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In order to accommodate recent experimental evidence which questions the validity of the 
fanning out hypothesis, a mixed fan hypothesis is proposed. The hypothesis combines fanning 
out for the less-preferred region of probability triangles with fanning in for the more preferred 
region, and is defined over general probability spaces. The relevance of fanning hypotheses for 
economic analysis is illustrated with an asset demand example, and a new method for testing for 
fanning behavior is proposed. 

1. Introduction 

Over the past decade or so researchers have proposed weaker alternatives 
to the expected utility model because the expected utility model is violated 
by certain empirical evidence. ’ The new models and new behavioral 
hypotheses which have been suggested have implications for the actions of 
economic agents. It is the purpose of this paper to construct a new 
behavioral hypothesis based on new experimental evidence [Battalio et al. 
(1990), Conlisk (1989) and Sopher and Gigliotti (1990)], and to examine its 
effect on behavior. The construction will be done in a simple decision 
framework based on the work of Dekel (1986). Initially, attention will be 
restricted to a single probability triangle (that is, the set of lotteries with only 
three possible outcomes) because most of the available evidence concerns 
behavior within single probability triangles. The analysis will then be 
extended to a more general probability space. 

Dekel’s implicit expected utility model is used for two reasons.2 First, 
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since it is weaker than the expected utility model, one can regard the 
expected utility model as a particular behavioral hypothesis applied to the 
implicit expected utility model. Second, the nature of the model allows 
fanning effects to be isolated from other violations of expected utility. The 
model also provides an uncomplicated generalization of the expected utility 
model when used in the probability triangle: It entails replacing a single 
value with a function. 

One drawback with working in the probability triangle is the restrictive- 
ness of the set of problems which can be discussed.j The most interesting 
asset demand problems, for example, require larger probability spaces. 
However, the experimental studies of Battalio et al. (1990) Camerer 
(1989a, b), Conlisk (1989), Harless (1991) and Sopher and Gigliotti (1990) all 
pertain to probability triangles, and so any behavioral hypothesis proposed 
as an alternative to the expected utility hypothesis must be compatible with 
the observed behavior in probability triangles. 

To accommodate the recent experimental evidence, a mixed fan hypothesis 
will be proposed as an alternative to both the expected utility hypothesis and 
the fanning out hypothesis [Machina (1982)]. Fanning out implies a 
particular pattern of indifference curves in the probability triangle, as will be 
shown below, and the hypothesis states that first order stochastically 
dominating shifts make utility functions more risk averse at each outcome. 
The mixed fan hypothesis combines fanning out for the less-preferred region 
of the triangle with fanning in for the more-preferred region. Section 2 
reviews the implicit expected utility model for the probability triangle and 
the general probability space, discusses the evidence and proposes a mixed 
fan hypothesis for probability triangles. Section 3 extends the mixed fan 
hypothesis to the general probability space, shows that it generates the 
desired behavior for probability triangles, and gives a behavioral interpre- 
tation. In section 4 attention is turned to the impact of fanning properties on 
economic behavior. Situations exist in which fanning properties provide 
different predictions from the expected utility model, and a specific asset 
demand example is given. The paper concludes in section 5 with the proposal 
of a new experimental procedure for determining fanning properties. The 
procedure is based on the BDM mechansim for eliciting certainty equivalents 
of lotteries [Becker et al. (1964)]. 

2. The model and evidence 

Let O[O, M] be the space of probability distributions over [0, M] endowed 
with the topology of weak convergence, as in Machina (1982). It will be 
assumed that the decision maker maximizes implicit expected utility, as in 

%ee Neilson (1990). 
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Dekel (1986) so that there exists an implicit utility function u(x,u) increasing 
in x with ~(0, v) =0 and u(M, v) = 1 for all u, and the individual’s preference 
function V(F) is given by the solution to the implicit equation 

u = f u(x, u) dF(x). (1) 

It will be assumed throughout that I/ is continuously Frechet differentiable,4 

and we will call the level V(F) the ‘preference value’ of the 
distribution F. An implicit expected utility maximizer satisfies the expected 
utility hypothesis if u(x,u) is a constant function of u for all x. 

