trace elements. Micronutrient amendment from coal fly ash mixed with sewage biosolids was applied to an acid B-deficient loamy soil in China with a resulting higher yield for cucumber (Cucumis sativus) and corn (Zea mays) than either the control treatment or a B-containing fertilizer (Jiang et al., 1999).

The benefits of fly ash incorporation to soil structure are well known. Ash additions to an easily clodded, clay loam soil decreased bulk density, increased aggregation, and decreased the modulus of rupture (Sale et al., 1997). Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved \(\text{SO}_{4}^{2-}, \text{CO}_{3}^{2-}, \text{HCO}_{3}^{-}, \text{Cl}^{-}\), and basic cations, although the effect is decreased in high-clay soils (Matsi and Keramidas, 1999). Soil depth appears to be a positive factor in establishing white pine (Pinus strobes) on mine-spoil (Andrews et al., 1998). Thus, fly ash incorporation within increased depths of soil, or the effective rooting zone, could be beneficial.

The net positive results of nutrient and soil structure changes with fly ash amendment have been seen in a number of studies with several types of plants. At low levels of application to barley (Hordeum vulgare L. var. Leduc), fly ash resulted in increased plant heights and grain yields (Sale et al., 1996). Application of 50% fly ash to soil resulted in increased growth and yield of wheat (Triticum aestivum), with effects comparable to those of soil with compost and an NPK (nitrogen–phosphorus–potassium) fertilizer (Tripathy and Sahu, 1997). In another study on wheat, increased growth was seen with addition of fly ash and fly ash leachate (Karpate and Choudhary, 1997). With tomatoes (Lyco-persicon esculentum), an increased yield was observed in loam soil amended with up to 60% (w/v) of coal fly ash (Khan and Khan, 1996). The addition of low-B fly ash increased biomass of rye grass (Lolium perenne L.) up to 80% over controls in Red Mediterranean acid soils (Matsi and Keramidas, 1999). However, many coal fly ashes are high enough in soluble salts and B to limit plant growth in sensitive species at application rates as low at 10% (Daniels et al., 1999). Therefore, utilization of large amounts of fly ash as a soil amendment may be limited with certain combinations of ashes, soil conditions, and plant materials.

3. Organic amendments with combustion products

The potential for coal combustion by-products to enhance C sequestration in degraded lands may be most fully realized when these inorganic by-products are applied in conjunction with organic amendments, including mulch from biomass, agricultural residues, and process waste materials, such as biosolids and pulp and sludge from paper production (Haering et al., 2000). These organic amendments can have beneficial effects that complement and extend those of the inorganic fly ash material. Fly ash mixed with sandy loam soil at a 1:3 ratio and further amended with composted lawn clippings resulted in high yields that were correlated with higher K, Ca and N levels and lower B levels (Menon et al., 1992). Mixing composted lawn clippings and fine fly ash (20%) from the US Department of Energy (DOE) Savannah River Site (SRS) increased mustard (Brassica integrifolia) and collard green (Brassica oleracea varidis) yields but depressed yields of string beans (Phaseolus vulgaris), bell pepper (Capsicum frutescens), and eggplant (Solanum melongena esculentum) as a result of B accumulation (Menon et al., 1993).

Potential benefits also include improving soil structure, moisture-retention capacity, and soil fertility. Inorganic and organic amendments both contribute to soil tilth but do so by different mechanisms that act in a complementary fashion. The Ca\(^{2+}\) from fly ash promotes flocculation between soil particles and stabilizes soil structure through cation bridging, while organic matter can sorb to mineral surfaces and create a more reactive network for water, air, and nutrient interactions in the soil. The organic matter also contributes additional pH buffering capacity. The interaction of organic matter with soils is enhanced by Ca\(^{2+}\), thus the addition of both organic and inorganic amendments would provide synergistic benefits to soil improvement.

Microbial mineralization of organic matter releases nutrient elements to the soil solution for plant uptake. In addition, organic matter can bind essential metal nutrients, acting as a metal/ion buffer in soil to make micronutrients available to plants. For example, organic matter can complex soil-phase Fe and make it available for uptake by plants.

