Stata Learning Module: A Sample Stata Session

This is from the Getting Started with Stata for Windows manual.

For this class we will use **auto.dta** shipped with Stata. If you wish to follow along, you must load this data. Launch Stata and choose **Open** from the **File** menu. Select the **auto.dta** file from the directory in which you installed Stata.

use c:\stata\auto, clear

```
(1978 Automobile Data)
```

The data that we loaded contains

. describe

Contains data obs: vars: size:	74 12	ata\auto.dta .6% of memory	free)	1978 Automobile Data 11 Sep 1998 10:08
<pre>1. make 2. price 3. mpg 4. rep78 5. hdroom 6. trunk 7. weight 8. length 9. turn 10. displ 11. gratio 12. foreign</pre>	str18 int int float int int int float byte	<pre>%8.0gc %8.0g %8.0g %6.1f %8.0g %8.0gc %8.0gc %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g</pre>	origin	Make and Model Price Mileage (mpg) Repair Record 1978 Headroom (in.) Trunk space (cu. ft.) Weight (lbs.) Length (in.) Turn Circle (ft.) Displacement (cu. in.) Gear Ratio Car type

Sorted by: foreign

The codebook command is a great tool for getting a quick overview of the variables in the data file. It produces a kind of electronic codebook from the data file. Have a look at what it produces below.

. codebook

Another useful command for getting a quick overview of a data file is the inspect command. Here is what the inspect command produces for the auto data file.

. inspect

Listing can be informative

The list command is useful for viewing observations. Here we look at **make mpg** for the first 10 observations.

. list make mpg in 1/10

	make	mpg
1.	AMC Concord	22
2.	AMC Pacer	17
3.	AMC Spirit	22
4.	Buick Century	20
5.	Buick Electra	15
6.	Buick LeSabre	18
7.	Buick Opel	26
8.	Buick Regal	20
9.	Buick Riviera	16
10.	Buick Skylark	19

. sort mpg

. list make mpg in 1/5

	make		mpg
1.	Linc.	Continental	12
2.	Linc.	Mark V	12
3.	Linc.	Versailles	14
4.	Merc.	XR-7	14
5.	Cad. I	Deville	14

Which 5 cars yield the highest gas mileage?

. list make mpg in -5/-1

	make	mpg
70.	Toyota Corolla	31
71.	Plym. Champ	34
72.	Subaru	35
73.	Datsun 210	35
74.	VW Diesel	41

< Descriptive statistics >

Generating Summary Statistics with summarize

For summary statistics, we can use the **summarize** command.

Question: Not being familiar with 1978 prices, what is the average price of a car in this data?

. summarize . summarize price

Variable	Obs	Mean	Std. Dev.	Min	Max
+					
price	74	6165.257	2949.496	3291	15906

Aside: **summarize** works like **list** without arguments it provides a summary of all of the data:

Question: what is the median MPG?

We can use the **detail** option (of the **summarize** command) to get more detailed summary statistics.

. summarize mpg, detail

	10,	mpg		
	Percentiles	Smallest		
1%	12	12		
5%	14	12		
10%	14	14	Obs	74
25%	18	14	Sum of Wgt.	74
50%	20		Mean	21.2973
		Largest	Std. Dev.	5.785503
75%	25	34		
90%	29	35	Variance	33.47205
95%	34	35	Skewness	.9487176
99%	41	41	Kurtosis	3.975005

Question: What is the average price of cars that are below and above the mean MPG?

. summarize price if mpg < 21.3

Variable	Obs	Mean	Std. Dev.	Min	Max
+					
price	43	7091.86	3425.019	3291	15906

. summarize price if mpg >= 21.3

Variable	Obs	Mean	Std. Dev.	Min	Max
	31	4879.968	1344.659	 3299	9735

Aside: if can be suffixed to any command. This is one of Stata's more useful features.