Since the preference value is an argument of the utility function IJ, then for 
fixed v, u(x,u) can be interpreted as a ‘local’ utility function. Changes in the 
probability distribution which make the individual better or worse off cause 
changes in u, and therefore change the shape of the local utility function. On 
the other hand, changes in F which leave the individual indifferent do not 
change the shape of the local utility function. The simplest way to interpret 
(l), then, is that there is a different local utility function corresponding to 
each indifference set, and the individual maximizes expected local utility. 

One particular subset of D[O, M] which is convenient for comparing 
various behavioral hypotheses is the set of three-outcome lotteries. Let 
0 5x1 <x2 <x3 5 M, and consider the set of lotteries with support in 
{x,,x2,x3}. These lotteries can be represented by triples of the form 
(pi, p2, p3) where pi + pZ + p3 = 1. Using the transformation p2 = 1 -pi - p3, 

the set of lotteries can be represented in (pl,p3) space by the set {(p1,p3)1 

p1 +p3 5 l}, which forms a triangle with vertices at the origin, (0, l), and 
(l,O), as in fig. 1. An implicit expected utility maximizer makes choices over 
lotteries in probability triangles by maximizing V(p), where V(p) solves 
u=cpiu(xi, u). It is straightforward to show that implicit expected utility 
preferences generate indifference sets which are straight lines in (p1,p3) space 
and have slope p(u) = [u(x,, u) - u(x,, u)]/[ ( u x3, u) - u(x,, u)]. If the expected 
utility hypothesis holds, then p(u) is constant, and so indifference lines must 
be parallel. 

The most frequently cited violation of expected utility theory is the Allais 
Paradox. Decision makers are asked to make choices in two pairs of 
lotteries, and all four lotteries involve the payoffs $0, $1 million, and $5 
million. Letting the triple (p$,,, pIIM, ps5M ) denote the probabilities on the 
payoffs SO, $1 million and $5 million, respectively, lottery A can be written as 
(0, 1,0) and lottery B as (0.01, 0.89, 0.10). In the other pair, lottery C is (0.89, 
0.11, 0) and lottery D is (0.9, 0, 0.1). The commonly observed modal choice 
pair is A over B and D over C. Expected utility theory predicts that the 

4Dekel (1986) proves that implicit expected utility preferences need not be smooth, and so this 
is an additional, though weak, assumption on preferences. 
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Fig. 1. An implicit expected utility indifference map. 

choice pair must be either A and C if O.lu($5M)-0.11u($lM)+0.01u($0)<0, 
or B and D if O.lu($5M)-0.1lu($lM)+0.01u($0)>0. The empirical evidence 
violates the expected utility hypothesis. 

The four lotteries of the Allais Paradox are shown in the probability 
triangle in tig. 2 (not to scale), where x1 =$O, x2 =$l million, and x3 =$5 
million. The four points form a parallelogram, and therefore if preferences 
satisfy the expected utility hypothesis, so that indifference curves are parallel 
straight lines, the individual must prefer either A and C or B and D. The 
modal choice pair is A and D, however, and so parallel indifference lines 
cannot describe preferences. An indifference map which chooses lotteries A 
and D is shown in fig. 2, and the indifference lines fan out from the origin. 
The Allais Paradox and other, similar, evidence has led to the development 
of the fanning out hypothesis for probability triangles, which states, in terms 
of the implicit expected utility model, that ,u(v) is an increasing function. If 
p(u) is increasing, then movements in the direction of increasing preference 
make indifference lines steeper. 

Battalio et al. (1990) ran an experiment to test the fanning out hypothesis 
in the upper left corner of the probability triangle. The Allais Paradox, and 
most other tests of the expected utility hypothesis, had used the lower right 
corner of the triangle to get violations of independence, and the upper left 
corner had not been investigated. Battalio et al.‘s evidence violates both the 
expected hypothesis and the fanning out hypothesis. One experiment 
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Fig. 2. The Allais lotteries and fanning out. 

required subjects to make choices in two pairs of lotteries. Using triples of 
the form (psO, plsls, ps2,), lottery A can be written as (0.1, 0.9, 0), B as (0.28, 0, 
0.72) C as (0.06, 0.2, 0.74) and D as (0.1, 0, 0.9). Expected utility would 
predict either the choice of A and C (if 0.72~($27)-0.9u($18)+0.18u(0) ~0) 
or B and D (if 0.72@27)-0.9u($18)+0.18u(0)>0). Choosing B and C would 
suggest fanning out. Of the 36 subjects in this experiment, 6 chose A and C, 
10 chose B and D, 4 chose B and C, and 16 chose A and D. The modal 
choice is inconsistent with both expected utility theory and the fanning out 
hypothesis. 