Organic matter can also stabilize toxic metals in soil, thereby reducing their migration to groundwater and reducing their uptake and toxic effects in plants. In addition, SOM has been demonstrated to bind a variety of metals that are sometimes present in fly ash and
FGD by-products, such as Zn, Ni, Pb, Cd, Cu and B. For example, in field experiments at metal-contaminated and metal-amended sites, the addition of humic materials reduced uptake of a suite of heavy metals (Ni, Cr, Cu and Zn) in clover by 60% and decreased the concentration of metals leached into soil solution by 50–90%. Biomass production also tripled in the humic-treated contaminated soil (McCarthy, 1998). Even greater reductions in metal uptake and larger increases in biomass were observed in greenhouse studies (Wong, 1995; Chu and Poon, 1999).

Beneficial effects of mixing fly ash with biosolids appear to include reduction in certain metal toxicities from contaminated sewage biosolids, increased supply of nutrients, and addition of buffering capacity. There is a reduction of metal uptake (e.g. Zn, Cd, Cu) in plants grown in fly ash and sewage biosolids compared with those grown without fly ash and sewage biosolids (Wong, 1995; Chu and Poon, 1999). This has been observed in sandy soils perhaps as a result of an increase in soil pH (Vallini et al., 1999).

In addition to reducing metal toxicity, sewage biosolids have been mixed with alkaline industrial by-products to make a commercial soil substitute that has beneficial effects on moisture-holding capacity when applied at rates of 500 t acre$^{-1}$. This increased the pH of the soil, providing a pH buffering capacity to counteract the increase in acidity during the initial decomposition of organic matter (Wong, 1995). Organic matter from sewage biosolids also contributed significant amounts of PO$_4^-$, while the fly ash provided a pH buffering capacity to counteract the increase in acidity during the initial decomposition of organic matter (Wong and Su, 1997a, 1997b). One of the few long-lasting effects of sewage biosolids in reclamation of mine soil was an increase in available phosphate (Bendfeldt et al., 2001).

Organic amendments are often useful in conjunction with fly ash in successful mine reclamation activities. However, application rates must be controlled. For example, yields of barley silage on a mine-spoil increased at intermediate fly ash amendment rates (200 t ha$^{-1}$ or less) but decreased at rates of 400 t ha$^{-1}$ or more. Addition of compost and krull manure proved effective in increasing vegetation at a mine reclamation site in South Africa where Se levels in grass leaves may have been toxic (Van Rensburg et al., 1998). Application of gypsum reduced Se levels in plants grown on a coal ash landfill (Woodbury et al., 1999), but other questions related to Se accumulation remained unanswered. In FGD sludge pond revegetation, growth of grasses (but not shrubs) was increased by amendments with manure, wood shavings, and fly ash (Salo et al., 1999).

Environmental applications of FGD by-products have also been shown to be effective in increasing vegetation at a mine reclamation site in South Africa where Se levels in grass leaves may have been toxic (Van Rensburg et al., 1998). Application of gypsum reduced Se levels in plants grown on a coal ash landfill (Woodbury et al., 1999), but other questions related to Se accumulation remained unanswered. In FGD sludge pond revegetation, growth of grasses (but not shrubs) was increased by amendments with manure, wood shavings, and fly ash (Salo et al., 1999).

Use of FGD by-products combined with organic amendments has also been shown to be an effective mine reclamation approach in recent studies in Ohio (Beeghly et al., 1995; Stehouwer et al., 1995; Stehouwer, 1997a,b; Dick et al., 2000; Hao and Dick, 2000). Greenhouse and field studies were conducted on various mine-spoil materials using mixtures of FGD by-products (PFBC, LIMB, Spray Dryer) with either compost derived from yard trimmings or sewage sludge. FGD applications were shown to be effective or without the organic additions, but the compost/sludge decreased the potential for metal toxicity and increased the depth at which the treatment was effective. Hao and Dick (2000) noted that the O$_2$-scavenging and antibacterial properties of CaSO$_4$ and FGD by-products also significantly delayed the onset of mine-spoil acidification and suggested that deep incorporation of FGD by-products would be very effective in this regard.

