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Abstract

Economists have regarded behavioral economics as contributing evidence violating 
accepted theories. This paper contends that a second, perhaps more important, 
contribution is the new theory that has arisen to address these challenges. To illustrate, 
the paper examines how a single observed fact, cooperation in the finitely-repeated 
prisoners’ dilemma, has led to extensions of the folk theorem as well as to new 
concepts including sequential equilibrium, quantal response equilibrium, psychological 
game theory, and pregame and post-game perfection. Thus, the observed departures 
from previously-standard theories have led to not only new understandings of 
behavior, but also to additions to the economics toolkit.
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The rise of experimental methods in economic research have led to what one might 
consider two basic tenets of behavioral economics: (a) For every theory, there exists 
an experimentalist clever enough to generate evidence violating it. (b) For every pat-
tern uncovered through experiments, there exists a theorist clever enough to devise a 
model that can accommodate it. Of course, neither of these two truths is absolute, 
because there are some theoretical properties that cannot be tested in the lab (like 
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differentiability), and there are some experimental patterns that so far have proven 
stubborn opponents for theorists (like double oral auctions). Nevertheless, these two 
tenets contain enough truth that they deserve some discussion, and this article is 
devoted to the second of the two.

In particular, this article concerns advances to the theory of noncooperative games 
that have arisen from the single “stubborn fact” that people seem to cooperate in a 
finitely repeated prisoners’ dilemma game even though the prevailing solution con-
cepts predict no cooperation at all. Through the years a number of new theories have 
been proposed. All of them share the attribute of elegance, but, more important, they 
all expand the way economists think about individuals and games. The contribution of 
behavioral economics, then, expands far beyond the collection of stubborn facts and 
their refuted theories; the contribution includes all of the theoretical advances fostered 
by the experimental evidence.

The pattern that emerges from this article shows that theorists begin the process of 
explaining cooperation by changing the game in important ways, sometimes subtly 
and sometimes not so subtly. Often these games cannot be solved with existing equi-
librium concepts, leading theorists to devise new solution concepts for the new games. 
These new equilibrium concepts apply not just to the new game under consideration, 
but also to other important games arising in other areas of economics, making the 
contributions fundamental to the discipline. And all of this arises from a simple pattern 
in the experimental literature.

The Finitely Repeated Prisoners’ Dilemma
The prisoners’ dilemma is a two-player, non-zero-sum game of the form shown in 
Figure 1. Both players can choose to either “cooperate” or “defect.” The payoffs are 
determined by the appropriate cell in the table, with the first payoff in each pair going 
to the row player, who chooses the row in the table, and the second payoff in each pair 
going to the column player, who chooses the column. Both players know their own 
and their opponent’s payoffs, and the two players make their moves simultaneously.

If the game is played just once, then standard theory predicts that both players will 
defect. To see why, think about the decision of the row player. If Column cooperates, 
Row can cooperate and earn 12, or Row can defect and earn 16. Defecting generates a 
higher payoff. If Column instead chooses to defect, Row can cooperate and earn 2 or 
defect and earn 6, and once again defecting is better. In this game, defecting is a domi-
nant strategy, that is, a best response to anything the other player can do. The theory of Nash 
equilibrium states that players’ choices must be best responses to their opponents’ 
equilibrium choices, in which case players must use their dominant strategies. 
Consequently, the only equilibrium of the game has both players defecting.

Theory predicts the same outcome when the game is played a fixed, finite number 
of times, say T. The relevant solution concept is subgame perfect equilibrium, which 
requires that equilibrium strategies in the entire game constitute a Nash equilibrium in 
every subgame, where a subgame is defined as any portion of the game beginning at a 
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Column player

Cooperate Defect

Row player
Cooperate 12, 12 2, 16

Defect 16, 2 6, 6

Figure 1. Standard prisoners’ dilemma game

decision node and continuing through the end of the game. The finitely repeated pris-
oners’ dilemma has subgames corresponding to the remainder of the game from Period 
T, from Period T – 1, and so on back to the entire game beginning in Period 1. In 
Period T the two players face the exact game depicted above, and the only Nash equi-
librium has both players defecting. In Period T – 1 they look forward and deduce that 
both players will defect in Period T, so cooperating now has no impact on play in the 
future. Because each player gets the same future payoff of 6 no matter what happens 
this period, they both choose to defect in Period T – 1. This reasoning extends all the 
way back to the beginning of the game, and the only subgame perfect equilibrium has 
both players defecting every period.