Conlisk (1989) finds a similar pattern by testing a different version of the 
Allais Paradox. The payoffs remain the same ($0, $1 million, and $5 million) 
and lotteries A and B are the same as in the Allais Paradox, but lotteries C 
and D are shifted from the lower right corner of the triangle to the upper left. 
Specifically, C is (0.01, 0.11, 0.88) and D is (0.02, 0, 0.98). 45% of the subjects 
violated expected utility theory, and 82% of those also violated the fanning 
out hypothesis, that is, they chose lotteries A and D.5 Sopher and Gigliotti 
(1990) performed almost the same test, but with C=(O, 0.11, 0.89) and 
D=(O.Ol, 0, 0.99) and found that 45% of the subjects violated expected 
utility theory, with 74% of those violating fanning out. 

‘Strictly speaking, Conlisk’s results, and those of Battalio et al. can only reject the joint 
hypothesis of betweenness and fanning out, which is the joint hypothesis being considered in this 
paper. 
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The new experimental evidence is implied by a fanning in hypothesis for 
behavior in probability triangles, which simply asserts that indifference lines 
fan in from the origin, or, alternatively, that p(u) is a decreasing function. 
Movements into the better-than set cause indifference lines to become flatter. 
In Battalio et al’s experiment outlined above, the fanning in hypothesis 
explained 44% of the subjects’ choices, and 80% of the violations of expected 
utility theory. 

Combining the evidence, it appears that preferences satisfy the fanning out 
hypothesis in the lower right corner of the triangle, and the fanning in 
hypothesis in the upper left corner. 6 The implicit expected utility model 
makes it convenient to construct a behavioral hypothesis which combines 
these two patterns of behavior. 

Mixed fan hypothesis (triangle version). There exists a GE(O, 1) such that p(v) 
is increasing for v < U and decreasing for v > V. 

Since the lower right corner of the probability triangle corresponds to low 
values of u and the upper left corner corresponds to high values of u, we need 
p(u) to be increasing for low preference values and decreasing for high 
preference values.’ An example of preferences which satisfy the mixed fan 
hypothesis is shown in fig. 3. 

3. Extension to D[O,M] 

Let r(x, u) = - a1 1(x, u)/u,(x, u), the Arrow-Pratt measure of absolute risk 
aversion8 In Pratt (1964, theorem 1) it is demonstrated that the slope of an 
expected utility maximizer’s indifference line in a probability triangle is 
related to r(x), where the second argument is suppressed because of the 
assumption of expected utility maximization. If u and U* are two utility 
functions, then the condition r*(x)zr(x) for all x is equivalent to the 
condition that [u*(x) - u*(w)]/[u*(z) -u*(y)] 2 [u(x) - u(w)]/[u(z) -u(y)] for 
all w <x Q<z. A straighforward application of this result is that u* must 
generate steeper indifference lines than u. 

Machina (1982, theorem 5) used this fact to find a behavioral hypothesis 
for general probability spaces which implies the triangle version of fanning 

‘The evidence in Camerer (1989a) does not reject the fanning out hypothesis, but neither does 
it reject fanning in for the northwest region of the triangle. One of the stylized facts with which 
Camerer (1989b) concludes his survey of recent experimental work is that the fanning out 
hypothesis is violated. 

‘If payoffs are losses instead of gains, then effects tend to be reversed [see, for example, 
Battalio et al. (1990)]. Consideration of losses would require nontrivial extensions to the theory 
being proposed here, and will not be discussed in this paper. 

