Chapter 15

ACIDS, BASES

&

ACID/BASE EQUILIBRIA

Hill, Petrucci, McCreary & Perry 4th Ed.
ACIDS & BASES
The Arrhenius Definition: In Water:

- **Acid** – Substance which increases the concentration of Hydrogen Ion, $[H^+]$.

- **Base** – Substance which increases the concentration of Hydroxide Ion, $[OH^-]$.

- **Strong Acids**: H_2SO_4, HI, HBr, HCl, HNOO_3, HClOO_4.

- **Strong Bases**: Hydroxides of Li^+, Na^+, K^+, Rb^+, Cs^+, Ba^{2+}, Sr^{2+}, Ca^{2+}.
ACIDS & BASES

The Bronsted-Lowry Definition: The B-L definition is independent of solvent.

• *Acid* – Substance which donates a Hydrogen Ion, H⁺.

• *Base* – Substance which accepts a Hydrogen Ion, H⁺.

• Conjugate Acid Base Pairs: Species which differ by H⁺. Examples (Acid/Base):
 • HCl/Cl⁻, NH₄⁺/NH₃, H₃O⁺/H₂O, H₂O/OH⁻
• The Lewis Definition: The Lewis definition focuses on electrons and is independent of solvent.

Acid – Substance which accepts an electron pair.

Base – Substance which donates an electron pair.
Other Lewis Acids

Many Metal Ions:

\[6 \text{H}:\ddot{\text{O}}: + \text{Al}^{3+} \rightarrow \left[\text{Al} \left(:\ddot{\text{O}}:\dddot{\text{H}} \right)_6 \right]^{3+}\]

Some Acids are not what they seem: \(\text{H}_3\text{BO}_3\)

Boric Acid is not an Oxoacid, but a Lewis Acid:

\[2 \text{H}:\ddot{\text{O}}: + \text{BO}:\dddot{\text{O}}:\text{H} \rightleftharpoons \text{H}:\dddot{\text{O}}:\text{B}(:\ddot{\text{O}}:):\text{H} \hspace{1cm} \Delta \rightarrow \text{H}:\dddot{\text{O}}:\text{B}(:\ddot{\text{O}}:):\text{H} + \text{H}:\ddot{\text{O}}:\dddot{\text{H}}\]
Bronsted Acid/Base Reactions

A competition for Hydrogen Ion (Protons)

Stronger Acid than H_3O^+

Stronger Base than Cl^-

Weaker Base than H_2O

Weaker Acid than HCl
B/L Acids/Bases are Named by Function

\[\text{Strong Base} + \text{Very Weak Acid} \rightarrow \text{Very Weak Acid} + \text{Strong Base} \]

\[\text{Strong Base (but weaker than NH}_2^-) \]

\[\text{Strong Base} + \text{Very Weak Acid} \rightarrow \text{Very Weak Acid} + \text{Strong Base} \]

\[\text{Strong Base (but weaker than O}^{-2}) \]
B/L Acid/Base Strength Relationships

Strongest Acids <=> Weakest Conjugate Bases

Strongest Bases <=> Weakest Conjugate Acids

Weak Acids <=> Weak Conjugate Bases

Weak Acids/Bases have pK_{a/b} between 2 & 12

Weak Acids & Weak Bases

\[\text{HC}_2\text{H}_3\text{O}_2 + \text{H}_2\text{O} \rightleftharpoons \text{C}_2\text{H}_3\text{O}_2^- + \text{H}_3\text{O}^+ \]

\[\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \]
pKa & pKb of Conjugate Acid/Base Pairs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>H2O</td>
</tr>
<tr>
<td>C2H3O2</td>
<td>I-</td>
</tr>
<tr>
<td>HF</td>
<td>Cl-</td>
</tr>
<tr>
<td>HC2H3O2</td>
<td>Br-</td>
</tr>
<tr>
<td>CN-</td>
<td>OH-</td>
</tr>
<tr>
<td>NH3</td>
<td>H2O</td>
</tr>
</tbody>
</table>

Strong

Weak

Very Weak
Competition for Protons

Determining the Direction of Reaction:

\[H_2S + C_2H_3O_2^- \rightleftharpoons HC_2H_3O_2 + HS^- \]