Experimental evidence, though, shows that subjects regularly cooperate in the 
finitely repeated prisoners’ dilemma. In a meta-analysis covering 130 experiments 
conducted between 1958 and 1992, Sally (1995) finds an average cooperation rate of 
nearly 50%, and this is reflective of the consensus among behavioral economists 
regarding cooperation rates. Obviously, 50% cooperation clashes with the 0% predic-
tion, which led theorists to devise explanations of the cooperative behavior.

Theoretical Advances Stemming  
From Observed Cooperation
As argued above, the finitely repeated prisoners’ dilemma, when coupled with the 
reigning assumptions governing player preferences, precludes any cooperation. To 
allow for cooperation, either the game must be changed, the players’ preferences 
must be changed, or both. This section provides an overview of how theorists 
made these changes and the greater contributions they made to game theory in the 
process.

The earliest efforts involved changing the game. In particular, they involved extend-
ing the game from a finite to an infinite number of periods (for an excellent and rigor-
ous overview, see Fudenberg & Maskin, 1986). After all, whereas people (and firms) 
do not live forever, the exact time of their deaths are seldom known, so one rarely 
knows when the last period of interaction will be. Infinitely repeated games capture 
this notion of an unknown time for the last interaction. Working with an infinite 
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number of periods invoked some challenges, although their solutions have become 
standard operating procedure over the years. The foremost problem was that subgame 
perfect equilibrium is typically found through the process of backward induction, 
starting at the end of the game and working back toward the beginning. Infinitely 
repeated games have no last period, and therefore backward induction is impossible. 
Instead, solving the game required classifying the entire set of subgames and then 
checking for the mutual best response property in each class of subgames. A second 
issue, which no longer seems to be one, is that although microeconomists were aware 
of discounting of the future, they rarely used it in models. Infinitely repeated games 
forced discounting front and center (as did Rubinstein’s [1982] model of bargaining, 
also built on subgame perfection) because not only did it provide a way to aggregate 
an infinite number of payoffs through the discounted present value, but the level of the 
discount factor proved to be the key to the sustainability of cooperation.

Infinitely repeated games can occur in two ways. One is for the probability that the 
game continues for another period to be constant and equal to one, and this approach 
requires discounting the future to avoid comparisons of infinite payoffs. The other is 
for the probability that the game continues for another period to be constant but smaller 
than one, so that the game ends in finite time with probability one, but the probability 
of another period is always the same. The result from either of these approaches is the 
same. If the discount factor is sufficiently high (that is, if players are sufficiently 
patient) or if the continuation probability is sufficiently high, then any feasible payoff 
combination that dominates the dominant strategy combination in the prisoners’ 
dilemma can be supported as the average payoff combination in equilibrium. More 
precisely, in terms of the specific game depicted in Figure 1, there exists a subgame 
perfect equilibrium in which both players receive 12 each period, and there exists an 
equilibrium in which both players average 9 each period, and there exists one in which 
the row player averages 14 and the column player averages 8, and so on. Not only is 
cooperation possible, but any level of cooperation is possible.

These cooperative outcomes are sustained through the following strategies, known 
as grim trigger strategies. Take the best symmetric outcome as an example, where both 
players earn 12 each period. The row player’s strategy is to cooperate in the first 
period, cooperate in the second period if both players cooperated in the first period and 
defect otherwise, cooperate in the third period if both players cooperated in both of the 
first two periods and defect otherwise, and so on. Or, put differently, cooperate in the 
first period and continue cooperating as long as there were no prior defections by 
either party, and defect forever if anyone, including the row player, defected in any 
period. The strategy is a trigger strategy because a single defection by either player 
triggers punishment. It is a grim strategy because the punishment lasts forever. The 
math to check the conditions is straightforward. Following the proposed strategy leads 
to a payoff of 12 each period. If the discount factor (or continuation probability) is 
δ < 1, then the present value of this payoff stream is 12/(1 – δ). If a player deviates 
from the proposed strategy by defecting, that player earns 16 in that period but then 
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earns 6 in every subsequent period, for a present value of 16 + δ6/(1 – δ). Cooperating 
beats defecting if

 12  
—— > 16 + δ 
 1- δ  

  6
—— ,
 1- δ

or δ > 0.4. So, if interactions occur sufficiently often that the discount rate between 
interactions is greater than 0.4, which corresponds to an interest rate less than 67%, 
the cooperative outcome can be sustained in equilibrium using the grim trigger strat-
egy. Intuitively, sufficient patience means that players care about the future enough 
that punishment hurts them, whereas players who are sufficiently impatient cannot be 
punished because they discount the future too heavily.