Descriptive statistics, making tables

The tabulate command is useful for obtaining frequency tables. *Problem: Obtain counts of the number of domestic and foreign cars.*

. tabulate foreign

Car type	Freq.	Percent	Cum.
Domestic Foreign	52 22	70.27 29.73	70.27 100.00
Total	74	100.00	

The **tab1** command can be used as a shortcut to request tables for a series of variables (instead of typing the **tabulate** command over and over again).

. tab1 rep78 foreign

-> tabulation of rep78

rep78	Freq.	Percent	Cum.
1 2 3 4 5	2 8 30 18 11	2.90 11.59 43.48 26.09 15.94	2.90 14.49 57.97 84.06 100.00
Total	69	100.00	
-> tabulatior	n of foreign		
foreign	Freq.	Percent	Cum.
0 1	52 22	70.27 29.73	70.27 100.00
Total	74	100.00	

To get mpg value separately for foreign and domestic, we could use the **summarize()** option as part of the tabulate command.

. tabulate foreign, summarize(mpg)

		mmary of mpg	
foreign	Mean	Std. Dev.	Freq.
0 1	+ 19.826923 24.772727	4.7432972 6.6111869	52 22
Total	21.297297	5.7855032	74

Descriptive statistics, correlation matrices

We can use the **correlate** command to get the correlations among variables. Let's look at the correlations among **mpg** and **weight**

Question: What is the correlation between MPG and weight of car?

. correlate mpg weight

(obs=74)

	mpg	weight
mpg weight	1.0000 -0.8072	1.0000

Problem: Compare the correlation for domestic and foreign cars.

. correlate mpg weight if foreign==0

	mpg	weight
mpg weight	1.0000 -0.8759	1.0000

. correlate mpg weight if foreign==1

(obs=22)

	mpg	weight
mpg weight	1.0000 -0.6829	1.0000

Note: We could have obtained this by typing by foreign: correlate mpg instead.

Descriptive statistics, correlation matrices, continued

Aside: We can produce correlation matrices containing as many variables as we wish.

```
. correlate mpg weight price weight length displ (obs=74)
```

	mpg	weight	price	weight	length	displ
mpg weight price weight length displ	1.0000 -0.8072 -0.4686 -0.8072 -0.7958 -0.7056	1.0000 0.5386 1.0000 0.9460 0.8949	1.0000 0.5386 0.4318 0.4949	1.0000 0.9460 0.8949	1.0000 0.8351	1.0000

Graphing data

Problem: We know the average MPG of domestic and foreign cars differs. We have learned that domestic and foreign cars differ in other ways as well, such as in frequency-of-repair record. We found a negative correlation of MPG and weight—as we would expect—but the correlation appears stronger for domestic cars. Examine, with an eye toward modeling, the relationship between MPG and weight. Begin with a graph.

. graph mpg weight

Typing graph y x draws a graph of y against x. The relationship, we note, is nonlinear.

Note: When you draw a graph, the Graph window appears, probably covering up your Results window. Click on the **Results** button to put your Results windows back on top. Want to see the graph again? Click on the **Graph** button.

Next, we draw separate graphs for foreign and domestic cars.

. sort foreign

. graph mpg weight, by(foreign) total

Syntax note: **by()** is on the right of the command, therefore **graph** did whatever it is that it does with the grouping information. What **graph** did is draw separate graphs for domestic and foreign cars in a single image. We have only two groups, but **graph** will allow any number—the individual graphs just get smaller. The **total** option added an overall graph to the image.

If we had placed the by in front, by foreign: graph mpg weight we would have obtained

separate graphs on separate screens for each value of foreign.

Analysis note: The relationship is not only nonlinear; the domestic-car relationship appears to differ from that of foreign cars.

Model estimation: linear regression

Restatement of problem: We are to model the relationship between MPG and weight.