- weaker acid than acetic
- weaker base than \(HS^- \) ion.
- stronger acid than \(H_2S \)
- stronger base than acetate ion

See Table 15.1, p 620, for Relative Acid/Base Strengths

The Hydrogen Sulfide Ion is a stronger base than the acetate ion and will successfully compete for the Hydrogen Ion.
Factors Affecting Acid Strength

1) Polarity of the H-X Bond. The more electronegative X is, the more polar is, more charge separation in, the bond.

\[\delta^+ H \equiv X \delta^- \]

Where \(\delta^+ \) means not a full positive charge.

2) Strength of the H-X Bond. The stronger the bond the harder it is to ionize.

\[\delta^+ H \equiv X \delta^- \leftrightarrow H^+ + X^- \]

This Bond must break to form ions!
Trends in Binary Acid Strength

HF < HCl < HBr < HI

Most Polarity Least
Greatest Bond Strength Least

H₂O < H₂S < H₂Se < H₂Te

In Water HF is a weak acid.

HCl, HBr and HI are strong acids.
Acidity Trends in Oxo-Acids

All Oxo-Acids contain H-O-X Bonds of near equal strength. The H-O Bond is strong!

Electronegativity Trends

H-O-Cl > H-O-Br > H-O-I

Oxygen Substitution is more important!

HClO < HClO₂ < HClO₃ < HClO₄
Acidity Trends in Oxo-Acids

Why Oxygen Substitution is more important!

\[
\text{HClO} < \text{HClO}_2 < \text{HClO}_3 < \text{HClO}_4
\]

The key is the Conjugate Base Strength!

Each added Oxygen reduces the average charge!
POLYPROTIC ACIDS

More Than One Proton Ionizes

Binary Types:

\[H_2S \rightleftharpoons H^+ + HS^- \]

\[H_2S > HS^- \]

\[HS^- \rightleftharpoons H^+ + S^{2-} \]

Oxo-Acid Types:

\[H_2SO_4 \rightleftharpoons H^+ + HSO_4^- \]

\[H_2SO_4 > HSO_4^- \]

\[HSO_4^- \rightleftharpoons H^+ + SO_4^{2-} \]

\[H_3PO_4 > H_2PO_4^- > HPO_4^{2-} \]
The Auto-Ionization of Water

\[
\begin{align*}
\text{H}_2\text{O} + \text{H}_2\text{O} & \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^- \\
K_C & = \frac{[\text{H}_3\text{O}^+][\text{OH}^-]}{[\text{H}_2\text{O}]^2} = 3.2 \times 10^{-18} \\
\text{In dilute aqueous solution: } [\text{H}_2\text{O}] & \approx \text{constant} \\
[\text{H}_2\text{O}] & = \frac{998 \text{ g/L}}{18.02 \text{ g/mol}} = 55.4 \text{ mol/L} \\
K_C [\text{H}_2\text{O}]^2 & = [\text{H}_3\text{O}^+][\text{OH}^-] \\
& = 3.2 \times 10^{-18} (55.4 \text{ mol/L})^2 \\
K_C [\text{H}_2\text{O}]^2 & \equiv K_W = [\text{H}_3\text{O}^+][\text{OH}^-] = 1.0 \times 10^{-14}
\end{align*}
\]
Ion Product of Water

For Pure Water at 25° C:

\[[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ M} \]

For Acid Solution:

\[[H_3O^+] \equiv [H^+] > 1.0 \times 10^{-7} \text{ M} \]
\[[OH^-] < 1.0 \times 10^{-7} \text{ M} \]

For Basic (Alkaline) Solution:

\[[OH^-] > 1.0 \times 10^{-7} \text{ M} \]
\[[H^+] < 1.0 \times 10^{-7} \text{ M} \]