This result on cooperation extends beyond the prisoners’ dilemma and has become 
one of the best-known results in game theory—the folk theorem of infinitely repeated 
games. It is a folk theorem because no one is sure who proved its first version, so credit 
cannot be attributed to a single set of authors. Nevertheless, it states that if players are 
sufficiently patient, or if continuation probabilities are sufficiently high, any feasible 
payoff combination that dominates the Nash equilibrium of a single play of the game 
can be supported as the average outcome of a subgame perfect equilibrium of the infi-
nitely repeated game. Cooperation is possible not just in the prisoners’ dilemma, but in 
all games that are repeated an infinite number of times. Furthermore, punishment need 
not come directly from the injured party, and group punishment can lead to social 
norms, as in Kandori (1992).

Benoit and Krishna (1985) cleverly showed that a trigger strategy can support 
cooperation even when the number of periods is finite for some games, but not the 
prisoners’ dilemma. What is needed is more than one Nash equilibrium of the underly-
ing game. Consider the augmented prisoners’ dilemma shown in Figure 2. Each player 
has an additional strategy, eradicate, which leads to very low payoffs. The augmented 
prisoners’ dilemma has two Nash equilibria, with defecting a best response to defect-
ing and eradicating a best response to eradicating. No one wants to play eradicate, but 
it is still a best response to the other player choosing eradicate.

In this game, players can cooperate if there are at least two periods, but they cannot 
cooperate in every period. Specifically, suppose that the game is played exactly twice 
and they use the following strategy: cooperate in the first period, defect in the second 
period if both players cooperated in the first period, and eradicate in the second period 
if either player defected in the first period. The calculations are again straightforward. 
With no discounting, following the proposed strategy yields a total payoff of 12 + 6, 
whereas defecting in the first period yields a total payoff of 16 + 0, which is worse.

The key to the augmented prisoners’ dilemma is that there are two Nash equilibria, 
not just one, and the new Nash equilibrium is worse than the existing one. The bad 
Nash equilibrium is used to punish deviations from the cooperative strategy. However, 



Neilson 981

cooperation cannot be sustained in the last period because there is no future in which 
to punish using the bad Nash equilibrium. The Benoit and Krishna approach, then, 
points out the importance of multiple Nash equilibria, especially bad ones, and the 
inevitability of endgame effects in which cooperation erodes. These endgame effects 
explain, for example, why lame duck administrations accomplish little and why work-
ers near the ends of their careers are difficult to motivate.

In spite of the importance of their contributions to theory, neither of these approaches 
describes the game actually tested in the laboratory, as they either require a different 
form of repetition or a game with a different action space. It would be nice to have a 
model that gives rise to cooperation without changing the underlying structure of the 
finitely repeated prisoners’ dilemma. The first successful attempt at this came in what 
is now known as the Gang of Four paper (Kreps, Milgrom, Roberts, & Wilson, 1982). 
Their approach added a tiny bit of irrationality to the game. Specifically, there is a 
small probability that the player’s opponent is irrational and follows a tit-for-tat strat-
egy instead of an equilibrium strategy. Tit-for-tat dictates that a player begin by coop-
erating and then play whatever his or her opponent played in the previous period. Kreps 
et al. (1982) showed that when there is a small exogenous chance of facing an irrational 
opponent, rational opponents cooperate in equilibrium in order to convince their oppo-
nents that they are irrational, thereby generating cooperation early in the game.