‘For notational purposes, let f,( .;) denote the partial derivative off with respect to its ith 
argument, and let fij( ., .) denote the appropriate second partial derivative. 
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Fig. 3. An indifference map obeying the mixed fan hypotheses. 

out. Stated in conjunction with the implicit expected utility model used here, 
it states that r(x,u) is nondecreasing in v for all XE [0, M], and strictly 
increasing for some x in every interval. The fanning in hypothesis is similar 
with r(x, v) nonincreasing in u for all XE [0, M], and strictly decreasing for 
some x in every interval. These can be combined in the following hypothesis. 

Mixed fan hypothesis (general version). r(x, v) is concave in u for all x, and 
strictly concave for some x in every interval. 

We wish to demonstrate that if the general version of mixed fanning holds, 
then mixed fan behavior is exhibited in every triangle. An intermediate result 
is Proposition 1. 

Proposition 1. Let r(x,u), r,(x,v) and rz2(x, u) be continuous and bounded, If 
the mixed fan hypothesis holds, then for all 05x, <x2 <x3 5 M, p(u) is 
quasiconcave in 0. 

Proof. See appendix. 

Proposition 1 establishes that indifference lines in probability triangles will 
fit one of three patterns: Either p(u) is nondecreasing throughout the triangle; 
it is nonincreasing throughout the triangle; or it is nondecreasing for low 
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levels of v and nonincreasing for high levels of v. To get a mixed fan in every 
probability triangle, some additional assumptions are needed. The following 
notational convention and terminology are helpful. Let 6, be the degenerate 
distribution placing probability one on outcome x, and let the term 
‘increasing’ mean that the function is nondecreasing and strictly increasing in 
every interval, so that, for example, the fanning out hypothesis states that 
r(x, v) is increasing in v. 

Proposition 2. Suppose that all of the assumptions of Proposition 1 hold. If; 
for every XE [0, M], r(x,v) is increasing in v for v< V(6,) and decreasing in v 
for v> V(6.J then the triangle version of the mixed fhn hypothesis holds in 
every triangle. 

Proof. See appendix. 

The extra assumptions in Proposition 2 are only needed to match the 
general version of the mixed fan hypothesis to the evidence, which only 
involves probability triangles. They will not be used in the remainder of the 
paper. 

The various fanning hypotheses concern changes in the degree of risk 
aversion at specific outcomes. To interpret the different fanning hypotheses 
behaviorally, think of risk aversion at the outcome x as a ‘(consumption) 
good’, and think of first order stochastically dominating shifts as ‘increases in 
income’. The fanning out hypothesis states that risk aversion at x is a 
‘normal’ good, since first order stochastically dominating shifts make the 
individual more risk averse at every outcome. Similarly, fanning in states that 
risk aversion at x is an ‘inferior’ good. The mixed fan hypothesis states that 
risk aversion at x is normal for ‘low’ income levels and inferior for ‘high’ 
income levels, with the distinction between ‘low’ and ‘high’ depending on x. 

Looked at this way, the mixed fan hypothesis begins to make some sense. 
All ordinary consumer goods are normal at extremely low levels of income, 
since consumption must be zero when income is zero. Risk aversion is costly 
in the sense that the individual must be willing to give something up to 
avoid risks, and so one would expect risk aversion at positive outcomes to be 
a normal good at least at low levels of income. When income becomes 
sufficiently high, however, risk aversion becomes an inferior good. Proposi- 
tion 2 surmises that income becomes sufficiently high when the individual is 
able to consume outcome x with certainty, and that risk aversion at a higher 
outcome is ‘less inferior’ than risk aversion at a lower outcome. 

Other theoretical constructs can also accommodate mixed fanning in 
triangles. Gul (1990) shows that if preferences exhibit disappointment aver- 
sion, they they must also exhibit mixed fanning in every triangle. Chew’s 
(1985, 1989) semi-weighted utility theory can also accommodate the mixed 
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fan hypothesis. Since both models are based on stronger assumptions than 
those used here,’ the mixed fan hypothesis is still needed for use in more 
general settings. Furthermore, it is useful for analysis of some common 
economic problems, as demonstrated in the next section. 

