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Abstract

This paper presents an axiomatic characterization of preferences which
allow ambiguity aversion. It is assumed that decision makers treat risky
lotteries and ambiguous lotteries separately, with preferences governed by
the von Neumann-Morgenstern axioms for risk and a variant of the Sav-
age axioms for ambiguity. These axioms imply that the decision maker
chooses among risks according to expected utility, forms subjective sec-
ond order probabilities over possible risks, and chooses among ambiguous
lotteries according to a modified version of subjective expected utility.
Furthermore, the decision maker has two utility functions, one govern-
ing attitudes toward risk and one governing attitudes toward ambiguity.
Conditions governing ambiguity aversion, comparative ambiguity aver-
sion, and decreasing ambiguity aversion are derived, and are similar to
the familiar Arrow-Pratt characterizations for risk aversion.

1 Introduction

One of the famous problems that highlights the difference between risk and
ambiguity is the two-color Ellsberg problem (see Ellsberg, 1961). A decision
maker is faced with two urns. The first urn contains 50 red and 50 yellow balls,
and the second contains 100 balls but in an unknown mixture of red and yellow.
The decision maker will be paid $10 if she can draw a yellow ball, and she
must choose which urn to draw from. The first earn generates a known payoff
distribution, so it is risky, but the second urn generates an unknown payoff
distribution, so it is ambiguous. Subjects systematically avoid the ambiguous
urn in favor of the risky urn, thereby creating the need for a model of choice
behavior which can accommodate the distinction between risk and ambiguity.
The subjective expected utility models of Savage (1954) and Anscombe and
Aumann (1963) begin this process, but both require preference to exhibit am-



biguity neutrality, and thus cannot accommodate the Ellsberg behavior. Re-
searchers have used two methods to generalize the subjective expected utility
model to allow for ambiguity aversion: nonadditive probabilities (Schmeidler,
1989; Gilboa, 1987; Sarin and Wakker, 1992) and second order probabilities
(Hazen, 1987; Segal, 1987). The advantages of the nonadditive probability
models are that they are based on axioms and that they can easily accommo-
date ambiguity aversion. An example of the latter occurs when the subjective
"probability" of drawing a red ball from the second urn above is less than 1/2,
and so is the "probability" of drawing a yellow ball. These models have also
generated a nice application to portfolio decision (Dow and Werlang, 1992).!
The biggest disadvantage of these models is that, since the "probabilities" do
not necessarily sum to one, a different "expectation" mechanism must be used.?
Models based on second order probabilities assume that when considering a
problem in which the probability distribution is unknown, the individual imag-
ines all of the possible probability distributions that could hold and forms a
probability distribution over possible probability distributions.® One advan-
tage of these models is that ambiguity attitudes can be discussed in much the
same way as risk attitudes, since the model is very similar to subjective expected
utility.

The purpose of this paper is to provide an axiomatic framework for models
of ambiguity aversion using second order probabilities. The primitives for this
model are the horse lotteries and roulette lotteries of Anscombe and Aumann,
but the axioms are similar to Savage’s axioms over acts.? The resulting model
has three parts. First, the individual has a preference function governing choice
toward risk, that is, choice over roulette lotteries, and this preference function
is termed an A-preference function. Second, the individual has a subjective
second order probability measure over possible roulette lotteries. Since each
roulette lottery is evaluated by an A-preference function, this is the same as
the individual having a subjective probability measure over A-preference val-
ues. Finally, the individual has a utility function over A-preference values,
and chooses among horse lotteries to maximize the subjective expected utility
of A-preference values. Ambiguity attitudes are governed by the shape of this
last utility function.

One of the key assumptions of this model is that horse lotteries and roulette
lotteries are treated separately by decision makers. Similar assumptions are

1For similar results using a model with second order probabilities, see Hazen and Lee
(1991).

2Instead of subjective expected utility, these models use Choquet expected utility, which is
similar to the rank-dependent expected utility models of behavior toward risk. See the three
nonadditive probability papers cited above, or Quiggin (1982), Yaari (1987), or Chew, Karni,
and Safra (1987).

3For the two-color Ellsberg problem, this entails forming a subjective probability distrib-
ution over the 101 possible combinations of red and yellow balls.

