Chemistry 110
Bettelheim, Brown, Campbell & Farrell
Ninth Edition
Introduction to General, Organic and Biochemistry
Chapter 14
Alcohols, Ethers and Thiols
Alcohols have a Hydroxyl Group, -OH, bonded to tetrahedral carbon.

IUPAC Names: Parent Alkane - e + ol

Common Names: R-group then “alcohol”

Alcohols are classified as primary, secondary and tertiary – determined by the carbon to which the hydroxyl is attached.
Alcohols bearing more than one hydroxyl group: Diols, Triols & Polyols

CH_2CH_2
$\text{OH} \quad \text{OH}$

1,2-ethandiol
ethylene
glycol

CH_3CHCH_2
$\text{OH} \quad \text{OH} \quad \text{OH}$

1,2-propandiol
propylene
glycol

$\text{CH}_3\text{CH}_2\text{CHCH}_2$
$\text{OH} \quad \text{OH} \quad \text{OH}$

1,2-butandiol
butylene
glycol

Diols with hydroxyls on adjacent carbons are called glycols.

CH_2CHCH_2
$\text{OH} \quad \text{OH}$

1,2,3-propantriol
glycerol (glycerin)

$\text{CH}_2\text{CHCHCHCHCH}$
$\text{OH} \quad \text{OH} \quad \text{OH}$

"aldopentose"

$\text{CH}_2\text{CHCHCHCCH}_2$
$\text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH}$

"ketohexose"

"sugars"
IUPAC Naming of Alcohols

• The *longest continuous chain* of carbons bearing the hydroxyl, –OH, group is the Parent Alkanol (PA).

• Number the chain from the direction giving the –OH the lower number. Place the number, separated by hyphens, in front of the Parent Alkanol. When more than one –OH exists, locate each with a locator number ending the PA with *diol, triol, tetraol, etc.*

• Construct the name by locating the other substituent groups along the PA and listing them alphabetically, again using *di, tri, etc.* for identical groups. Always separating numbers from numbers with commas, and from words with hyphens.
Name these Alcohols using IUPAC

CH₃CH₃CHCH₂CH₂OH CH₃CH₂CH₂COH HOCH₂CHCH₂CH₂OH

CH₃CH₃CH₂CCH₂CH₂OH HO CH₃CH₃CHCCH₂CH₃ CH₃

CH₃CH₂CH₂CH₂OH CH₃CH₂CH₂CH₃

CH₃
Physical Properties of Alcohols

Alcohols are polar, hydrogen bond with water, and each other, have higher boiling points than alkanes of similar molecular weight and are soluble in water if the substituent group part is not too large and non-polar. C₁-C₇ = miscible to slightly soluble, C₈ and higher are insoluble.

Alcohols have a pKa similar to water, aqueous solutions are not acidic or basic, the pH is not altered.
Hydrogen Bonds – Pure Alcohols
Reactions of Alcohols

Dehydration:

When two alkenes are possible: The one with the most substituents on the double bond is generally favored.

Note! Two carbon atoms involved!

major product

When two alkenes are possible: The one with the most substituents on the double bond is generally favored.
Write the Products of the Reactions Below

Dehydration: The dehydrating reagents used are commonly concentrated phosphoric or sulfuric acids.

\[
\text{CH}_3\text{CH}_2\text{COH} \quad \rightarrow \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{OH}
\]

\[
\text{CH}_3\text{CH}_2\text{CH}\text{CH}_2\text{OH} \quad \rightarrow \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}
\]

\[
\text{CH}_3\text{C(CH}_3\text{)}_2\text{CHOH} \quad \rightarrow \quad \text{CH}_3\text{C(CH}_3\text{)}_2\text{CH}_2\text{OH}
\]

Dehydration/hydration is an equilibrium shifted by the concentration of water!
Oxidation of Primary Alcohols

\([O] = \text{oxidizing agent, usually K}_2\text{CrO}_4 \text{ and } \text{H}_2\text{SO}_4.\)

\[
\begin{align*}
\text{ethanol} & \quad \overset{[O]}{\longrightarrow} \quad \text{ethanal (acetaldehyde)} \\
\text{propanol} & \quad \overset{[O]}{\longrightarrow} \quad \text{propanal (propionaldehyde)}
\end{align*}
\]

Aldehydes are formed!
Oxidation of Secondary Alcohols

\[\text{[O]} = \text{oxidizing agent} \]

2-propanol \(\rightarrow \) propanone (acetone)

\[\text{CH}_3\text{C} = \text{O} \quad \text{CH}_3 \quad + \quad \text{H}_2\text{O} \]

Ketones are formed!

2-butanol \(\rightarrow \) butanone (methyl ethyl ketone)

\[\text{CH}_3\text{CH}_2\text{C} = \text{O} \quad \text{CH}_3 \quad + \quad \text{H}_2\text{O} \]
Further Oxidation of Primary Alcohols

Aldehydes are formed first but oxidize easily to carboxylic acids unless they are distilled out of the reaction mixture as they form!