4. Issues involved in by-product amendments

The literature suggests the great potential for the addition of a suite of amendments containing both organic and inorganic energy-related by-products to improve degraded land and to beneficially utilize energy by-products. However, the optimal strategy for rapid enhancement of C sequestration is not currently known. As yet, there are still critical knowledge gaps related to appropriate materials to be added, the method of addition, and the management of the sites.

Fly ash and FGD by-product mixtures may have to be tailored to site conditions. For example, fly ash can improve soil tilth by promoting aggregation of soil particles. However, for degraded lands lacking small-size soil particles, while silt-size fly ash particles can increase the moisture-retention capacity of the soil, addition of large amounts of alkaline fly ash may increase the soil pH, soluble salts, or B too much for some desirable crops. For example, in later stages of a C-enhancement strategy, woody plants may be desirable to store biomass in both aboveground and belowground C pools. However, many of the pine trees typically grown in the Southeast require acid soils and thus will not thrive if fly ash additions raise the pH above 6.0. Furthermore, while adsorption of organic matter to soil is somewhat greater under slightly acid conditions, alkaline pH promotes leaching of SOM, thus potentially reducing both C sequestration and soil fertility (Senesi and Loffredo, 1999).

The source, quality, and amount of organic matter amendments will also need to be selected with specific sites in mind. Biosolids, organic waste from treatment facilities, and similar waste material (swine manure,
Table 1

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>Mean residence time (years)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macroaggregate</td>
<td>Microaggregate</td>
</tr>
<tr>
<td>Restored prairie</td>
<td>140</td>
<td>412</td>
</tr>
<tr>
<td>Corn</td>
<td>14</td>
<td>61</td>
</tr>
<tr>
<td>Corn</td>
<td>42</td>
<td>691</td>
</tr>
</tbody>
</table>

chicken litter) provide an excellent source of organic nutrients that can be easily used to promote plant growth and development of microbial communities (Bendfeldt et al., 2001; Wong and Su, 1997a,b; Bulluck and Ristaino, 2002). However, these readily bioavailable organic amendments may be less likely to be retained in the soil over long periods of time and thus may contribute little to long-term C sequestration. More recalcitrant, lignin-rich amendments, such as woody biomass and possibly paper and pulp mill sludge, are less labile in the soil and have a higher affinity for binding to soil particles. Microbial oxidation of the lignin to polyphenols is understood to be one of several pathways in the humification process (Senesi and Loffredo, 1999), leading to formation of recalcitrant organic C that will contribute to long-term C sequestration. It is important to consider not only the quantity but also the chemical composition of the SOM when evaluating the success of amendments in promoting long-term C sequestration. Organic C in soil can also be physically protected from degradation by forming aggregates in which primary particles and clay microstructure are bound to larger macroaggregates and in turn form microaggregates within the macroaggregates (Oades, 1984; Six et al., 2000; Jastrow, 1996). This process may be enhanced by growth of roots and fungal hyphae (Tisdall and Oades, 1982). The accrual of soil C has been linked to the mineral components of microaggregate formation through macroaggregate turnover, suggesting that organic matter associated with the aggregates becomes physically protected from decomposition (Gale et al., 2000; Jastrow, 1996; Six et al., 2000). For example, Six et al. (2000) concluded that the rate of macroaggregate turnover was reduced in no-till compared with conventional tillage cropping systems. The slower macroaggregate turnover promoted the formation of stable microaggregates in which C is stabilized and sequestered in the long-term. A number of studies have found that microaggregate formation is crucial for the long-term sequestration of C (Six et al., 1999, 2000) because microaggregates have a greater capacity to protect C against decomposition compared with macroaggregates (Balesdent et al., 2000; Besnard et al., 1996; Skjemstad et al., 1990). The higher protection of C exerted by microaggregates is demonstrated by the manyfold slower C turnover times associated with microaggregates versus macroaggregates. For example, several investigators have estimated the mean residence time of macroaggregates and microaggregates using radiocarbon dating or changes in the δ^{13}C signatures following a transition between of C4 and C3 vegetation (Six and Jastrow, 2002).