4Roulette lotteries are lotteries in which the probability distribution is known. Horse
lotteries are lotteries in which the distribution of outcomes is unknown and the outcomes are
roulette lotteries. Acts are lotteries in which the distribution of outcomes is unknown and
the outcomes are (monetary) payoffs.



made by Segal (1987), Hazen (1987), and Sarin and Wakker (1992). In the
framework used here, the individual faces a horse lottery whose outcomes are
roulette lotteries, or risks. If the individual forms subjective probabilities
over the possible roulette lotteries, then it is possible to reduce the compound
horse/roulette lottery to a single subjective probability distribution. This re-
duction returns us to the Anscombe and Aumann subjective expected utility
model, though, and therefore cannot accommodate ambiguity aversion. Through-
out the paper, then, it is necessary to assume that compound horse/roulette
lotteries are not reduced.” Because horse lotteries and roulette lotteries are
treated separately by decision makers, risk attitudes and ambiguity attitudes
can be different.’

This paper is very similar to a series of papers by Hazen (1987, 1989, and
Hazen and Lee, 1991). He uses a different set of axioms to produce a more
general preference function, which he calls subjective weighted linear utility. Its
relation to the model proposed here is the same as the relation between Chew’s
(1983) weighted utility model and the expected utility model of decisions toward
risk. Hazen (1989) shows how his model can be used to discuss ambiguity
aversion, and Hazen and Lee (1991) discuss comparative ambiguity aversion and
what they call increasing ambiguity aversion.” The main difference between the
work presented here and Hazen’s work is that here the subjective expected utility
functional form is retained (albeit in a modified form), thus simplifying the
extensions of results from the subjective expected utility literature to situations
in which decision makers are ambiguity averse.

In accordance with this goal, Section 2 presents an axiomatic characteri-
zation of the model, and Section 3 provides a characterization of ambiguity
aversion similar to Pratt’s (1964) characterization of risk aversion, including a
notion of comparative ambiguity aversion. A notion of decreasing (in wealth)
ambiguity aversion is more problematic, and it is investigated in Section 4. A
brief summary can be found in Section 5. Proofs are collected in the appendix.

2 Axioms

To model risk, let D denote the space of probability distributions over some
bounded interval X. The set D is the set of risky alternatives, which Anscombe
and Aumann (1963) refer to as roulette lotteries. To model ambiguity, let S
be the set of states of the world, with generic element s. Let ¥ be the set
of all subsets of S, with generic element F, which is interpreted as an event.

5For more on reduction of compound lotteries, see Segal (1990).

6There is some experimental evidence suggesting that risk attitudes and ambiguity atti-
tudes differ. See Cohen, Jaffray, and Said (1985), Curley, Yates, and Abrams (1986), and
Hogarth and Einhorn (1990).

"Their notion of increasing ambiguity aversion involves the individual’s response when
the outcomes are left the same but the probabilities of favorable outcomes increase. This
is different from the notion of increasing risk aversion, which involves changing both initial
wealth and the final outcomes, but not the probabilities, and it is also different from the
notion of decreasing ambiguity aversion discussed in Section 4 below.



Savage (1954) defines an act as a function from S to X. Anscombe and Aumann
define a horse lottery ¢ as a function from S to D, that is, ¢ assigns a probability
distribution to each state in S. The resolution of an act is an outcome in the
payoff space, while the resolution of a horse lottery is a roulette lottery, which
is a probability distribution over payoffs.

Schmeidler (1989) uses an axiomatic characterization of preferences over
horse and roulette lotteries to construct a model which allows ambiguity aver-
sion through nonadditive probabilities. Gilboa (1987) constructs a nonadditive
probability model using axioms on preferences over acts, and Sarin and Wakker
(1992) unify the two approaches. The approach used in this paper is similar
to Schmeidler’s because it is based on preferences over horse and roulette lot-
teries rather than acts, and it is similar to Sarin and Wakker’s in that it treats
preferences over the two types of lotteries separately.

Begin with behavior toward risk. Let F' and G denote elements of D, and let
> 4 be a preference relation defined on D. The following axioms are standard
for = 4.

A1: (A-Ordering) — =4 is complete, reflexive, and transitive.

A2: (Continuity) — The sets {G € D|G =4 F} and {G € D|F =4 G} are
closed.

A3: (Independence) — F' =4 F” if and only if aF 4+ (1 — )G =4 aF' +(1—
a)G for all G € D and all « € (0,1).