4. An asset demand example 

The fanning hypotheses discussed above are based on evidence using 
pairwise choices, but they are also relevant for richer choice problems. Just 
as in the Allais Paradox, when there is a probability mixture of an event in 
which a decision matters and an event in which it does not, then a change in 
either the mixing probability or the wealth distribution in the second event 
can affect the individual’s choice. Therefore, one must be careful when 
modelling behavior when the expected utility hypotheses does not hold, 
because the choice variable is affected by occurrences which are independent 
of the choice. This is illustrated with a simple asset demand problem. 

Suppose that an individual must invest his pension money with a specific 
investment firm which sponsors a variety of mutual funds. The individual has 
freedom to allocate his money among the funds in any way he wishes. There 
is some probability p that the firm will go bankrupt, in which case the 
individual can only recover $R, which may depend on his contributions to 
the pension fund but not on their earnings. If the investor is an expected 
utility maximizer, then a change in p or R will not affect his portfolio 
decision. If, on the other hand, one of the fanning hypotheses holds, then 
changes in p or R do affect the individual’s investment decision. 

The normative rationale for the expected utility hypothesis holds here. If 
the firm happens to go bankrupt, then the individual’s portfolio decision is 
moot. If the firm does not go bankrupt, then the individual should choose 
his mutual fund portfolio so as to maximize his preference function 
conditional on the event that the firm remains solvent. Since the wealth 
distributions in these two events are independent, the individual should not 
let what happens in one event affect his decision in the other event. This 
rationale is denied by fanning behavior. 

Suppose that the individual has a choice between two mutual funds: A 
riskless one which yields a gross return of y and a risky one which yields a 
gross return of y+X where EC.21 20. If the individual has SW to invest in 
these two funds, the value of his portfolio is w(y+aZ), where CI is the share of 
w which is invested in the risky fund. Let F be the distribution of x. There is 
also a probability O<p< 1 that the firm will go bankrupt, in which case the 

% must be noted that GUI’S model is purposefully restrictive, so much so that risk aversion 
implies mixed fanning. 
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individual recovers $R. If the individual is an expected utility maximizer, 
then he chooses c( to maximize 

(1 -~)Su(w(y+ctx))dF(x)+~u(R). (2) 

The first order condition for maximization can be written 

j u’(w(y + ux))wx dF(x) =O. (3) 

Since the first order condition does not depend on p or R, the choice of tl is 
independent of p and R. 

Now suppose that the individual is an implicit expected utility maximizer. 
Let G( .,a) be the distribution of the random wealth variable w(y+aZ), and 
let K( ., cl,p, R) be the distribution function for the probability mixture 
(1 -p)G+p&. Then the individual chooses !_x to maximize 

u-P$4w(Y+~x)~ v(Kt.9 a, P, RN1 W4 +puL-R, v(K( .> a, P, RHI. (4) 

The first condition for maximization” can be written 

lu1 CW(Y + ~4, V(K( ., u*, P, RN1 wx Wx) =O, (5) 

and the second order condition for maximization is that V(K( ., a,p, R)) is 
strictly quasiconcave in CL. In (5) the choice of c1 depends on the implicit 
utility function under consideration, which in turn depends on p and R. 

To study choice behavior, note that by Arrow (1974) and Pratt (1964), if 
one utility function has a higher Arrow-Pratt measure of risk aversion than 
another at every wealth level, then the first utility function will choose a 
smaller c( than the second one. Therefore, if the individual satisfies the 
fanning out hypothesis, then as p decreases or R increases the demand for 
the risky fund decreases. This is because shifts in K which make the 
individual better off make the individual more risk averse. Similarly, if the 
individual satisfies the fanning in hypothesis, then decreases in p or in 
increases in R cause the demand for the risky fund to increase. 

Mixed fanning behavior is more complicated. The idea behind the mixed 
fanning hypothesis is fanning out for low preference values and fanning in for 
high preference values. Consequently, if V(K) is low, then fanning out 
dominates, and we would expect increases in R or decreases in p to cause 
demand for the risky fund to decline, and if V(K) is high, demand for the 
risky fund will increase. These arguments are made formal below. 