Thus, optimizing C sequestration requires consideration of the physical structure of the soil C to evaluate the potential of a treatment to accumulate C in the soil. In the initial stages of land reclamation, deep incorporation of amendments in soils with little organic matter may be an effective method to promote soil development. Amendments are traditionally either applied to the surface or incorporated only to shallow depths. Incorporation of amendments to greater depth (e.g. to 60 cm) could have a number of advantages to soil restoration and, more specifically, to C sequestration. Surface or near-surface applications result in very slow migration of colloidal organic or inorganic amendments to greater depths, and thus any advantage of the amendments in promoting increases in tilth and moisture-retention or in development of healthy microbial communities is greatly retarded. Similarly, roots will be able to access the improved soil only within a small, shallow soil volume. Deeper incorporation will provide access to a much larger soil volume for rooting and will provide a deep moisture reservoir, permitting plants to better tolerate dry soil conditions. Finally, deep incorporation will provide a direct insertion of organic amendments into a much larger volume of soil. C accumulation will be much more rapid because it will not depend on slow migration from the soil surface layer. Microbial degradation of the organic matter is generally thought to decrease with depth (e.g. Vinther et al., 2001), further enhancing the potential for long-term C sequestration. However, incorporation of such amendments as biosolids or fly ash will require considerable machinery plus fuel inputs, especially with many mine-spoil materials that are quite rocky and dense. The added economic incentive likely to develop for C sequestration may make more aggressive management of sites an economically feasible alternative.

Although each of these proposed amendments might increase the C sequestration potential of the degraded land, each also may have other, possibly deleterious effects. For example, while coal ash and FGD by-
product additions can improve soil texture in clayey soils and increase pH in poorly buffered acidic soils, the possible release of toxic metals, such as As (to animals and ground water) and B (to plants), needs to be considered. Similarly, the incorporation of large amounts of fly ash into strongly acidic soil conditions without proper long-term pH control can lead to selective stripping of heavy metals from the fly ash matrix and leaching (Stewart et al., 2001).

5. Soil organic C accumulation

Management strategies to increase soil C sequestration over the next 20–50 years should focus on increasing the size of C pools with intermediate- and long-term residence times (i.e. 10–1000 years) (Bendfeldt et al., 2001; Akala and Lal, 2001; Lal et al., 1998). Total C has been shown to increase rapidly over the first 20 years after mine soil reclamation (Bendfeldt et al., 2001; Akala and Lal, 2001). The mechanisms responsible for stabilizing soil organic carbon (SOC) may be categorized as (1) biochemical recalcitrance, (2) chemical stabilization, and (3) physical protection (Christensen, 1996). Biochemical recalcitrance may be the result of the chemical characteristics of the substrate itself (e.g. lignin derivatives or fungal melanins) (Stott et al., 1983; Haider and Martin, 1981). Chemical stabilization occurs because of physicochemical associations between decomposable compounds and soil mineral components (e.g. organics sorbed to clay surfaces by polyvalent cation bridges or intercalated between expanding layers of clays). This is critical as the clay fractions contain some of the most refractory C (Feigl et al., 1995). The extent to which SOC can be affected by biochemical recalcitrance and chemical stabilization can be evaluated through chemical analyses (e.g. wet chemistry, 13C NMR) of the SOM and dissolved organic matter (DOM) (e.g. Qualls and Haines, 1992; Gu et al., 1995; Guggenberger and Zech, 1993). These analyses investigate how SOM and DOM are influenced by their associations with various soil mineral components, their location/distribution within the soil aggregates, and the extent to which various environmental factors determine the nature of chemical stabilization or physical protection (Batjes, 1999).