In all cases the

\[[OH^-] \times [H^+] = K_w \]
\[
\text{pH: A Convenient Measure of } [\text{H}^+] \\
\]

\[
\begin{array}{cccc}
\text{pH} & \approx & -\log [\text{H}^+] & \text{pH} & [\text{H}^+] & [\text{OH}^-] \\
14 & & 10^{-14} & & 1.0 \\
13 & & 10^{-13} & & 0.1 \\
7 & & 10^{-7} & & 10^{-7} \\
1 & & 0.1 & & 10^{-13} \\
0 & & 1.0 & & 10^{-14} \\
\end{array}
\]

Basic (Alkaline) Solution:

Neutral Solution:

Acidic Solution:

\[
\begin{align*}
p\text{OH} & \equiv -\log [\text{OH}^-] \\
p\text{K}_w & \equiv -\log (\text{K}_w) \\
p\text{K}_w & = 14.00 \\
p\text{K}_a & \equiv -\log (\text{K}_a) \\
p\text{K}_b & \equiv -\log (\text{K}_b)
\end{align*}
\]

Some others we will use later.
Strong Acid Solution

A solution which is 0.080 M HCl:

\[
\text{HCl}_{(aq)} \rightarrow \text{H}^+_{(aq)} + \text{Cl}^-_{(aq)}
\]

\[
0.080 \text{ M} \quad 0.080 \text{ M} \quad 0.080 \text{ M}
\]

\[
\text{pH} = -\log(0.080) = -(-1.10) = 1.10
\]

\[
[\text{OH}^-] = \frac{K_w}{0.080 \text{ M}} = \frac{1.0 \times 10^{-14}}{0.080 \text{ M}} = 1.25 \times 10^{-13} \text{ M}
\]

\[
\text{pOH} = -\log [\text{OH}^-] = -\log (1.25 \times 10^{-13}) = 12.90
\]
A Strong Base Solution

A solution which is 0.040 M Ca(OH)$_2$:

\[
\text{Ca(OH)}_2(aq) \xrightarrow{100\%} \text{Ca}^{2+}(aq) + 2 \text{OH}^-(aq)
\]

\[
\begin{align*}
-x & \quad +x \\
0.040 \text{ M} & \quad 0.040 \text{ M} \\
\underline{0.080 \text{ M}}
\end{align*}
\]

\[\text{pOH} = -\log(0.080) = -(-1.10) = 1.10\]

\[\left[\text{H}^+\right] = \frac{K_W}{0.080 \text{ M}} = \frac{1.0 \times 10^{-14}}{0.080 \text{ M}} = 1.25 \times 10^{-13} \text{ M}\]

\[\text{pH} = -\log(1.25 \times 10^{-13} \text{ M}) = -(-12.90)\]

\[\text{pH} = 12.90\]
Calculation of $[H^+]$ or $[OH^-]$ from pH

Orange juice has a pH of 3.54. Calculate the $[H^+]$ & $[OH^-]$. Note: $pH + pOH = 14.00$ (pK_w).

$pH = 3.54 = -\log[H^+]$

$[H^+] = 10^{-3.54}$

$[H^+] = 2.88 \times 10^{-4}$ M

$pOH = 14.00 - 3.54$

$pOH = 10.46$

$[OH^-] = 10^{-10.46}$

$[OH^-] = 3.47 \times 10^{-11}$ M

Always change the sign of pH or pOH before taking the antilog.
Weak Acid Equilibria

\[\text{HA}_{(aq)} + \text{H}_2\text{O}_{(aq)} \rightleftharpoons \text{H}_3\text{O}^+_{(aq)} + \text{A}^-_{(aq)} \]

\[K_c = \frac{[\text{H}_3\text{O}^+] [\text{A}^-]}{[\text{HA}] [\text{H}_2\text{O}]} \]

but \([\text{H}_2\text{O}] \approx \text{constant}!\)

\[K_a \equiv K_c [\text{H}_2\text{O}] = \frac{[\text{H}_3\text{O}^+] [\text{A}^-]}{[\text{HA}]} \]

\[K_a \equiv \frac{[\text{H}^+] [\text{A}^-]}{[\text{HA}]} \]
Weak Acid Equilibria: 0.10 M HA in water.