These axioms are the standard axioms for expected utility toward risk, and
if axioms (A1) - (A3) hold there is an expected utility representation of >4
(see, for example, Fishburn, 1970). In particular, there exists a utility function
u: X — R, unique up to affine transformations, such that F' =4 G if and only
if

/u(m)dF(x) > /u(:c)dG(:r) (1)

The three axioms above are more than are needed to guarantee the existence
of a functional representation of preferences. In fact, (Al) and (A2) are enough
(Debreu, 1954). If a functional representation of = 4 exists, let it be denoted
by V, and let v be a generic value of V.

Turning now to ambiguity, let ® denote the set of all horse lotteries defined
over D, and let =p denote the preference relation over ®. The goal is to
derive subjective probabilities over states from preferences over ®, and therefore
axioms similar to either the Savage axioms or the Anscombe-Aumann axioms
are needed. The axioms that follow are similar in form to the Savage axioms
as presented in Fishburn (1970), except that here the axioms apply to horse
lotteries, and in Savage’s work they apply to acts. In all cases, ¢, ¢, 1,9 € ®
are horse lotteries, F, F',G,G’' € D are roulette lotteries, and E, E’, E; € ¥ are
events. The horse lottery Ap is the degenerate lottery which yields F' in every
state, that is, Ap(s) = F for all s € S, and these lotteries are called constant
lotteries. The set E° is the complement of F in S, that is, S\ E. A set E
is null if ¢ ~p 1 whenever ¢(s) = ¥(s) for all s € E¢. Tt is said that ¢ = 9



on E if qﬁ( ) = (s) for all s € E. Tt is said that
only if qb =5 ' whenever ¢(s) = ¢'(s) for s € E, (s
#'(s) =¢'(s) for all s € E*.

¢ =g ¢ given E if and
) =1(s) for s € E, and

B1: (B-Ordering) — = p is complete, reflexive, and transitive.

B2: (Sure-thing principle) — If ¢ = ¢’ and ¢ = ¢’ on E, and ¢ = ¢ and
¢’ =1’ on E°, then ¢ =p 1 if and only if ¢' =p ¥

B3: (Eventwise monotonicity) — If F is not null and if ¢ = Ap and ¢ = Ag
on E, then ¢ >p 9 given E if and only if F =4 G.

B4: (Weak comparative probability) — Suppose that F =4 G, ¢ = Ap on
E, ¢ = Ag on E° 9 = Ap on E’, and 9 = Ag on E’°, and suppose that
F'=,G,¢ =Ap onE, ¢ =Ag on E°, ) = Ap on E’, and ¢’ = Ag on
E’®. Then ¢ =p 1 if and only if ¢’ =p 1.

B5: (Nondegeneracy) — F =4 G for some F,G € D.

B6: (Small event continuity) — If ¢ >p 9, for every F' € D there is a finite
partition of S such that for every E; in the partition, if ¢’ = Ap on E; and
¢ = ¢ on Ef then ¢’ =p ¢, and if v/ = Ap on E; and ¢' = ¢ on E¢ then
b=

B7: (Uniform monotonicity) — For all £ € ¥ and for all F' € ¢(FE), if
¢ =p A given E, then ¢ =g ¢ given E. If Ap =p ¢ given F, then ¢ =g ¢
given F.

These axioms are the standard Savage axioms modified so that they govern
preferences over horse lotteries instead of preferences over acts. The main
difference between these axioms and Savage’s, then, is that here probability
distributions in D replace outcomes in X. A second modification is that in
Savage’s axioms, the preference ordering over outcomes in X is induced by
the preference ordering over constant acts. Here, the preference ordering over
roulette lotteries in D is kept separate, and axiom (B3) states that the preference
ordering over constant horse lotteries is consistent with the preference ordering
over D.

The axioms on preferences over ® do not impose any particular behavior
on preferences over D. For example, consider the sure-thing principle (axiom
(B2)). To apply this axiom to preference over D, suppose that the horse
lotteries ¢, ¢, 10,1’ € ® yield the following probability distributions in states
E,E€ €3, where F,G,H,I € D:

Q™ T
~ o~ xS

< e Se

The sure-thing principle states that ¢ >=pg 1 if and only if ¢’ =g ¢, that is,
preferences only depend on states in which the two horse lotteries being con-
sidered have different outcomes. This has the same spirit as the independence



axiom (axiom (A3)), but with one key difference. Here the mixture ¢ of F' and
H is not a probability mixture, and thus it is not in D. Consequently, axiom
(B2) does not imply axiom (A3), and thus (B1)-(B7) do not imply linearity of
preferences over D, as axioms (A1)-(A3) do. The only restriction that is made
is that (B3) guarantees that preferences on constant horse lotteries are identical
to preferences over the corresponding roulette lotteries.