Plan of attack: Based on the graphs, we judge the relationship nonlinear and will model MPG as a quadratic in weight. Also based on the graphs, we judge the relationship to be different for domestic and foreign cars. We will include an indicator (dummy) variable for foreign and evaluate afterwards whether this adequately describes the difference. Thus, we will estimate the model:

 $mpg = b_0 + b_1 * weight + b_2 * weight^2 + b_3 * foreign + e$

foreign is already a 0/1 variable, so we only need to create the weight-squared variable:

. gen wtsq = weight^2

. regress mpg weight wtsq foreign

Source	SS	df	MS		Number of obs = 74 F(3, 70) = 52.25
Model Residual	1689.15372 754.30574		.05124 757963		Prob > F = 0.0000 R-squared = 0.6913 Adj R-squared = 0.6781
Total	2443.45946	73 33.4	720474		Root MSE = 3.2827
mpg	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
weight wtsq foreign cons	0165729 1.59e-06 -2.2035 56.53884	.0039692 6.25e-07 1.059246 6.197383	-4.175 2.546 -2.080 9.123	0.000 0.013 0.041 0.000	02448920086567 3.45e-07 2.84e-06 -4.31610909003 44.17855 68.89913

Model estimation: linear regression, continued

Aside: Stata can estimate many kinds of models, including logistic regression, Cox proportional hazards, etc. Click on **Help**, choose **Search...**, and enter **estimation** for a complete list or look up estimation in the index of the *Stata Reference Manual*.

We interrupt this quotation to let you try search estimation for yourself.

Continuation of attack: We obtain the predicted values:

. predict mpghat

Comment: Be sure to read [U] 23 Estimation and post-estimation commands. There are a

number of features available to you after estimation—one is calculation of predicted values. **predict** just created a new variable called **mpghat** equal to

.0165729weight + 1.59*10^-6wtsq - 2.2035foreign + 56.53884

Model estimation: linear regression, continued

We can now graph the data and the predicted curve.

Continuation of attack: We just created **mpghat** with **predict**. We could graph the fit and data, but we want to evaluate the fit on the foreign and domestic data separately to determine if our shift parameter is adequate. Thus, we will draw the graphs separately:

. sort weight

. graph mpg mpghat weight if foreign==0, connect(.l) symbol(Oi)

. graph mpg mpghat weight if foreign==1, connect(.l) symbol(Oi)

graph mpg mpghat weight says to graph mpg vs. weight and mpghat vs. weight.

connect(.l) says do not connect the **mpg** vs. **weight** points—that is the '.'—but do connect (with straight lines) the **mpghat** vs. **weight** points—that is the 'I' (*el*). It is necessary to sort the data by the *x*-variable—in this case weight—before graphing so that the points are connected in the right order.

symbol(Oi) says use big circles for the **mpg** vs. **weight** points—that is the 'O' (capital "oh", not a zero)—but use the invisible symbol (no symbol at all) for the **mpghat** vs. **weight** points—that is the 'i'.

Model estimation: linear regression, continued

Problem: You show your results to an engineer. "No," he says. "It should take twice as much energy to move 2,000 pounds 1 mile compared to moving 1,000 pounds, and therefore twice as much gasoline. Miles per gallon is not a quadratic in weight, gallons per mile is a linear function of weight."

You go back to the computer:

```
. gen gpm = 1/mpg
```

- . label var gpm "Gallons per mile"
- . sort foreign
- . graph gpm weight, by(foreign) total

. regress gpm weight foreign

Source	SS	df	MS		Number of obs = $F(2, 71) =$	74 113.97
Model Residual	.009117618		558809		Prob > F = R-squared = Adj R-squared =	0.0000
Total	.011957628	73 .000	163803		Root MSE =	.00632
gpm	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
weight foreign cons	.0000163 .0062205 0007348	1.18e-06 .0019974 .0040199	13.743 3.114 -0.183	0.000 0.003 0.855	.0022379	.0000186 .0102032 .0072807

You find foreign cars in 1978 less efficient. Foreign cars may have yielded better gas mileage than domestic cars in 1978, but this was only because they were so light.