\[
\begin{align*}
\text{HA}_{(aq)} & \rightleftharpoons H^+_{(aq)} + A^-_{(aq)} \\
\text{[initial]} & = 0.10 \text{ M} & \text{0 M} & \text{0 M} \\
\Delta & \quad -x & +x & +x \\
\text{[equil]} & = 0.10 - x & +x & +x \\
\end{align*}
\]

\[
K_a = \frac{[H^+][A^-]}{[\text{HA}]} = \frac{(x)(x)}{(0.10 - x)}
\]

\[
[H^+][A^-] = K_a [\text{HA}]
\]

but \([H^+] = [A^-] \)

\[
[H^+] = \left(K_a [\text{HA}]_{\text{eq}} \right)^{\frac{1}{2}}
\]

but \([\text{HA}] \gg x\), a weak acid
Calculation of the Ionization Constant, K_a, of a weak acid from a pH measurement.

A 0.025 M solution of Lactic Acid, $HLac$, has a pH = 2.75, calculate the K_a.

$$K_a = \frac{[H^+] [Lac^-]}{[HLac]}$$
Percent Ionization & Acid Concentration

Any weak acid (or base) dissociates to a greater extent as it becomes more dilute.

LeChatelier’s Principle & the Common Ion Effect

\[\text{HA}_{(aq)} + \text{H}_2\text{O}_{(aq)} \rightleftharpoons \text{H}_3\text{O}^+_{(aq)} + \text{A}^-_{(aq)} \]

\[K_c = \frac{[\text{H}_3\text{O}^+] [\text{A}^-]}{[\text{HA}] [\text{H}_2\text{O}]} \]

as \([\text{H}_2\text{O}]\) increases and \(K_c\) remains constant the values of \([\text{H}_3\text{O}^+]\) & \([\text{A}^-]\) must increase and \([\text{HA}]\) must decrease!
Example: Weak acid Equilibrium

Calculate the Equilibrium Concentrations for 0.020 M propionic acid, $K_a = 1.3 \times 10^{-5}$

\[
\begin{align*}
[HPr_{aq}] & \quad \leftrightarrow \quad [H^{+}] + [Pr^{-}] \\
\text{[init]} & \quad 0.020 \quad 0 \quad 0 \\
\Delta & \quad -x \quad +x \quad +x \\
\text{[eq]} & \quad 0.020 \quad -x \quad x \quad x
\end{align*}
\]

\[
K_a = \frac{[H^+][Pr^-]}{[HPr]}
\]
Solution:

\[
K_a = \frac{[H^+][Pr^-]}{[HPr]} = \frac{(x)(x)}{(0.020 - x)} = 1.3 \times 10^{-5}
\]

This equation will produce a quadratic unless we approximate. Errors less than 5% are acceptable.

If \(K_a/[HA] < 10^{-2}\)

\(x << [HA]_{eq}\) and
\([HA]_{eq} \approx [HA]_{initial}\)

\[
K_a = \frac{(x)(x)}{(0.020 - x)} \approx \frac{(x)(x)}{(0.020)}
\]

\(x = 5.0 \times 10^{-4}\)

\(pH = 3.30\)

\(x = 5.1 \times 10^{-4}\)

\(pH = 3.29\)
Ionization Equilibria – Weak Bases

\[NH_3(aq) + H_2O(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq) \]

\[K_c = \frac{[NH_4^+] \cdot [OH^-]}{[NH_3] \cdot [H_2O]} \]

but \([H_2O] \approx \text{constant}!\)

\[K_b \equiv K_c \cdot [H_2O] = \frac{[NH_4^+] \cdot [OH^-]}{[NH_3]} \]

\[K_b \cdot [NH_3] = [NH_4^+] \cdot [OH^-] \]

but: \([NH_4^+] = [OH^-]\)

\[[OH^-] = \left[K_b \cdot [NH_3]_{eq} \right]^{\frac{1}{2}} \approx \left[K_b \cdot [NH_3]_{init} \right]^{\frac{1}{2}} \]
Calculation of K_b from pH Measurements

A 0.0015 M solution of Quinine, Qn, has a pH = 9.84. Calculate the K_b for quinine.