- Ethanal (acetaldehyde) from ethanol
 \[\text{CH}_3\text{C} = \text{O} \quad \xrightarrow{[O]} \quad \text{CH}_3\text{C} - \text{O} \quad \text{ethanoic (acetic) acid} \]
 \[\text{ethanal (acetaldehyde)} \quad \text{from ethanol} \]

- Propanal (propionaldehyde)
 \[\text{CH}_3\text{CH}_2\text{C} = \text{O} \quad \xrightarrow{[O]} \quad \text{CH}_3\text{CH}_2\text{C} - \text{O} \quad \text{propanoic (propionic) acid} \]
 \[\text{propanal (propionaldehyde)} \]

Ketones and tertiary alcohols resist further oxidation.
Write the Products of the Reactions Below

\[\text{CH}_3\text{CH}_2\text{COH} \xrightarrow{(O)} \text{CH}_3\text{CH}_2\text{CH}\text{CH}_3\]

\[\text{CH}_2\text{OH} \xrightarrow{(O)} \text{CH}_3\text{CH}_2\text{CHCH}_3\]

\[\text{CH}_3\text{COH} \xrightarrow{(O)} \text{CH}_3\text{CHOH}\]
ETHERS

- Ethers have two non-carbonyl hydrocarbon groups bonded to oxygen.
- Ethers are nearly as unreactive as the alkanes.
- Ethers are as volatile as alkanes of similar molecular weight. They cannot donate a hydrogen bond to each other.
- Ethers are polar and can accept a hydrogen bond from water; they are about as soluble in water as isomeric alcohols.
Hydrogen Bonds – Pure Ethers
Naming of Ethers

- Although ethers can be named according to the IUPAC system, chemists almost invariably use common names for low-molecular-weight ethers.
- Common names are derived by listing the alkyl groups bonded to oxygen in alphabetical order and adding the word "ether".
- Alternatively, name one of the groups on oxygen as an alkoxy group.

cyclohexyl methyl ether

\[\text{cyclohexyl methyl ether} \]

methoxycyclohexane
Synthesis of Ethers from Alcohols & Phenols

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{HOCH}_2\text{CH}_3 \xrightarrow{140 \degree \text{C}} \text{H}_2\text{SO}_4 \xrightarrow{140 \degree \text{C}} \text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3
\]

Ethyl alcohol = Ethanol

\[
\text{Phenol} + \text{HO-Phenol} \xrightarrow{\text{acid catalyst}} \text{Phenol-Phenol}
\]

Phenol

\[
\text{Phenol} + \text{HOCH}_2\text{CH}_3 \xrightarrow{\text{acid catalyst}} \text{Phenol-CH}_2\text{CH}_3
\]

Phenol
Thioalcohols, Thioethers and Disulfides

Thioalcohols are also called Mercaptans (capture mercury)

\[
\begin{align*}
\text{ethanethiol} & \quad \text{CH}_3\text{CH}_2\text{SH} \\
\text{ethyl mercaptan} & \quad \text{CH}_3\text{CH}_2\text{SH} \\
\text{ethyl thioether} & \quad \text{CH}_3\text{CH}_2\text{SCH}_2\text{CH}_3 \\
\text{diethyl disulfide} & \quad \text{CH}_3\text{CH}_2\text{SSCH}_2\text{CH}_3
\end{align*}
\]

An important reversible biological reaction:

\[
\begin{align*}
2 \text{CH}_3\text{CH}_2\text{SH} & \quad \text{(O)} \quad \text{CH}_3\text{CH}_2\text{SSCH}_2\text{CH}_3 \\
\text{ethanethiol} & \quad \text{2(H)} \quad \text{diethyl disulfide}
\end{align*}
\]

The oxidation of thiols to disulfides and the reduction of disulfides to thiols is important to protein structure. S-H and S—S bonds occur widely in proteins and are easily enzymatically oxidized and reduced.
Naming of Thiols

- IUPAC names are derived in the same manner as are the names of alcohols, to show that the compound is a thiol, the final -e of the parent alkane is retained and the suffix -thiol added.

- Common names for simple thiols are derived by naming the alkyl group bonded to the sulfhydryl, -SH, group and adding the word "mercaptan".
Physical Properties of Thiols

- Because of the small difference in electronegativity between sulfur and hydrogen (2.5 - 2.1 = 0.4), the S-H bond is nonpolar covalent. Thiols show little association by hydrogen bonding.

- Thiols have lower boiling points and are less soluble in water and other polar solvents than alcohols of similar molecular weight.

- The most striking property of thiols is their stench! Whether skunks, sewage or rotten eggs the smell is that of one or other kind of thiol.

- Thiols are weak acids (pKₐ 10), and are comparable in strength to phenols. Thiols react with strong bases such as NaOH to form water-soluble thiolate salts.