The axioms governing > 4 and > g restrict the form of functions representing
preferences. This can be seen in the next theorem and its corollary.

Theorem 1 Assume that an individual has preferences = 4 over D and prefer-
ences =p over ®. If arioms (A1)-(A2) on =4 and axioms (B1)-(B7)on »p
on ® hold then there exists a function V : D — R, a probability measure
w:X — [0,1], and a function w : R — R such that, for all F;G € D, F =4 G
if and only if V(F) > V(G), and for all ¢, € ®, ¢ =p ¥ if and only if

[t = [wv @), ©)

Moreover, the function V is unique up to increasing transformations and for a
given specification of V' the function w is unique up to increasing affine trans-
formations.

Corollary 2 Assume that an individual has preferences =4 over D and pref-
erences =g over ®. If arioms (A1)-(A3) on =4 and axioms (B1)-(B7)on =g
on ® hold then there exists a function u : X — R, a probability measure
w:X — [0,1], and a function w : R — R such that, for all F;G € D, F =4 G
if and only if

/ w(@)dF(z) > / w(@)dG(z), (3)
and for all ¢, € ®, ¢ =g Y if and only if

([ woreon) a2 [o( [uwaweo) . @

Moreover, the function u is unique up to increasing affine transformations and
for a given specification of u the function w is unique up to increasing affine
transformations.

To keep these functions straight, the function u is referred to as an A-utility
function, V is referred to as an A-preference function, and w is referred to as a
B-utility function. The A-utility function u can be used to describe attitudes
toward risk, while the B-utility function w can be used to discuss attitudes
toward ambiguity, as shown in the next section. Finally, the preference function
in (4) is called an SEU? preference function, and preferences which satisfy (A1)-
(A3) and (B1)-(B7) are called SEU? preferences.

The proofs of Theorem 1 and its corollary are fairly straightforward. Ax-
ioms (Al) and (A2) together are equivalent to the existence of a continuous



A-preference function V representing >4 (Debreu, 1954). Substituting the A-
preference values V(F') for F and the "acts" V(¢) for ¢ into axioms (B1)-(B7)
yields the standard Savage axioms governing "acts" which are functions map-
ping states into A-preference outcomes.® Letting Y = V(D), these acts are
mappings from S into Y C R. Savage’s theorem then states that (B1)-(B7) are
equivalent to the existence of a probability measure p and a B-utility function
w satisfying (2). The addition of axiom (A3) makes the A-preference function
linear in the probabilities (see, for example Fishburn, 1970), and so there exists
an A-utility function u such that =4 is represented by (3).

Note that both von Neumann-Morgenstern’s expected utility and Savage’s
subjective expected utility are special cases of (4). Expected utility holds when
there is no ambiguity, that is, when p places probability one on a single state.
Subjective expected utility holds when all horse lotteries assign degenerate dis-
tributions in D to every state. More specifically, when ¢(s) is a degenerate
distribution for every s € S and every ¢ € @, let x(¢, s) denote the outcome
assigned probability one by ¢(s), and V(¢(s)) can be represented by z(o, s).
Preferences are then represented by [w(x(¢,s)du(s). In the terminology used
here, this is the case of ambiguity but no risk.

3 Ambiguity aversion

Suppose that preferences satisfy axioms (A1)-(A2) and (B1)-(B7), so that they
can be represented by the function W(¢) given by

W(e) = / w(V(6(5)))d(s). (5)

W is referred to as the B-preference function. Letting G(v; @, u, V') be the
subjective probability distribution over A-preference values generated by the
subjective probability measure p, the horse lottery ¢, and the A-preference
function V, (5) can be rewritten

Ay (51, V) = / w(0)dC(v; b, 1, V). (6)

The function A looks exactly like an expected utility preference function with
the utility function w, and therefore ambiguity aversion and comparative am-
biguity aversion can be analyzed in an analogous fashion to risk aversion and
comparative risk aversion in expected utility theory.