This approach identified a gap in the theory, because subgame perfection cannot be 
directly applied to this game. For a strategy combination to be subgame perfect, it 
must constitute a Nash equilibrium on every subgame, and subgames begin when the 
player making the decision at that node can identify the exact node at which he or she 
plays. In other words, subgames begin at singleton decision nodes. When irrationality 
is introduced, though, many of the nodes are not singletons. Suppose, for example, that 
Row and Column both cooperated in Period 1, and consider Row’s problem in Period 2. 
It could be that Column was irrational and played the tit-for-tat strategy in Period 1, or 
it could be that Column was rational but cooperated in order to mimic the tit-for-tat 
strategy. Row does not know whether she landed at a node emanating from an irrational-
type Column or a rational-type Column, so the game from Period 2 does not constitute 
a subgame. Consequently, subgame perfection cannot govern play. To deal with this 

Column player

Cooperate Defect Eradicate

Row player

Cooperate 12, 12 2, 16 -2, -2

Defect 16, 2 6, 6 -1, -1

Eradicate -2, -2 -1, -1 0, 0

Figure 2. Augmented prisoners’ dilemma game
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problem, two members of the Gang of Four, Kreps and Wilson (1982a, 1982b), devel-
oped a new solution concept: sequential equilibrium.

Sequential equilibrium requires that players form beliefs about their opponents’ 
types, that their actions be best responses to their beliefs, and that their beliefs be con-
sistent with play both in and out of equilibrium. It is similar to perfect Bayesian equi-
librium except that it restricts beliefs off of the equilibrium path. Sequential equilibrium 
has become the standard tool for solving dynamic games of complete information, and 
not just the finitely repeated prisoners’ dilemma with both rational and irrational 
players.

Sequential equilibrium has played a central role in industrial organization litera-
ture, especially regarding entry deterrence. Subgame perfection generates the result 
that rational entry cannot be deterred in equilibrium. Sequential equilibrium, on the 
other hand, provides an avenue for deterrence. If there is a possibility of irrationality, 
in this case the incumbent fighting the entrant no matter what the cost, then firms can 
mimic this irrationality and thereby deter entry. The “irrational manager” strategy has 
become a mainstay of business training.

McKelvey and Palfrey (1992, 1995) took the idea of rational responses to irratio-
nality a step further. Suppose that some players might be altruistic instead of selfish, 
thereby making “mistakes” in the prisoners’ dilemma because they value their oppo-
nents’ payoffs in addition to their own. The subgame perfect equilibrium strategy may 
no longer be a best response in the presence of these “mistakes.” McKelvey and 
Palfrey constructed a new equilibrium concept, quantal response equilibrium, in which 
players make best responses to both the intended strategies and the mistakes made by 
other players. The benefit of this concept is that it is parameterized and can be esti-
mated using maximum likelihood methods, allowing for comparisons across games 
and across data sets.

Yet another approach comes from the idea of psychological games, introduced by 
Geanakoplos, Pearce, and Stacchetti (1989) and expanded upon by Rabin (1993). This 
idea rests on a notion of reciprocity, specifically a preference for rewarding kind 
behavior and punishing unkind behavior. To see how this can impact play in the pris-
oners’ dilemma, look back at the payoffs in Figure 1. If Row regards Column’s coop-
eration as kind and feels compelled to reward it, Row receives extra utility from 
playing cooperate and loses utility from playing defect. This can change the payoffs to 
those in Figure 3, where the extra utility from cooperating in response to perceived 
kindness is +3 and the loss from defecting in response to perceived kindness is –3, and 
the same changes are made for Column’s payoffs. Now there are two Nash equilibria, 
one in which both players defect and one in which both players cooperate.

The difficult part of the analysis is making workable constructs out of the notions 
of kindness and unkindness. Psychological games allow players to form beliefs about 
their opponents’ behavior and beliefs, and requires that in equilibrium beliefs must be 
consistent with reality. This extends rational expectations to games in a particular way. 
Rabin’s primary contribution arose from formalizing the mapping from beliefs about 
opponents’ actions and beliefs into responses to kindness and unkindness.
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A New Direction—Thinking Outside the Game

The papers discussed in the preceding section are 15 to 30 years old, and are all heav-
ily cited.1 They have had an obvious influence on economics literature, both the 
experimental literature and the theoretical literature. They do not provide the only 
explanations of cooperation, however, and a new, very recent literature models coop-
eration by placing the repeated prisoners’ dilemma within the context of the subjects’ 
interactions within society at large.