\[Qn_{aq} \rightleftharpoons QnH_{aq}^{+} + OH_{aq}^{-} \]

\[[\text{eq}] = 0.0015 - x \quad x \quad x \]

\[[QnH^{+}] = [OH^{-}] = 10^{- (14.00 - 9.84)} = 10^{-4.16} \]

\[[QnH^{+}] = [OH^{-}] = 6.92 \times 10^{-5} \, \text{M} \]

\[K_b = \frac{[QnH^{+}][OH^{-}]}{[Qn]} = \frac{(6.92 \times 10^{-5})(6.92 \times 10^{-5})}{(0.0015 - 6.92 \times 10^{-5})} \]

\[K_b = \frac{(6.92 \times 10^{-5})^2}{(0.0015 - 0.00007)} = 3.2 \times 10^{-6} \]
Acid/Base Properties of Salts

Hydrolysis of Salts

Salts of SA/SB are neutral. Both the conjugate base/acid are very weak neither the conjugate acid or base alter pH = 7.00.

Salts of SA/WB are acidic. The conjugate acid of the weak base makes pH < 7.00.

Salts of WA/SB are basic. The conjugate base of the weak acid makes the pH > 7.00
pK_a \& pK_b of Conjugate Acid/Base Pairs

Weak

Strong

Very Weak

HCl

H_2O

C_2H_3O_2

H_3O^+

HF

HCN

NH_3

OH^-

I^-

HBr

Cl^-

Br^-

F^-

CN^-

NH_4^+

H_2O
Salts of a Strong Acid / Weak Base

Calculate the pH of 0.10 M Ammonium Chloride

\[\text{NH}_4^{+} + (\text{Cl}^-) \overset{\text{H}_2\text{O}}{\rightleftharpoons} \text{H}^+ + \text{NH}_3 + (\text{Cl}^-) \]

0.10 - x

\[x \quad x \]

\[K_a = \frac{[\text{NH}_3][\text{H}^+]}{[\text{NH}_4^+]} \]

rearranging

\[K_a = \frac{[\text{NH}_3]}{[\text{NH}_4^+][\text{OH}^-]} \cdot \frac{[\text{H}^+][\text{OH}^-]}{[\text{OH}^-]} \]

\[K_a = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} \]

For conjugate pairs

\[K_a \times K_b = K_w \]
Calculate the pH of 0.10 M Ammonium Chloride

\[
\begin{align*}
\text{NH}_4^{+(aq)} + (\text{Cl}^{-}) & \rightleftharpoons H^{+(aq)} + \text{NH}_3(aq) + (\text{Cl}^{-}) \\
0.10 - x & \quad x \quad x \\
K_a &= \frac{[\text{NH}_3][H^+]}{[\text{NH}_4^+]} = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} \\
K_a &= 5.6 \times 10^{-10} = \frac{(x)(x)}{0.10 - x} \approx \frac{x^2}{0.10} \\
[H^+] &= x = \left[(5.6 \times 10^{-10})(0.10)\right]^{1/2} = 7.5 \times 10^{-6} \text{ M} \\
\text{pH} &= 5.13 \quad \text{an acidic solution!}
\end{align*}
\]
Salts of a Weak Acid / Strong Base

Calculate the pH of 0.10 M Sodium Cyanide

\[
\text{K}_b = \frac{[\text{HCN}][\text{OH}^-]}{[\text{CN}^-]} = \frac{[\text{H}^+]}{[\text{H}^+]}
\]

\[
\text{K}_a = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}} = 1.6 \times 10^{-5}
\]

\[
\text{K}_w = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}}
\]
Calculate the pH of 0.10 M Sodium Cyanide

\[(\text{Na}^{+}) + \text{CN}^{-} \rightleftharpoons \text{HCN} + \text{OH}^{-} + \text{Na}^{+}\]

\[\text{K}_b = \frac{[\text{HCN}][\text{OH}^{-}]}{[\text{CN}^{-}]} = 1.6 \times 10^{-5}\]

\[\text{K}_b = 1.6 \times 10^{-5} = \frac{(x)(x)}{0.10 - x} \approx \frac{x^2}{0.10}\]

\[\text{[OH}^{-}] = x = \left[(1.6 \times 10^{-5}) (0.10)\right]^{\frac{1}{2}} = 1.3 \times 10^{-3} \text{ M}\]

pOH = 2.9

pH = 14.0 - 2.9 = 11.1 a basic solution!
The Common Ion Effect:

Calculate the pH of a 0.10 M acetic acid solution, then add enough dry sodium acetate to make the solution 0.10 M acetate.

\[
\text{HC}_2\text{H}_3\text{O}_2(aq) \rightleftharpoons \text{H}_2\text{O} + \text{C}_2\text{H}_3\text{O}_2^-(aq)
\]

\[
[\text{HC}_2\text{H}_3\text{O}_2]_{eq} = 0.10 - x
\]

\[
[\text{H}^+] = \sqrt{(1.8 \times 10^{-5})(0.10)} = 1.3 \times 10^{-3} \text{ M}
\]

\[
\text{pH} = 2.89
\]

When we add the base and common ion acetate we will suppress the ionization of acetic acid!

\[
[\text{HC}_2\text{H}_3\text{O}_2]_{eq} = 0.10 - z
\]

The new dissociation z is a lot smaller than x.
Now calculate the pH of a 0.10 M acetic acid solution after adding the dry sodium acetate to make the solution 0.10 M in acetate. 1

\[
\begin{align*}
\text{HC}_2\text{H}_3\text{O}_2^{(aq)} & \rightleftharpoons H^{(aq)} + \text{C}_2\text{H}_3\text{O}_2^{-}\text{(aq)} \\
[]_{eq} & \quad 0.10 - z \\
& \quad z \\
& \quad 0.10 + z
\end{align*}
\]

\[
K_a = \frac{[H^+] [C_2H_3O_2^-]}{[HC_2H_3O_2]} = \frac{(z)(0.10 + z)}{(0.10 - z)}
\]

Solving for \([H^+]:\)

\[
[H^+] = \frac{K_a [HC_2H_3O_2]}{[C_2H_3O_2^-]} = \frac{(1.8 \times 10^{-5})(0.10 - z)}{(0.10 + z)}
\]
Calculate the pH of a 0.10 M acetic acid solution, then add enough dry sodium acetate to make the solution 0.10 M acetate. 2

\[\text{HC}_2\text{H}_3\text{O}_2(\text{aq}) \rightleftharpoons \text{H}^+(\text{aq}) + \text{C}_2\text{H}_3\text{O}_2^-(\text{aq}) \]

\[[\text{H}^+] = \left(\frac{1.8 \times 10^{-5})(0.10 - z)}{0.10 + z} \right) \approx \left(\frac{1.8 \times 10^{-5})(0.10)}{0.10} \right) \]

\[[\text{H}^+] = 1.8 \times 10^{-5} \text{ M} \]

\[\text{pH} = 4.75 \]

Compare this to just the weak acid! \[\text{pH} = 2.89 \]
Buffers the “How” to Control pH

\[\text{HC}_2\text{H}_3\text{O}_2(aq) \rightleftharpoons \text{H}^+(aq) + \text{C}_2\text{H}_3\text{O}_2^-(aq) \]

This amount of acid will absorb a lot of hydroxide ion. This amount of base will not absorb a lot of hydrogen ion.

\[[\text{eq}] \quad 0.10 - x \]

If we add the conjugate base the solution will absorb both!

\[[\text{eq}] \quad 0.10 - z \quad z \quad 0.10 + z \]

These amounts of both conjugates will absorb comparable amounts of hydrogen or hydroxide ion.

\[
[H^+] = \frac{K_a (0.10)}{(0.10)} = K_a = 1.8 \times 10^{-5} \text{ M}.
\]

\[\text{pH} = 4.75 = \text{pK}_a \]
The Henderson Hasselbalch Equation

\[\text{HA}_{(aq)} \rightleftharpoons \text{H}^+_{(aq)} + \text{A}^-_{(aq)} \]

\[[\text{H}^+] = \frac{K_a [\text{HA}]}{[\text{A}^-]} \]

or \[\text{pH} = \text{pK}_a - \log \left(\frac{[\text{HA}]}{[\text{A}^-]} \right) \]

\[\text{pH} = \text{pK}_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right) \]