An individual is risk averse if, given the choice between a payoff distribution
in D and a degenerate distribution in D with the same mean, she prefers the de-
generate distribution. In (6) ambiguity is modeled as a probability distribution
over A-preference values, and there is no ambiguity when the distribution is de-

8The standard Savage axioms can be found in Savage (1954) or Fishburn (1970), for ex-
ample.



generate.” Analogously to the case of risk, an individual is said to be ambiguity
averse if, given the choice between a probability distribution over A-preference
values and a degenerate distribution with the same mean, she prefers the degen-
erate distribution. This is equivalent tot he concavity of the B-utility function
w, and it is also equivalent tot he individual being willing to pay a premium
to avoid the ambiguity.'® Here the premium takes the form of a reduction in
the A-preference value v, which can arise from two different mechanisms, both
of which have received attention in the experimental literature (see the survey
by Camerer and Weber, 1992). One mechanism involves a monetary payment
to avoid the ambiguity, and this is analogous to the usual risk premium from
the expected utility literature (see, for example, Pratt, 1964), with one modifi-
cation. The monetary payment must be chosen to generate the desired change
in v, and different functional specifications of the A-preference function V re-
sult in different monetary premia. The second mechanism involves a reduction
in the probability of a more favored payoff distribution (in D), and again the
magnitude of the probability reduction depends on the specification of V.

When the decision maker has SEU? preferences, the monetary ambiguity
premium can also be shown graphically, as in Figure 1. Suppose that the
decision maker has initial wealth zy and faces a horse lottery with only two
possible states. If the first state occurs she wins € > 0 with probability .25
and loses € with probability .75. If the second state occurs she wins € with
probability .75 and loses € with probability .25. The first quadrant of Figure 1
shows the expected utility of these two roulette lotteries, and these are labeled
EU; and EUs, respectively. The second quadrant shows the individual’s B-
utility function, which exhibits ambiguity aversion. The B-preference value of
the horse lottery lies somewhere on the segment between points P and @ in the
figure. Assume, for the sake of argument, that the subjective probability of
each state is .5. Given this, the subjective expected final wealth level is x.
The B-preference value lies at the midpoint of segment PQ), and the individual
is indifferent between facing the horse lottery and receiving A-preference value
v* for sure. This A-preference value corresponds to the individual making a
certain payment of a, and a is the monetary ambiguity premium.

The fact that the size of the monetary and probability premia depend on the
specification of V' means that to compare the degrees of ambiguity aversion of
two individuals, the two must have the same preferences over D, and the analysis
must use the same A-preference function for both.!! It is also necessary that
the two individuals have the same subjective probability measure p over states.
Given these assumptions, a straightforward application of Pratt (1964, Theorem
1) establishes the equivalence of the following conditions, where it is assumed
that wy, and wy are both twice differentiable:

9Note that there may still be risk even when there is no ambiguity, since a degenerate
distribution of A-preference values simply tells the A-preference value of the remaining roulette
lottery, and not what the final payoff is.

10Gimilar results can be found in Hazen (1989) and Hazen and Lee (1991).

' This is a common assumption in comparative multivariate risk aversion. See, for example,

Kihlstrom and Mirman (1974).
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Cl: wq(v) = p(we(v)) for some increasing concave function p(-).

C2: —wi(v)/wi(v) > —wj(v)/wh(v) for all v.

C3: Let 2(¢) = [vdG(v;¢,p, V). If v, and 7, solve wi(z(¢) — ;) =
Jwi(v)dG(v; ¢, p, V) and wa(z(¢) — v4) = [w2(v)dG(v; ¢, 1, V), respectively,
then v; > 7v,.

Because they are equivalent, any of these three conditions can be used as
a definition of "more ambiguity averse than." Consider (C3) first. The two
individuals share the same preference ordering of D, and they have the same sub-
jective probability measure p, but they have different B-utility functions. An
ambiguity premium is defined as the highest amount, measured in A-preference
value units, that an individual would be willing to give up to avoid some noise
in the distribution of A-preference values. Condition (C3) states that the more
ambiguity averse individual is the one who is willing to forego more A-preference
value units to eliminate ambiguity. Condition (C1) states that the more am-
biguity averse individual’s B-utility function is a concave transformation of the
less ambiguity avers individual’s, and (C2) states that the more ambiguity averse
individual’s B-utility function has a higher Arrow-Pratt measure than the less
ambiguity averse individual’s.



