The Physical Basis of Carbon Sequestration in Soil Microaggregates

J. F. McCarthy, 1 P. R. Jemian, 2 J. Ilavsky, 3 Julie D. Jastrow, 4
1 University of Tennessee, Knoxville, TN, USA;
2 University of Illinois, Urbana, IL, USA;
3 University of Maryland, College Park, MD, USA;
4 Argonne National Laboratory, Argonne, IL, USA.

Introduction

Concerns about global climate change and rising atmospheric CO₂ levels have motivated national and international efforts to develop a scientific basis for evaluating potential management strategies for enhancing carbon sequestration in the environment. The dynamics of soil aggregate formation and stability have profound implications to understanding and enhancing carbon sequestration in soil. Soil microaggregates (consisting of primary particles, clay microstructures and organic matter (OM) bound up in aggregates of up to 250 µm) are particularly crucial to long-term sequestration because they protect C against decomposition, resulting in much longer residence times for C. However, the reasons why organic carbon in soil microaggregates has such long residence times is not well understood. The overall goal of this research is to determine the structural and chemical bases of soil microaggregate formation and stability. C-stabilization in microaggregates has been proposed to result from several processes [1], including (1) the inherent recalcitrance of the organic molecular structure, (2) interactions between OM and inorganic surfaces or other organic substances that decrease degradation rates, or (3) reduced physical accessibility. However, we do not currently understand which of these processes are most important, or under what situations and settings the relative importance of any of the processes might be shifted. Our hypothesis is that management practices that reduce disturbance of the soil (such as prairie restoration) will exhibit the following features, compared to cultivated soils:

1. Greater internal surface area in the microaggregate due to higher SOM content and the convoluted conformation of OM compared to smooth mineral surfaces.
2. Reduced accessibility of the internal porosity because pores become blocked, thus contributing to the slow turnover of SOM in stable microaggregates.

Method and Materials

To test these hypotheses, we examined the pore-scale structure of soil microaggregates using small angle X-ray scattering. Soil microaggregates were isolated by flotation and wet sieving [2] from a tallgrass prairie restoration chronosequence at the National Environmental Research Park at Fermi National Accelerator Laboratory (Batavia, IL). We compared microaggregates from plots in the same soil series representing 1) a soil that has been in cultivation for over 100 years, 2) a plot that was converted from cultivation to prairie 20 years ago, and 3) a virgin prairie.

Results

Scattering curves were obtained using the USAXS instrument at the UNICAT beamline. The results (Fig. 1) were analyzed to evaluate the relative surface area of different size pores and the degree of roughness of the surfaces of the pores in microaggregates from the three cultivation histories.

The lower scattering intensity for the microaggregates from the cultivated field indicates that these microaggregates have much lower surface area than those from either prairie. The USAXS data also indicate that the virgin prairie has a slightly greater proportion of its surface area in the smaller-size pores (high Q) and less of its surface area in the larger-size pores (low Q), compared to the restored prairie.

Discussion

The shape of the scattering curves suggests that the morphology of the microaggregates is a randomly oriented surface fractal aggregate. A fractal object is one that is similar to itself across a range of scales. According to this model, the scattering is described by the following power law:

\[I(Q) \propto Q^{-(6-D_s)} \] \hspace{1cm} (1)

where \(D_s \) is the surface fractal dimension, and \(2 \leq D_s \leq 3 \). Values of \(D_s \) are derived from the slopes of log-log plots
of I versus Q (Fig. 1). The value D_s provides information on the roughness of the surface, with a value of 2 indicating a perfectly smooth surface, and higher values indicating increasing surface roughness. The fractal approach has been used successfully to describe a number of porous structures [3,4,5], including the structure of Oxisol aggregates.

All of the microaggregate samples were surface fractals over a size range of 6 nm to 5000 nm (Fig. 1). The value of D_s increases with age of the prairie and organic content of the soil (Fig. 2). This trend suggests that pores in microaggregates from the cultivated field are relatively smooth, which is consistent with their lower surface area. In contrast, the pore surfaces of microaggregates from the restored and virgin prairies are more convoluted, which is consistent with their greater total surface area (Fig. 1). This increased surface area is likely related to higher levels of convoluted, high-surface-area organic matter on the pore surfaces of these microaggregates. The virgin prairie has the roughest pore surfaces (highest D_s), and this appears to be associated with the increased surface area for the small-sized pores (Fig. 1).

Future studies will use contrast matching and anomalous scattering techniques to determine the accessibility of different size classes of solutes and colloids to internal microaggregate porosity [4,7,8,9,10].

Aknowledgments

The UNICAT facility at the APS is supported by the University of Illinois at Urbana-Champaign, Materials Research Laboratory (U.S. DOE, the State of Illinois-IBHE-HECA, and the NSF), the Oak Ridge National Laboratory (U.S. DOE under contract with UT-Battelle LLC), the National Institute of Standards and Technology (U.S. Dept. of Commerce), and UOP LLC. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

References