Concentrations of DOM usually decrease dramatically as it percolates below the litter (O) and A horizons (Cronan and Aiken, 1985). This decrease is largely the result of adsorption to the mineral soil rather than microbial respiration (Qualls and Haines, 1992; Guggenberger and Zech, 1993). However, physical and chemical disequilibria can result in rapid mobilization and transport of DOM through the soil profile. During intense storm events, even DOM with a high affinity for sorbing to the soil can be rapidly translocated to the lower soil profile via preferential movement of new water through large pores. The new water interacts with the old water in the small pores of the soil matrix because of hydraulic and concentration gradient differences between the pore classes (Jardine et al., 1989a,b, 1990). Although hydrophilic components of DOM are selectively released in this exchange, significant quantities of hydrophobic DOM are also mobilized (Jardine et al., 1989a,b, 1990).

The adsorption of DOM to mineral soil is largely responsible for long-term storage of C in soil. Soils have a finite capacity for sorbing DOM, and upper soil horizons with high levels of organic matter are a source rather than a sink for DOM (Kaiser et al., 1997). In soils from lower horizons, Jardine et al. (1989b) reported that adsorption of DOM is greater on soils with lower levels of indigenous SOM. Furthermore, removal of the indigenous SOM increased adsorption of DOM fourfold. Whether components of DOM bind to soil by physical adsorption (Jardine et al., 1989a; Baham and Sposito, 1994) or by ligand exchange mechanisms (Gu et al., 1994, 1995), DOM is chemically fractionated by adsorption during transport through mineral soil horizons (Gu et al., 1995). Components of DOM that have higher molecular weight or contain higher amounts of hydrophobic, aromatic, carboxylic, or lignin-derived moieties are preferentially adsorbed (Jardine et al., 1989a; Gu et al., 1994, 1995; Wang et al., 1997; Kaiser et al., 2001). The chemical similarity between SOM and the more strongly adsorbing components of DOM provides evidence supporting the premise that changes in DOM dynamics will be closely linked to changes in SOM.

Soil structure plays a dominant role in the physical protection of SOM by controlling microbial access to substrates, microbial turnover processes, and food web interactions (Elliott and Coleman, 1988; van Veen and Kuikman, 1990). Relatively labile material has been observed to become physically protected from decomposition by incorporation into soil aggregates (Oades, 1984; Gregorich et al., 1991; Cambardella and Elliott, 1992, 1994; Golchin et al., 1994a,b) or by deposition in micropores inaccessible even to bacteria (Foster, 1985). Cambardella and Elliott (1994) suggested that a large percentage of the labile C pool within small soil macroaggregates is relatively low-density, mineral-associated organic matter, known as enriched labile fraction (ELF). However, Rodionov et al. (2000) argues that a loss of C occurs in the ELF under cultivation soil management. In contrast, a high-density organomineral fraction is understood to be much more refractory. Thus, soil structure analysis of the distribution of organic matter within aggregate structures is an important consideration for the effectiveness of alternate strategies for enhancing C sequestration.
6. Biogeochemical factors and carbon cycling

Several chemical factors can have a significant effect on C sequestration. The mineralogical composition of the solid phase, particularly the high-surface-area clay minerals and oxides, will dominate the types of chemistry that can occur and the size of the pH and redox buffering capacity of the soil. Although fly ashes often have amorphous structures, the FGD products typically consist of specific mineral phases, including calcite, gypsum, CaSO₄, and metal sulfides, the relative amounts of which can significantly affect the pH and redox levels of the soils.

Coal fly ash and FGD by-products produced by PFBC or LIMB processes generally tend to be highly oxidizing when formed, whereas by-products from low-temperature duct-injection, spray-dryer and ‘coolside’ FGD processes may contain substantial amounts of CaSO₄ (Stehouwer, 1995). Because the partial oxidation of dissolved organic C is needed to promote formation of larger more recalcitrant organic complexes that stabilize soil C, control of the redox regime during soil reclamation is crucial to successful C sequestration. Oxidizing amendments to soils may prove beneficial in this regard to the extent that they do not promote acidification of the mine-spoil materials.