4 Decreasing ambiguity aversion

Many applications of the theory of risk use the notions of risk aversion and
decreasing risk aversion. For example, Sandmo (1971) shows that a risk averse
competitive firm facing a stochastic price variable reduces its output relative to
the level of output when the price is nonstochastic. Furthermore, if the firm
exhibits decreasing absolute risk aversion, a decrease in fixed cost causes an
increase in output. These same issues arise when the distribution of prices is
unknown. It is straightforward to show that an ambiguity averse firm reduces
its output when the price changes from being nonstochastic to being stochastic
but with an unknown distribution, and this result holds even if the ambiguity
averse firm is risk neutral. The second problem, examining the impact of the
change in fixed cost, requires a notion of decreasing ambiguity aversion.

Such a notion is problematic. Consider, for the moment, the case of a risk
averse SEU? decision maker with initial wealth z facing ambiguity €. The
individual forms a subjective distribution over possible risks ¢;, and each of
these risks has an expected utility EU(zo + ¢;). The individual then takes the
subjective expected B-utility of these A-preference values. What happens if
there is an increase in initial wealth to 7 > z¢? The individual presumably
forms the same subjective distribution over possible risks, but now the utility
function is flatter, so the distribution of A-preference values is compressed.
Even if the B-utility function w has a constant measure of ambiguity aversion,
the individual is willing to pay less than before to avoid the ambiguity.

The problem arises because the A-preference function at initial wealth zq
is different (locally) from the A-preference function at x;, and comparisons of
ambiguity aversion require that A-preferences be the same. Distributions of A-
preference values are the same at two wealth levels only when the A-preference
function is expected utility with a risk neutral utility function, otherwise there
is either compression or decompression of the A-preference values.!?  Con-
sequently, if the individual is risk neutral, it is possible to define notions of
constant, decreasing, and increasing ambiguity aversion. To do so, abuse no-
tation a little and let the distribution ¢(s) denote the probability distribution
of the change in wealth, and let V(¢(s), z) denote the A-preference value of the
distribution ¢(s) when initial wealth is . Finally, let G(v; ¢, z,u, V) denote
the subjective probability distribution over A-preference values generated by the
subjective probability measure p, the horse lottery ¢, the A-preference function
V', and initial wealth z.

Proposition 3 Assume that the individual has risk neutral SEU? preferences.
Then the following conditions are equivalent:

Di: —w"(v)/w'(v) is a decreasing function of v.
D2: Let 2(¢,x) = [vdG(v;d,x, 1, V). If v(z) solves w(z(¢,x) — ) =
Jw(v)dG(v; ¢, x, 1, V), then v(x) is decreasing.

12The same problem arises in the study of decreasing risk aversion in a multivariate setting,
as investigated by Kihlstrom and Mirman (1981), with roughly the same results.
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It is also possible to find corresponding conditions for constant and increasing
ambiguity aversion.

The reason for assuming risk neutrality in Proposition 3 is to avoid com-
pression of A-preference values when there is an increase in wealth. If we
want to find decreasing ambiguity aversion, however, this compression works in
the desired direction. Intuitively, decreasing ambiguity aversion means that as
wealth increases the individual is willing to pay less to avoid a given ambiguity,
and compression of A-preference values also reduces the amount the individual
is willing to pay to avoid ambiguity. This yields another characterization of
decreasing ambiguity aversion which does not rely on risk neutrality.

Proposition 4 Assume that the individual has risk averse SEU? preferences.
If —w" (v)/w'(v) is a decreasing function of v, then condition (D2) holds.

These two propositions establish (D2) as a definition of decreasing ambiguity
aversion.

These notions of decreasing ambiguity aversion can be used to address prob-
lems like that of a competitive firm facing an ambiguous price. If the ambigu-
ity averse firm exhibits decreasing ambiguity aversion under either of the above
characterizations, then by a straightforward modification of Sandmo’s proof it
can be shown that a decrease in fixed cost results in an increase in output.