This equation will work for an acid or base buffer!

\[\text{or} \quad \text{pH} = \text{pK}_a + \log \left(\frac{[\text{CB}]}{[\text{CA}]} \right) \]

But it will only work when \([\text{CB}] \approx [\text{CA}]!!\)
Buffers the “How” to Control pH

\[
\text{NH}_3(aq) + \text{H}_2\text{O}(aq) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq)
\]

\[
K_b = \frac{[\text{OH}^-][\text{NH}_4^+]}{[\text{NH}_3]}
\]

\[
K_a = \frac{K_w}{K_b} = \frac{[\text{OH}^-][\text{H}^+][\text{NH}_3]}{[\text{OH}^-][\text{NH}_4^+]} = \frac{[\text{H}^+][\text{NH}_3]}{[\text{NH}_4^+]}
\]

The Henderson Hasselbalch Equation

\[
pH = pK_a + \log \left(\frac{[\text{NH}_3]}{[\text{NH}_4^+]} \right) = pK_a + \log \left(\frac{[\text{CB}]}{[\text{CA}]} \right)
\]

This equation will work for an acid or base buffer!
Buffers Change pH only to the Extent that the Conjugate Ratios Change.

This equation will work for an acid or base buffer!
Buffers Change pH only to the Extent that the Conjugate Ratios Change.

\[
\text{NH}_3(aq) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq)
\]

Adding acid will cause \(\text{NH}_3 \) to react to form more \(\text{NH}_4^+ \)

Adding base will cause \(\text{NH}_4^+ \) to react to form more \(\text{NH}_3 \)

\[
[H^+] = K_a \frac{[\text{NH}_4^+]}{[\text{NH}_3]} \Rightarrow \text{pH} = pK_a + \log \left(\frac{[\text{NH}_3]}{[\text{NH}_4^+]} \right)
\]

Determining the pH of a buffer to which acid or base is added is a problem in stoichiometry and calculating the new conjugate ratio!
15-81: A solution 0.405 M in HCOOH and 0.326 M in HCOO\(^-\) is prepared. What is its pH?

\[
\text{HCOOH}_{(aq)} \rightleftharpoons \text{H}^+_{(aq)} + \text{HCOO}^-_{(aq)} + \text{Na}^+_{(aq)}
\]

[eq1] 0.405 M \quad \approx 0 \text{ M} \quad 0.326 \text{ M} \quad 0.326 \text{ M}

15-85: To 50.0 mL of the above buffer is added 1.00 mL of 0.250 M HCl. What is the new pH?
Challenging a Buffer

15-81: A solution 0.405 M in HCOOH and 0.326 M in HCOO$^-$ is prepared. What is its pH?

\[
\text{HCOOH}_{(aq)} \rightleftharpoons \text{H}^+_{(aq)} + \text{HCOO}^-_{(aq)} + \text{Na}^+_{(aq)}
\]

\[
[\text{HCOOH}]_{eq1} = 0.405 \text{ M} \\
[\text{H}^+]_{eq} \approx 0 \text{ M} \\
[\text{HCOO}^-]_{eq} = 0.326 \text{ M} \\
[\text{Na}^+]_{eq} = 0.326 \text{ M}
\]
15-85: To 50.0 mL of the above buffer is added 1.00 mL of 0.250 M HCl. What is the new pH?
Titration of Acids and Bases

• The quantitative addition of an acid solution to a base solution until the equivalence point is reached.

• At the equivalence point the following equation applies:

\[
\text{Moles Acid} = \text{Moles Base}
\]

\[
\text{Vol}_{\text{Acid}} \times M_{\text{Acid}} = \text{Vol}_{\text{Base}} \times M_{\text{Base}}
\]

\[
M_{\text{Acid}} = [H^+] \quad M_{\text{Base}} = [OH^-]
\]
Titrating a Weak Base with Strong Acid

Calculate the volume of 0.052 M HCl required to titrate 32.0 mL of 0.077 M ammonia. Calculate pH at endpoint.

\[\text{NH}_3(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{NH}_4^+(aq) + \text{Cl}^-(aq) \]

moles acid = moles base (at equivalence point)