Inorganic C can also contribute significantly to C sequestration, through both precipitation of carbonate minerals and storage as alkalinity in groundwater. Because many of the coal ash and FGD by-products are Ca-rich and highly alkaline, their addition is likely to promote an increase in the alkalinity levels of water that moves through degraded lands. For example, greenhouse column studies of overburden material from a surface coal mine showed increases in dissolved inorganic C from none in the unamended material to 17 and 61 mg l⁻¹ in material amended with 120 g kg⁻¹ of LIMB or PFBC, respectively (Stehouwer, 1995, and personal communication). In terms of overall C sequestration, however, it is unclear whether these amendments enhance or diminish sequestration. Certainly the presence of CaO, Ca(OH)₂ and MgO will result in an uptake of CO₂ by the soil as a consequence of carbonation reactions. On the other hand, dissolution and reaction of the CaCO₃ and (Ca, Mg)CO₃ formed by this reaction (or already present in the FGD materials) will lead to the formation of HCO₃⁻ and possible release of CO₂ through further reaction with acidic mine-spoil material. Deep amendments with CaSO₄-bearing FGD by-product (noted by Dick et al., 2000), through their inhibition of the oxidative acidity-forming reaction that occurs in mine-spoil material, may alleviate much of the concern about CO₂ release and turn the overall chemistry decidedly to one that enhances C sequestration.

Co-addition of organic amendments may alter the rates of soil silicate mineral weathering and thus affect the production of alkalinity in water that moves through degraded lands. For example, co-addition of sewage sludge to the LIMB and PFBC treatments described yielded dissolved silicon levels after 8 months that were 43 and 23% higher, respectively, than the levels in the treatments without sewage sludge (Stehouwer et al., 1995). It is not clear whether the additions of biosolids and paper-processing products will enhance or depress mineral weathering rates.

7. Other greenhouse gas emissions

The specific interactive effects of combined organic and by-product additions on greenhouse gas emissions and C stability need to be addressed. The use of fly ash with other organic wastes is well documented in the literature. However, research on specific aspects related to greenhouse gas emissions (e.g. effects on N₂O and on the characteristics of the C formed) is lacking. Similarly, biosolids, while representing a good source of C and N for degraded soils (Haering et al., 2000), could prove deleterious in the long run if the additions lead to increased production of other greenhouse gases, such as N₂O (e.g. Fig. 3) and CH₄. Recent publications (e.g. Reilly et al., 1999) have emphasized the importance of reductions in greenhouse gases other than CO₂ in order to more economically reach emission goals, such as those in the Kyoto protocol. The possible side effects associated with the use of pulp and sludge from paper production processes are largely unknown, although traces of dioxin are present in many land-applied materials (e.g. Meyn et al., 1997). The benefits from each of these amendments must also be weighed in terms of the costs of additional atmospheric CO₂ inputs resulting from the transportation and incorporation practices needed to implement their use.

Nitrous oxide accounts for approximately 5% of the total greenhouse effect, and its atmospheric concentration has increased from approximately 290 ppbv (volume) before the industrial revolution to approximately 320 ppbv at present (Pathak, 1999). Soil is considered to be the major contributor to atmospheric N₂O globally (Lal et al., 1998). N₂O is produced as a by-product of nitrification, the oxidation of NH₃ to NO₂⁻, and denitrification, the reduction of NO₂⁻ to N₂ (Hutchinson and Davidson, 1993). In well-drained soils, most N₂O is produced from nitrification, an aerobic process (Stevens et al., 1997), and nitrification rates are controlled largely by the availability of NH₃, the competition for NH₄⁺ by plants, heterotrophic microbes and nitrifying bacteria, and soil pH. Increases in NH₃ availability will increase nitrification rates, unless the N demands by plants and heterotrophic microbes also increase sufficiently to limit access of nitrifiers to the increased NH₄⁺ (Pleijel et al.,
Fig. 3. Simplified conceptual drawing of factors involved in release of greenhouse gas from soils undergoing reclamation.