One approach begins with the observation that subjects come to a laboratory with a 
long history of social interactions, and they may have either learned some behaviors or 
restricted themselves from certain behaviors in ways that matter for the game. This is 
the approach of Conley and Neilson (2009). They assume a large population whose 
members will be paired off to play a prisoners’ dilemma game similar to the one in 
Figure 1. Before the game begins, in what is referred to as the pregame, each player 
can choose a subset of the available actions, called a list. In the prisoners’ dilemma, a 
player can choose a list with only cooperate in it, only defect, or both cooperate and 
defect. After those choices are made, players are randomly matched, observe each 
other’s lists, and then decide whether they want to play against each other. If they both 
elect to play, they choose actions from their lists, receive their payoffs, and exit the 
game. If one or both elect not to play, they both pay a delay cost and then are randomly 
rematched with the population. Conley and Neilson refer to this larger game as an 
endogenous game, with the name reflecting the fact that both the players in the prison-
ers’ dilemma and their action sets are endogenous within the larger game.

The endogenous game format reflects two attributes that are consistent with the 
outside world. One is that people have some say over whom they interact with, and 
refusing to interact with one individual is hardly tantamount to refusing to interact 
with anyone. The other is that individuals can make decisions regarding who they are, 
and in an endogenous game an individual is defined by his or her list. The list both 
restricts the strategies they can play and serves as the individual’s public face on the 
basis of which others decide to interact with them. For the former reason, the list is a 
commitment device, but for the latter it is also a way to fit in with or appeal to society 
at large.

Column player

Cooperate Defect

Row player
Cooperate 15, 15 2, 11

Defect 11, 2 6, 6

Figure 3. Prisoners’ Dilemma Game with Reciprocity
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Equilibria in this game tend to be social norm equilibria where everyone does the 
same thing; specifically, they all have the same list, and they all play the same element 
from that list. Cooperation can occur in equilibrium if the cost of refusing to play is not 
too large. Enforcement of the equilibrium comes through ostracism rather than punish-
ment, though, because when individuals choose lists containing the action “defect,” no 
one will interact with them. In the prisoners’ dilemma, cooperation means that both 
players choose the dominated strategy, and the ensuing payoff combination dominates 
the Nash equilibrium payoff combination. This is also true in infinitely repeated 
games, because the folk theorem states that payoff combinations that dominate the 
Nash equilibrium payoff combination can be supported. In endogenous games, how-
ever, bad dominated strategies can also be supported in equilibrium, which means that 
this form of ostracism can generate harmful social norms that show up, for example, 
as risky teen behavior.

As with the Gang of Four model, endogenous games require a new solution con-
cept, and for similar reasons. In the Gang of Four model there were no singleton deci-
sion nodes, and therefore no subgames, because one player could not observe the other 
player’s type. In an endogenous game, each player observes his or her matched part-
ner’s list, and so players are fully informed about their opponents. They are not, how-
ever, fully informed about the rest of the population. This matters off the equilibrium 
path. To see why, suppose that the proposed equilibrium in the endogenous prisoners’ 
dilemma has everyone choosing only “cooperate” in their lists. Player 1 does this and 
then in the first period is matched with someone who has “defect” in his or her list. 
This was not supposed to happen. But if Player 1 refuses to play in the first period, he 
or she is randomly rematched in Period 2, and cannot know what the rest of the popu-
lation looks like given that one person deviated from the candidate equilibrium strat-
egy. In Kreps and Wilson (1982a, 1982b), sequential equilibrium was developed to tie 
down beliefs about the type of a single opponent who deviates from the equilibrium 
path. In Conley and Neilson (2009), pregame perfect equilibrium was developed to tie 
down beliefs about the lists of everyone else when one player deviates from the equi-
librium path.

Adding play before the prisoners’ dilemma is one way to get cooperation. Adding 
play afterward is another. This route is explored by List, Neilson, and Price (2009), 
who allow for the existence of a postgame whose details are unknown to the modeler. 
In particular, participants in the finitely repeated prisoners’ dilemma may or may not 
have further interactions, unobserved by the modeler or experimenter, after the last 
period of the prisoners’ dilemma. If they have further interactions, the unobserved 
future provides an opportunity for punishment for any deviations in the observed pris-
oners’ dilemma. List et al. provide an equilibrium concept, termed post-game perfec-
tion, which uses beliefs about future, unobserved punishment opportunities.