Summary of other commands

Assign a label to the datafile currently in memory . label data "1978 auto data"

Assign a label to the variable foreign

. label variable foreign "the origin of the car, foreign or domestic"

Create the value label foreignl and assign it to the variable foreign

. label define foreignl 0 "domestic car" 1 "foreign car"

. label values foreign foreignl

Create a new variable len_ft which is length divided by 12 . generate len ft = length / 12

Change values of an existing variable named len_ft

. replace len_ft = length / 12

recode mpg into mpg3, having 3 categories, 1 2 3 using generate and replace if

. generate mpg = .

```
. replace mpg3 = 1 if (mpg <=18)
```

- . replace mpg3 = 2 if (mpg >=19) & (mpg <=23)
- . replace mpg3 = 3 if (mpg >=24) & (mpg <.)

Recode mpg into mpg3a, having 3 categories, 1 2 3 using generate and recode.

```
. generate mpg3a = mpg
```

```
. recode mpg3a min/18=1 19/23=2 24/max=3
```

Recode mpg into mpgfd, having 2 categories, but using different cutoffs for foreign and domestic cars

```
. generate mpgfd = mpg
```

```
. recode mpgfd min/18=0 19/max=1 if foreign==0
```

. recode mpgfd min/24=0 25/max=1 if foreign==1

With generate and replace you can use + - for addition and subtraction you can use * / for multiplication and division you can use ^ for exponents (e.g. length^2) you can use () for controling order of operations

< Other operators and functions >

Logical operators used in Stata

not
egual
not equal
not equal
greater than
greater than or equal
less than
less than or equal
and
or

* Egen

egen stands for extended generate and is an extremely powerful command that has many options for creating new variables. Here is a list of some of the other options:

Egen Functions

count	number of non-missing vlaues
diff	compares variables, 1 if different, 0 otherwise
fill	fill with a pattern
group	creates a group id from a list of variables
iqr	interquartile range
ma	moving average
max	maximum value
mean	mean
median	median
min	minimum value
pctile	percentile
rank	rank
rmean	mean across variables
sd	standard deviation
std	standard scores
sum	sums

Some Estimation Procedures in Stata

anova	analysis of variance and covariance
arch	autoregressive conditional heterosce. family of estimators
arima	autoregressive integrated moving average models
bsqreg	quantile regression with bootstrapped standard errors
clogit	conditional logistic regression
cnreg	censored-normal regression
cnsreg	constrained linear regression
ereg	maximum-likelihood exponential distribution models
glm	generalized linear models
glogit	weighted least squares logit on grouped data
gprobit	weighted least squares probit on grouped data
ivreg	instrumental variable and two-stage least squares regression
Inormal	maximum-likelihood lognormal distribution models
logistic	logistic regression
logit	maximum-likelihood logit regression
mlogit	maximum-likelihood multinomial logit models
mvreg	multivariate regression
nbreg	maximum-likelihood negative binomial regression
nl	nonlinear least squares
ologit	maximum-likelihood ordered logit
oprobit	maximum-likelihood ordered probit
poisson	maximum-likelihood poisson regression
probit	maximum-likelihood probit estimation
qreg	quantile regression
reg3	three-stage least squares regression
regress	linear regression
rreg	robust regression using IRLS
sureg	seemingly unrelated regression
tobit	tobit regression
vwls	variance-weighted least squares regression
zinb	zero-inflated negative binomial model
zip	zero-inflated poisson models
tost &	predict are commands that can be used in conjuction with estimation procedures

test & **predict** are commands that can be used in conjuction with estimation procedures. There are too many combinations of estimation, **predict** and **test** to get into in this class, other than to say that they provide very powerful tools for researchers and are worth the time spent learning them.

Intro to Graphics

1.0 Stata commands in this unit

- . stem
- . graph
 - graph types histogram box bar
 - oneway
 - twoway
 - matrix
- . kdensity
- . pnorm
- rvfplot
- . rvpplot

2.0 Demonstration and Explanation

2.1 Stem-and-leaf Plots

- . use hsb2, clear
- . stem math, lines(2)

The **stem** command produces a stem-and-leaf diagram. The **lines(2)** option sets the output to two lines per digit, which in this case, makes the output a little cleaner.