Application of N fertilizers and incorporation of crop residues have been shown to increase N$_2$O emission in cultivated soils (Kaiser et al., 1998). Nitrification rates are depressed in highly acidic soils (pH values 4–5) but increase in soil with pH to values >7 result in substantially greater rates of nitrification, even with no other amendments (Ste-Marie and Pare, 1999). Soil amendments designed to enhance C sequestration in soil are likely to result in increases in the availability of NH$_4^+$ (e.g. inorganic or organic fertilizers) and/or increases in pH (e.g. alkaline fly ash) and thus may result in increased rates of nitrification and emission of N$_2$O.

In poorly drained soils or in soils to which liquid organic wastes are applied, denitrification can be the major source of N$_2$O. Denitrification is an anaerobic process, but it is dependent upon the supply of NO$_3^-$ via nitrification (Maier, 2000). Therefore, denitrification rates are usually greatest at the interface between aerobic and anaerobic environments, such as boundaries between unsaturated and saturated soils or anaerobic microsites produced within soil aggregates in otherwise aerobic environments (Maier, 2000). Denitrification results in the production of both N$_2$ and N$_2$O, and the relative proportions of these two gases are often dependent on soil water content and associate redox potentials (Parton et al., 1996). Denitrification results in proportionately more N$_2$O when water content is somewhat lower (Parton et al., 1996), although still high enough to produce anaerobic environments. Several studies have shown that the rates of denitrification and N$_2$O emission increased substantially with the application of liquid animal wastes to agricultural soils (Lowrance et al., 1998; Williams et al., 1998). Thus, soil amendments that are designed to enhance C sequestration but also enhance water-holding capacity (e.g. application of organic materials) may increase denitrification rates and the emission of N$_2$O.

Another complicating greenhouse gas issue associated with biosolids and ash applied together is that the NH$_3$ in the sewage sludge can be volatilized as a result of the high pH caused by certain ashes (Wong and Su, 1997b). For a period of time, ammonification of organic N increases soil N, which is then converted to NO$_3^-$ or NO$_2^-$ though nitrification (Wong and Su, 1997b). It may be best to allow soil to equilibrate for a period before plants are established.

Because N$_2$O production is associated with microbial nitrification and denitrification processes (Hutchinson and Davidson, 1993), any factor that leads to the changes of soil microbial populations involved in nitrification and denitrification, and environmental conditions that enhance these processes, are expected to affect N$_2$O production. For example, effects of fly ash and other amendments on the microbial community have been documented, and these effects may impact CO$_2$ and other greenhouse gas emissions. There is apparently an inhibition of CO$_2$ evolution from land application of sewage sludge (Wong et al., 1995; Wong and Lai, 1996) at very high fly ash/sewage sludge ratios, although this
may be partly a pH effect. Addition of a 10% ash/sewage sludge mixture has beneficial effects on N and P nutrient cycling and reduces availability of metals (Lai et al., 1999) while resulting in higher dehydrogenase, urease, and phosphatase activities. In a greenhouse study with Vicia faba, alkaline fly ash alone did not promote microbial growth. However, when co-composted with lignocellulosic residuals, bacterial and actinomycete counts increased (Vallini et al., 1999). In the composting of sewage sludge, a fly ash addition at less than 25% appeared to have little effect on metabolic activity (Fang et al., 1999). With composting of sewage sludge, fly ash, and sawdust, the addition of the fly ash appeared to inhibit the nitrification process and resulted in lower soluble NO$_3^-$ (Fang et al., 1999). Decomposition was inhibited only at 34% or more fly ash.

Sewage sludge alone can have long-term impacts with increased soil C (6.8–11%) 18 years after application, including higher soluble Cd, Zn, and Cu and higher numbers of colony-forming units (Kelly et al., 1999). Lower dehydrogenase activity and shifts away from indicators of fungi and actinomycetes are consistent with metals effects (Kelly et al., 1999).