Post-game perfection implies the existence of a testable hypothesis regarding 
behavior in a finitely repeated prisoners’ dilemma. If participants face future interac-
tions, they can sustain cooperation all the way through the last period of the finitely 
repeated game. If they do not face future interactions, they cannot. List et al. (2009) 
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run a field experiment in which some groups are known to have future interactions and 
some groups have outsiders who cannot be punished after the game ends. The insider-
only groups sustain cooperation throughout the experiment, but cooperation unravels 
in the outsider groups. This evidence suggests that postgame considerations matter 
and that models, and equilibrium concepts, should include them. Future research can 
look at ways to impart structure on the postgame beliefs.

Conclusions
The goal of this article was to show that the contribution of behavioral economics is 
more than just the questioning of the standard maximization models and the call for a 
new paradigm. Instead, behavioral economics has spun off many critical contributions 
to economic theory. This article illustrated that point by discussing one stubborn fact, 
that people tend to cooperate in the finitely repeated prisoners’ dilemma, a stubborn 
fact that led to new ways to think about games and new ways to solve them. Yet this 
is just one example, and behavioral economics has led to important theoretical advances 
in the modeling of behavior toward risk, contingent valuation, and many other areas 
of economics. The advances of behavioral economics, and the importance of the exist-
ing paradigm, do not just arise from the experimentalists clever enough to generate 
evidence violating existing theories. Instead, a crucial contribution of behavioral eco-
nomics comes from those theorists clever enough to devise models that accommodate 
the new evidence, especially when those new theories provide spillovers to areas beyond 
the simple games tested in the laboratory.
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Note

1. The ISI Web of Knowledge lists the following citation numbers: Benoit and Krishna 
(1985)—118; Fudenberg and Maskin (1986)—559; Geanakoplos et al. (1989)—107; Kandori 
(1992)—190; Kreps et al. (1982)—541; Kreps and Wilson (1982a)—689; Kreps and Wilson 
(1982b)—743; McKelvey and Palfrey (1992)—156; McKelvey and Palfrey (1995)—238; 
Rabin (1993)—600. This falls just shy of 4,000 total citations for the 10 papers.

References

Benoit, J. P., & Krishna, V. (1985). Finitely repeated games. Econometrica, 53, 905-922.
Conley, J. P., & Neilson, W. (2009). Endogenous games and equilibrium adoption of social 

norms and ethical constraints. Games and Economic Behavior, 66, 761-774.



986  American Behavioral Scientist 55(8)

Fudenberg, D., & Maskin, E. (1986). The folk theorem in repeated games with discounting or 
with incomplete information. Econometrica, 54, 533-554.

Geanakoplos, J., Pearce, D., & Stacchetti, E. (1989). Psychological games and sequential rationality. 
Games and Economic Behavior, 1, 60-79.

Kandori, M. (1992). Social norms and community enforcement. Review of Economic Studies, 
59, 63-80.

Kreps, D. M., Milgrom, P., Roberts, J., & Wilson, R. (1982). Rational cooperation in the finitely 
repeated prisoners’ dilemma. Journal of Economic Theory, 27, 245-252.

Kreps, D. M., & Wilson, R. (1982a). Reputation and imperfect information. Journal of Eco-
nomic Theory, 27, 253-279.

Kreps, D. M., & Wilson, R. (1982b). Sequential equilibria. Econometrica, 50, 863-894.
List, J., Neilson, W., & Price, M. (2009). The effects of group membership in a strategic environ-

ment: Evidence from the field. Manuscript, University of Tennessee, Knoxville.
McKelvey, R. D., & Palfrey, T. R. (1992). An experimental study of the centipede game. Econo-

metrica, 60, 803-836.
McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal-form games. 

Games and Economic Behavior, 1, 6-38.
Rabin, M. (1993). Incorporating fairness into game theory and economics. American Economic 

Review, 83, 1281-1302.
Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, 50, 97-109.
Sally, D. (1995). Conversation and cooperation in social dilemmas: A meta-analysis of experi-

ments from 1958 to 1992. Rationality and Society, 7, 58-92.

Bio

William S. Neilson holds the J. Fred Holly Chair of Excellence and is a professor of economics 
at the University of Tennessee, Knoxville. He is currently editor-in-chief of the Journal of 
Economic Behavior & Organization.