2.2 The Graph Command

. graph math, histogram bin(11) normal

kdensity math, normal

The **graph** command produces many types of graphic plots. The **histogram** option naturally produces histograms. The **bin(11)** option indicates how many categories to break the data into. Eleven was chosen so as to be similar to the **stem** command above. The **kdensity** produces a type of a smoothed histogram. In both **histogram** and **kdensity**, the **normal** option superimposes a normal curve on the graph.

. sort prog

. graph math, box by(prog) total

. graph read math socst, box

The **box** option produces box-and-wisker plots. The **by(prog)** option produces a box plot for each level of the variable **prog**, but only if the data have been sorted on the **prog**. The total option produces a box plot for all the observations, across all level of **prog**. The second box plot example produces separate box plots for each of the variables listed.

. graph math, bar by(prog) means

. graph read math socst, bar means

The **bar** option produces vertical bar charts. The first bar chart looks at 'math' for each level of 'prog.' It is necessary for the data to be sorted by 'prog' which we did in the previous step. The **means** option produces bar graphs of means.

The second example produces a bar chart of means for the three variables listed after the **graph** command.

. graph math read science, oneway

The **oneway** option produces a one-dimensional frequency plot. Notice how easy it is to compare the frequency distributions to two or more variables simultaneously.

. graph math read, twoway

. graph math read, twoway oneway

. graph math read, twoway box

The **twoway** option produces a bivariate scatterplot. Three examples are given: 1) The scatterplot only, 2) the scatterplot along with oneway plots of the marginal distributions, 3) the scatterplot along with box plots of the marginal distributions.

. graph math read science ses, matrix half

The **matrix** option produces a bivaarite scatterplot for each of the variables listed. The **half** option suppresses the symmetric upper portion of the output, producing larger individual plots.

2.3 Normal Probability Plot

. pnorm math

The pnorm command produces a normal probability plot.

2.4 Some Regression Related Plots

. regress math read science ses

- . rvfplot, yline(0)
- . rvpplot read, yline(0)
- . rvpplot science, yline(0)
- . rvpplot ses, yline(0)

It is easy to create various residual plots using the **rv** commands. The **rvfplot** command produces a plot of the residuals vs the predicted values (fitted). The rvpplot command produces plots of redisuals vs independent variables (predictors). The **yline(0)** option produces a horizontal line at the values of zero on the y-axiz.

3.0 Try the commands on your own

- . use hsb2, clear
- . stem math, lines(2)
- . graph math, histogram bin(11) normal
- . sort prog
- . graph math, box by(prog) total
- . graph math read science, oneway
- . graph math read, twoway box
- . graph math read science ses, matrix half
- . pnorm math
- regress math read science ses
- . rvfplot, yline(0)
- . rvpplot read, yline(0)
- . rvpplot science, yline(0)
- . rvpplot ses, yline(0)

I do, I do

1.0 Stata commands in this unit

. **do**

2.0 Demonstration and Explanation

Sometimes you may want to use the same commands on more than one file but you don't want to have to type them in more than once. Other times its easier to collect all of your Stata commands together in one place and do all at once rather than one at a time. The do-file allows you to place commands in a file and run them all at once. Any command that you can type in on the command line can be placed in a do-file.

2.1 Creating a do-file

Do-files are created with the do-file editor or any other text editor. Any command which can be executed from the command line can be placed in a do-file. Here are some commands that could be placed in a do-file:

set more off cd A:\stata use hsb2, clear generate lang = read + write label variable lang "language score" tabulate lang tabulate lang female tabulate lang prog tabulate lang schtyp summarize lang, detail table female, contents(n lang mean lang sd lang) table prog, contents(n lang mean lang sd lang) table ses, contents(n lang mean lang sd lang) correlate lang math science socst regress lang math science female set more on Let's look at a do-file that contains these commands that is on our floppy disk. . cd A:\stata

. type hsbbatch.do

2.2 Running the do-file

. do hsbbatch The do command runs the do-file.

Web Notes

The Stata Class Notes and Stata Learning Modules pages are available on the World Wide Web by visiting ...

http://www.ats.ucla.edu/stat/stata/notes/_ or http://www.ats.ucla.edu/stat/stata/modules/_