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The Spatial/Item Response Theory (IRT) Model and Diagnostics for Estimated Ideal 
Points

To construct a latent measure of state preferences based on UN roll call votes, we use an 

item response theory (IRT) model (e.g., Jackman 2001; Clinton, Jackman, and Rivers 

2004). The IRT model is identical to the spatial voting model for roll call analysis. The 

spatial model assumes that countries vote for the location giving them greatest utilities 

with standard quadratic-loss utilities: 

and , where are zero-mean 

normal disturbances and || · || is the Euclidean norm. With a one-dimensional model, the 

roll call voting analysis is expressed as: 

                                                           (1)

                                     

                                             

, where  is a choice between a “Yes” position, , and a “No” position, , for each 

state i in each vote j. With the assumption of utility maximization, , 

. In this one-dimensional context, Equation (1) for  is a linear 

function of the unobserved ideal points Xi  with unknown parameters βj and αj. We 

assume . Xi  is a (n × 1) matrix of ideal points, βj is a (1 × m) matrix of 

discrimination parameters, and is αj an m-vector of intercepts. To identify ideal points, we 



assign uniform priors (1.0, -1.0) to the density  over the ideal points. These uniform priors 

result in ideal points located within the intervals of 1.0 and –1.0. In the mean time, to 

identify discrimination parameters, we assign normal priors with mean zeroes and the 

variance prior of 20. Since the variance prior is diffuse, it cannot dominate our estimators.  

To obtain these parameters, we use a hierarchical probit  model estimated by a 

Bayesian method. We utilize truncated normal sampling to operationalize the probit 

model (negative and positive infinity are operationalized as –10 and +10, respectively). 

Using Markov chain Monte Carlo (MCMC) methods, we generate a large number of 

samples from the joint posterior density of the parameters and obtain the summary 

statistics used for inference. We let the Gibbs sampler run for between 50,000 and 

500,000 iterations. The 10,000 samples from every 5th iteration in the last 50,000 

iterations (or the last 10,000 samples in some cases) were saved for inference.1 

To this end, we used the WINBUGS software program, an interactive windows 

version of the BUGS program for Bayesian analysis. This program (available from http://

www.mrc-bsu.cam.ac.uk/bugs/) allows complex statistical models to be estimated using 

MCMC techniques.

Table A.1 provides classification and discrimination statistics for each year of 

ideal point estimation based on UNGA roll call votes, for the binary scale ideal points 

used in Models 1 and 2 of the paper.

Table A.1. Model Fit Diagnostics: Classification and Discrimination by Year   
                           

Year Goodness of fit 
(%) a

Discrimination 
Rate (%)b

Year Goodness of fit 
(%) a 

Discrimination 
Rate (%) b

1946 86.78
[85.77, 87.66]

82.5 1975 96.15
[95.60, 96.67]

90.0

1947 88.65
[87.51, 89.71]

88.9 1976 99.16
[98.61, 99.64]

96.3

1948 90.04
[88.99, 90.97]

87.7 1977 97.59
[97.15, 97.94]

93.3

1949 89.53
[88.73, 90.35]

92.8 1978 95.92
[95.54, 96.34]

86.0

1 The decision to obtain samples was based on technical considerations. Given the long 
burin-in period, this method has no effect on the results.



1950 92.00
[91.01, 92.88]

93.3 1979 96.77
[96.47, 97.07]

98.5

1951 88.75
[85.81, 91.42]

83.3 1980 97.32
[97.00, 97.66]

92.0

1952 93.25
[92.32, 94.06]

91.7 1981 94.99
[94.61, 95.32]

82.3

1953 92.16
[90.88, 93.41]

95.0 1982 95.58
[95.28, 95.87]

92.3

1954 91.16
[89.74, 92.44]

87.5 1983 96.50
[96.20, 96.82]

88.9

1955 87.32
[85.77, 89.08]

95.8 1984 96.65
[96.47, 96.83]

87.9

1956 97.16
[96.61, 97.74]

100 1985 96.80
[96.58, 97.03]

88.7

1957 94.23
[93.54, 94.90]

97.5 1986 96.74
[96.49, 96.97]

88.9

1958 97.14
[96.37, 97.88]

96.0 1987 97.50
[97.18, 97.82]

91.9

1959 91.49
[90.78, 92.23]

100 1988 98.28
[97.88, 98.46]

94.7

1960 93.12
[92.61, 93.63]

100 1989 97.60
[97.29, 97.90]

96.3

1961 92.52
[92.05, 92.98]

97.6 1990 98.85
[98.55, 99.12]

95.5

1962 93.36
[92.75, 93.95]

100 1991 98.28
[97.85, 98.70]

100

1963 96.17
[95.34, 96.87]

100 1992 97.95
[97.45, 98.39] 

100

1965 95.38
[94.58, 96.16]

95.7 1993 97.33
[96.73, 97.88]

100

1966 92.97
[92.13, 93.82]

97.0 1994 97.15
[96.53, 97.69]

100

1967 93.61
[92.97, 94.23]

97.3 1995 97.28
[96.92, 97.60]

94.6

1968 91.91
[91.22, 92.60]

95.2 1996 97.53
[96.96, 98.04]

100

1969 91.17
[90.19, 92.10]

92.6 1997 96.81
[96.25, 97.30]

88.9

1970 94.87
[94.34, 95.36]

95.5 1998 97.21
[96.67, 97.73]

100

1971 94.24
[93.82, 94.63]

94.1 1999 97.37
[96.85, 97.85] 

95

1972 91.8
[91.25, 92.32]

80.4 2000 97.5
[97.01, 97.94]

100

1973 94.24
[93.65, 94.83]

93.2

1974 94.33
[93.88, 94.75]

88.1 Average 94.74 93.72

a. The percentage of correct predictions (PCP) of the model is used. The mean and its 
95 percentile values are reported.
b. The rate of discrimination shows whether a one-dimensional model is a reasonable 
fit to the data. Given relatively high rates of discrimination over the time period, it is 



safe to say that states’ voting behavior is well discriminated based on a one-
dimensional model.