8. A strategy for integrated reduction in greenhouse gas emissions

An optimal strategy for C sequestration within a soil reclamation scenario may require a long-term strategy of managed rotations involving changes in amendment types and amounts over time, as well as a succession in vegetation types. For example, legumes could be an excellent crop during initial stages of reclamation following additions of fly ash when biosolids are not used. The legumes add N to the soil and can then be incorporated into the soil to provide new organic inputs without the expense of transporting other organic by-products to the site. However, site conditions must be considered, because some tillage and planting prescriptions may not be possible at all sites. In addition, the long-term benefits of amendments need to be considered as there is evidence that the beneficial effects of some amendments may be limited to the first decade after application (Bendfeldt et al., 2001).

The benefits of soil amendments to enhance productivity and C sequestration in infertile soils may be offset, at least in part, if these activities also increase emission of N$_2$O. Therefore, it is critical to consider (Fig. 3) changes in N$_2$O emission in any evaluation of soil treatments to enhance C sequestration.

9. Conclusions

Three major areas are likely to be critical to the success of management strategies promoting land reclamation and C sequestration: (1) the effects of the coal ash, (2) the composition of the organic matter, and (3) the selection and management of the site.

This review has illustrated the promise of the proposed reclamation strategies for sequestration of C, while pointing out the potentially deleterious consequences of thoughtless application of the by-products. Clearly, a program of systematic research is required to understand how these interacting processes express themselves in various mineralogical, geochemical, and hydrologic settings so that implementation of the strategies can take place without unintended negative consequences. Moreover, the effectiveness of different treatment options must be evaluated in terms of changes in both the quantity and quality of C. This is not trivial because accurate measurement of changes in the SOM levels and quality poses a significant challenge. In addition to the technical aspects addressed in this review, there are important policy issues that should be addressed, including questions related to the interactions of land owners, bond holders (e.g. coal companies), power companies, and regulators.

10. Nomenclature

CO$_2$ carbon dioxide
DOM dissolved organic matter
ELF enriched labile fractionation
FGD flue-gas desulfurization
IPCC International Panel on Climate Change
LIMB lime injection multistage burners
PFBF pressurized fluidized bed combustion
ppbv parts per billion by volume
SRS Savannah River Site
SOC soil organic carbon
SOM soil organic matter
DOE US Department of Energy

Acknowledgments

We would like to thank Jeff Amthor, Patrick Mulholaland, Blaine Metting, and James Burger for their contributions in the development of the ideas that went into this manuscript. We also thank the DOE Office of Fossil Energy through the National Energy Technology Laboratory for providing funding for this project.

References

Anthony Palumbo is a microbial ecologist working in the areas of carbon sequestration, bioremediation, aquatic ecology, and subsurface microbiology. He received his Ph.D. in 1980 from North Carolina State University, has worked at Oak Ridge National Laboratory for 15 years, and is a member of the American Academy of Microbiology.

John F. McCarthy is an environmental chemist with research interests in environmental fate and transport in terrestrial and subsurface systems. He received his Ph.D. from the University of Rhode Island in 1975 and recently joined the University of Tennessee after 20 years at Oak Ridge National Laboratory.

Jim Amonette is a soil chemist/mineralogist who applies the principles of redox chemistry and spectroscopy to environmental geochemistry problems such as soil-C sequestration and environmental remediation. He received his Ph.D. from Iowa State University in 1988 and has worked at the Pacific Northwest National Laboratory for 15 years.

Suzanne Fisher is an environmental biologist with interests in ecotoxicology, carbon sequestration, and aquatic and microbial ecology. She received her M.S.E.H. from East Tennessee State University in 2001 and is currently a Post Masters Research Participant for Oak Ridge National Laboratory. Professional affiliations include Society of Environmental Toxicology and Chemistry and the American Society for Microbiology.

Stan Wullschleger is a tree physiologist with research interests in soil carbon dynamics, plant response to environmental change, and ecosystem modeling. He joined Oak Ridge National Laboratory in 1990 after receiving his Ph.D. from the University of Arkansas. Stan is a member of the Ecological Society of America.

W. Lee Daniels is an environmental soil scientist specializing in mined land reclamation, wetlands restoration, and right-of-way stabilization. He received a Ph.D. in soil science from Virginia Tech in 1985 and was recognized as the Reclamation Researcher of the Year in 1993 by the American Society of Mining and Reclamation.