5 Conclusion

By using second order probabilities, and by treating horse lotteries and roulette
lotteries separately, it is possible to characterize ambiguity aversion in much the
same way as risk aversion. If an individual satisfies the usual expected utility
axioms over roulette lotteries, then she behaves as an expected utility maximizer
in situations of pure risk, and risk attitudes are governed by the shape of her von
Neumann-Morgenstern utility function, which is termed an A-utility function
in this paper. If, in addition, she satisfies a modified version of the Savage
axioms over horse lotteries, then the individual forms a subjective probability
distribution over states, and possesses another utility function, termed a B-
utility function, which governs ambiguity attitudes. The existence of the B-
utility function, and the fact that it enters the decision process in the same way
as the von Neumann-Morgenstern utility function, makes it possible to extend
many of the results from the study of situations of pure risk to situations of
ambiguity.

A Appendix
Proof of Theorem 1. The existence of a function V which represents =4
is proved by Debreu (1954). Recall that a horse lottery ¢ assigns probability

distributions in D to states in S. Define k4(s) = V(¢(s)), let K denote the
set of all such kg, and let >='; be the preference ordering imposed on K by

11



the preference ordering »=p over ®. Axioms (B1)-(B7) imply the following
axioms on >z, where v is a real number, A, is a constant lottery in K yielding
preference value v, Y = V(D), and we use the notation that ks = v on E if
kg(s) =v for all s € E:

B1’: 5 is complete, reflexive, and transitive.

B2’: If Ky = Ky and Ky = Ky on E, and kg = Ky and Ky = Ky on B,
then kg =5 Ky if and only if Ky =5 Ky

B3’: If E is not null and if kK, = v and ky, = v’ on E, then kg =5 ky given
E if and only if v > /.

B4’: Suppose that v1 > va, kg = v1 on E, kg = v2 on E° Ky = v; on
E’, and Ky = vz on E’°, and suppose that vz > v4, Ky = vz on E, kg = vy
on E¢, ky = w3 on E', and Ky = vg on E'°. Then k¢ =5 ky if and only if
Ky =g Ky

B5’: v > v for some v,v' €Y.

B6’: If ky >'5 Ky, for every v € Y there is a finite partition of S such
that for every E; in the partition, if Ky = v on E; and kg = kg on Ef then
Ky >'g Ky, and if Ky = v on E; and Ky = Ky, on Ef then kg 5 Ky

B7: For all E € ¥ and for all v € ky(E), if Ky =5 A, given E, then
Kg =5 Ky given E. If A, ¥'5 kg given E, then ky =5 kg given E.

Axioms (B1’)-(B7’) are the usual Savage axioms for preferences on K, except
with the implicit assumption that preferences are monotone over outcomes. By
Savage’s theorem (see, for example, Fishburn, 1970, Theorem 14.1), there exists
a probability measure p on ¥ and a function w : R — R, unique up to increasing
affine transformations, such that k4 >3 Ky if and only if

[ wlrale)dnts) = [ wn(s)duts).
but k4(s) = V(¢(s)), which completes the proof.

Proof of Corollary 2. By Theorem 1 all that is left to prove is the linearity
of V, which follows from the usual expected utility theorem (see, for example,
Fishburn, 1970).

Proof of Proposition 3. Let 1 be the random variable given by n(¢, z, s) =
V(é(s),z) — z(¢,z), so that E[n] = 0 when expectations are taken using the
subjective probability measure p. Since the individual’s A-preferences are risk
neutral, 7 is constant in . The Proposition then follows from redefining (D2)
in terms of z and 7 and applying Pratt (1964, Theorem 1).

Proof of Proposition 4. Assume that (D2) does not hold, that is, assume
that there exists a horse lottery ¢ and initial wealth levels zy < x; such that
A(w0) < Y(1). Define n(g,a,5) = V(6(s),x) — 2(¢,), so that Eln] = 0
when expectations are taken using the subjective probability measure p. Since
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—w" (v)/w'(v) is a decreasing function of v, for vy(xg) < v(z1) it cannot be
the case that n(¢, zo, -) is either less risky than (in the sense of Rothschild and
Stiglitz, 1970) or the same as 7(¢, x1,-). Then there exists a pair of states s,
and s in the support of p such that

[V(¢(sa), w0) = V((sp), x0)| < [V((sa), 21) = V((s), 21)| -

But V(¢(s),z) = [u(z+y)d(¢(s)(y)), so this implies that there exist outcomes
Yo of @(sq) and yp, of ¢(sp) such that

[u(zo + Ya) — u(zo + yp)| < [u(z1 + ya) — w(z1 +wp)l,

which contradicts the assumption that u is concave.
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