‘%ke Machina [1982, eq. (S)]. 
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Proposition 3. Suppose that u,(z,v)>O for all v, and that V(K( ‘,u,p, R)) is 
strictly quasiconcave in a for all p, R. Let F( .) and p be given, and let R < w, 
then: 
(a) If the fanning out hypothesis holds, then a* is decreasing in R; 
(b) If the fanning in hypothesis holds, then a* is increasing in R; 
(c) Zf the mixed fan hypothesis holds, then a* is quasiconvex in R. 

Proof. See appendix. 

Proposition 4. Suppose that u,(z, v) ~0 for all v, and that V(K( ., a, p, R)) is 
strictly quasiconcave in a for all p, R. Let F( .) and R be given, and let R < w, 
then: 
(a) If the fanning out hypothesis holds, then a* is increasing in p; 
(b) If the fanning in hypothesis holds, then a* is decreasing in p; 
(c) If the mixed fan hypothesis holds, then a* is quasiconcave in p. 

Proof. Similar to the proof of Proposition 3 (see appendix). 

Regarding Proposition 3, two points can be made. First, if a* is 
quasiconvex in R, then there are three possibilities: Either a* is increasing for 
all R; decreasing for all R; or decreasing for R-CR and increasing for R > R 
for some recovery level I?. Turning points such as this will be common for 
mixed fanning behavior, as one might expect.” Second, the results still hold 
if R is replaced by a probability distribution which is independent of a. All 
that is required is a state in which the choice of a does not matter. Certainty 
is not necessary. 

5. Conclusion 

The mixed fan hypothesis presented above was designed to account for 
experimental data concerning choices in probability triangles. The hypothesis 
was then applied to an asset demand problem in a more general probability 
space. However, there is no data on fanning properties in larger probability 

spaces, and, in fact, experimental evidence suggests that fanning effects 
disappear in the interior of probability triangles [Harless (1991), Conlisk 
(1989), Camerer (1989b), Sopher and Gigliotti (199O)J. To see if fanning 
behavior arises in general probability spaces, a new test for fanning 
hypotheses is proposed. 

Becker et al. (1964) propose an incentive compatible means for determin- 
ing the certainty equivalent of a lottery 1. The subject specifies an amount of 
money c and then observes the realization y of a random variable J. If y2c 

“For example, see Proposition 2. 
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he receives y as his reward. If y CC, he receives a randon reward I having 
some given probability distribution F with support [x1,x,], The random 
variables 2 and J are assumed to be independent. It can be shown that an 
expected utility maximizer will choose c so that u(c) =j U(X) dF(x), that is, so 
that c is the certainty equivalent of 2. 

To understand the reason for this, let G be the distribution function for jj 
and [yl,y2] its support. Then the object is to choose c to maximize 

(6) 

An application of Leibniz’ rule yields the desired result. However, if the 
individual is an implicit expected utility maximizer, then the above expres- 
sion must change. Let H(c) denote the distribution function for the final 
lottery. Then the individual must choose c to maximize 

c x2 

!, j, u[x, v(ff(c))l Wx) dW)+)S u[y, V(H(c))l dG(y). 
c 

(7) 

Another application of Leibniz’ rule yields 

l u[x, V(H(c*))] dF(x)-u[c*, V(H(c*))] =O. (8) 

One feature of this result is that c* is still the certainty equivalent for the 
random variable 2 for the relevant implicit utility function. However, when 4; 
changes, H(c) changes for given c, and therefore u( ., H(c*)) changes. There- 
fore, a change in the alternative random variable 4; affects the certainty 
equivalent which is elicited. This suggests an alternative test for fanning 
properties.’ 2 

Begin with a random variable ji and use it to determine the certainty 
equivalent ci of 2. Then select another random variable j2 such that either 
Prob(jj2 zc,} < Prob( j, SC, }, or, alternatively, there is a first order stochas- 
tically dominating shift in the portion of the distribution which is above c,. 
Either of these (or a combination) will cause a first order stochastically 
dominating shift in the distribution of H(c,), which will make the individual 
better off. If the new elicited certainty equivalent c2 fc,, then there must be 
some type of fanning behavior. If c2 <cl, then the individual has become 
more risk averse, which is consistent with fanning out. If c2 >ci, then the 
evidence is consistent with fanning in. This mechanism would be able to 

“Safra et al. (1990) propose an essentially similar test, but for a different purpose 
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generate evidence of fanning behavior, if it exists, in spaces more useful than 
probability triangles. 

Appendix: Proofs of propositions 1, 2 and 3 

Proof‘ qf Proposition I. Using the fact that r(x, u) =d/dx[-log uI (x, o)], we 

get 

(A.1) 

for any w1 <w2. By the mean value theorem there exists 05x, <xz <xg 5 M 

such that 

~(x,,~~)--(x~,~)=~~(w~,u)(x~-x1) 

u(x,, Lj) -u(x,, 0) u1 (w,, U)(Xj -x,)’ 

so that 

By the mixed fan hypothesis, r22(x,u) 50, and, by Fleming 
Lemma 2), 

gz 7 r(x,u)dx=T r,,(x,u)dx~O. 
WI WI 

(A.4 

(A.31 

(1977, p. 237, 

(A.41 

Therefore, the left hand side of (A.3) is concave in u, and so the right hand 
side must be concave in v, which implies that log,u(u) is quasiconcave in u, 
and therefore p(u) is quasiconcave in u. 

Proof qf Proposition 2. Given 0 j x, < x2 <x3 5 M, it can be demonstrated 
that there exists a VE [V(S,,), V(S,,)] such that p(u) is increasing in v for ~517 
and decreasing in u for ~217. The assumptions of the proposition imply that 
r(x,u) is increasing in v at 1/(6,,) for all XE [x1,x3], and strictly increasing for 
some x in every interval. By Pratt (1964, Theorem l), [u(x,v)-u(w,u)]/ 
[u(z,v)-u(y,u)] is increasing in 0 at V(6,,) for all x1 Zw<xSy<zSx,. Let 
2=x3, x =y= x2, and w = x1. Then p(u) is increasing in v at I’(&,). A similar 
argument establishes that p(u) is decreasing in u at 1/(6,,). The desired result 
then follows from Proposition 1. 

Proof of Proposition 3. First show that V(K( ‘,cr,p,R)) is increasing in R for 
fixed c( and p. Note that if w> R, > R,, then for any given c1 and p, 
K( ., c(, p, R,) first order stochastically dominates K( ., c(, p, R2), and therefore 
K( ., “*(RI), p, R 1) first order stochastically dominates K( ., cr*(R,), p, R2). By 
Dekel (1986, Property l), V(K( ., cc*(R,), p, R,) > V(K( ., cr*(R,), p, R2)). 
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Next, note that o(* solves (5), and therefore it also solves 

since u,(z,v)>O. Let 

(A.61 

s U,(W(Y fQA4 wx --.I- .-- d$‘(x)= 

u, (WY, 4 s (A.7 

If a change in 2) causes 

~~~cw~Y+~~~, 

to increase for fixed a*, then E* must also increase because of the strict 
quasiconcavity of V(K( *)) in c(. 

If the fanning out hypothesis holds, then I is increasing in U. q(wy, 
w( y + ax), V) is increasing in u when x > 0 and decreasing in t) when x < 0, so 
x/q is decreasing in u, Therefore the expression in (A.8) is decreasing in u. 
Since u decreases when R decreases, the expression in (A.8) must be 
decreasing in R, which implies that E* must be decreasing in R. 

If the fanning in hypothesis holds, then Y is decreasing in u, so that 
~(wy, w( y + ctx), u) is decreasing in E’ when x >O and increasing when x<O. 
Therefore x/v, is increasing in u, and so is the expression in (A.8). Since u 
increases when R increases, the expression in (A.8) must be increasing in R, 
which implies that CL* must be increasing in R. 

If the mixed fan hypothesis holds, r is concave in Y. Q is quasiconcave in u 
when x >O and quasiconvex in u when x ~0, and therefore X/Q is quasicon- 
vex in u, which implies that the expression in (A.8) is quasiconvex in u. Since 
t’ is increasing in R, and since a* increases when the expression in (A.8) 
increases, cx” must be quasiconvex in R, 
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