CONTENTS

1 Preface 3
 1.1 About this tutorial .. 3
 1.2 Motivation for this tutorial 4
 1.3 Feedback and suggestions ... 5

2 Introduction 7
 2.1 Sphinx: Python Documentation Generator 7
 2.2 reStructured Text .. 8
 2.3 Latex Document Preparation System 8

3 Packages Installation 9
 3.1 Python Installation .. 9
 3.2 Sphinx Installation ... 9
 3.3 Latex Installation .. 10

4 Sphinx Configuration 11
 4.1 General HTML Configuration 11
 4.2 General LaTex Configuration 14
 4.3 Full conf.py Script ... 16
 4.4 General Documentation Generator Configuration 24
 4.5 Full docgen.py Script .. 27

5 reStructuredText Markup 31
 5.1 reStructuredText Primer ... 31
 5.2 Roles .. 55
 5.3 Directives ... 57

6 Publishing on Github 59
 6.1 Create reStructuredTexts 59
 6.2 Create Repository on Github 60
 6.3 Commit reStructuredTexts folder to Repository 60
 6.4 Setup Github Pages on Github 62
Welcome to my Sphinx github webpage tutorials! In those tutorials, you will learn how to use Sphinx to create .html and .pdf and how to hookup your Sphinx webpage to github. The PDF version can be downloaded from HERE.
Chinese proverb

Good tools are prerequisite to the successful execution of a job. – old Chinese proverb

1.1 About this tutorial

This document is a summary of my valuable experiences in using Python documentation Sphinx with Github webpage. The PDF version can be downloaded from HERE. You may download and distribute it. Please be aware, however, that the note contains typos as well as inaccurate or incorrect description.

In this repository, I try to use the detailed demo code and examples to show how to use Sphinx to generate the .html and .pdf documents and how to hookup them automatically on Github. If you find your work wasn’t cited in this note, please feel free to let me know.

Although I am by no means a python programming and Sphinx expert, I decided that it would be useful for me to share what I learned about Sphinx in the form of easy tutorials with detailed example. I hope those tutorials will be a valuable tool for your studies.

The tutorials assume that the reader has a preliminary knowledge of python programming, LaTex and Linux. And this document is generated automatically by using sphinx.

1.1.1 About the authors

- Wenqiang Feng
 – Data Scientist and PhD in Mathematics
 – University of Tennessee at Knoxville
 – Email: von198@gmail.com
• **Biography**

Wenqiang Feng is Data Scientist within DST’s Applied Analytics Group. Dr. Feng’s responsibilities include providing DST clients with access to cutting-edge skills and technologies, including Big Data analytic solutions, advanced analytic and data enhancement techniques and modeling.

Dr. Feng has deep analytic expertise in data mining, analytic systems, machine learning algorithms, business intelligence, and applying Big Data tools to strategically solve industry problems in a cross-functional business. Before joining DST, Dr. Feng was an IMA Data Science Fellow at The Institute for Mathematics and its Applications (IMA) at the University of Minnesota. While there, he helped startup companies make marketing decisions based on deep predictive analytics.

Dr. Feng graduated from University of Tennessee, Knoxville, with Ph.D. in Computational Mathematics and Master’s degree in Statistics. He also holds Master’s degree in Computational Mathematics from Missouri University of Science and Technology (MST) and Master’s degree in Applied Mathematics from the University of Science and Technology of China (USTC).

• **Declaration**

The work of Wenqiang Feng was supported by the IMA, while working at IMA. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the IMA, UTK and DST.

1.2 Motivation for this tutorial

Sphinx is an awesome Python documentation package, and it has excellent facilities for the documentation of software projects in a range of languages. I was impressed and attracted by Sphinx in the first using. And I found that:

• It supports several **popular output formats**: HTML (including Windows HTML Help), LaTeX (for printable PDF versions), ePub, Texinfo, manual pages, plain text.

• It has **easy publishing routes**: Github.

• It has **extensive cross-references**: semantic markup and automatic links for functions, classes, citations, glossary terms and similar pieces of information

• It has **hierarchical structure**: easy definition of a document tree, with automatic links to siblings, parents and children.

• It has **automatic indices**: general index as well as a language-specific module indices

• It has awesome **code handling**: automatic highlighting using the Pygments highlighter

• It has abundant **extensions**: automatic testing of code snippets, inclusion of docstrings from Python modules (API docs), and more
• It has abundant **contributed extensions**: more than 50 extensions contributed by users in a second repository; most of them installable from PyPI

1.3 Feedback and suggestions

Your comments and suggestions are highly appreciated. I am more than happy to receive corrections, suggestions or feedbacks through email (Wenqiang Feng: von198@gmail.com) for improvements.
Chinese proverb
If you only know yourself, but not your opponent, you may win or may lose. If you know neither yourself nor your enemy, you will always endanger yourself. – idiom, from Sunzi’s Art of War

2.1 Sphinx: Python Documentation Generator

The following descriptions are from Sphinx:

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg Brandl and licensed under the BSD license.

It was originally created for the Python documentation, and it has excellent facilities for the documentation of software projects in a range of languages. Of course, this site is also created from reStructuredText sources using Sphinx! The following features should be highlighted:

- **Output formats:** HTML (including Windows HTML Help), LaTeX (for printable PDF versions), ePub, Texinfo, manual pages, plain text
- **Extensive cross-references:** semantic markup and automatic links for functions, classes, citations, glossary terms and similar pieces of information
- **Hierarchical structure:** easy definition of a document tree, with automatic links to siblings, parents and children
- **Automatic indices:** general index as well as a language-specific module indices
- **Code handling:** automatic highlighting using the Pygments highlighter
- **Extensions:** automatic testing of code snippets, inclusion of docstrings from Python modules (API docs), and more
- **Contributed extensions:** more than 50 extensions contributed by users in a second repository; most of them installable from PyPI
Sphinx uses reStructuredText as its markup language, and many of its strengths come from the power and straightforwardness of reStructuredText and its parsing and translating suite, the Docutils.

2.2 reStructured Text

The following descriptions are from reStructuredText:

reStructuredText (RST, ReST, or reST) is a file format for textual data used primarily in the Python programming language community for technical documentation.

2.3 LaTex Document Preparation System

The following descriptions are from LaTex:

LaTeX (a shortening of Lamport Tex) is a document preparation system. When writing, the writer uses plain text as opposed to the formatted text found in WYSIWYG (“what you see is what you get”) word processors like Microsoft Word, LibreOffice Writer and Apple Pages.

LaTeX is widely used in academia for the communication and publication of scientific documents in many fields, including mathematics, statistics, computer science, engineering, chemistry, physics, economics, linguistics, quantitative psychology, philosophy, and political science.

More information can be get from LaTeX.
Chinese proverb

A journey of a thousand miles begins with a single step – old Chinese proverb

Warning: It’s been 10 years since I abandoned Windows operating systems. So I am a noob for Windows operating systems and I really do not know how to install some packages on Windows operating systems.

3.1 Python Installation

1. Install pip:

   ```bash
   sudo easy_install pip
   ```

2. Install python:

   ```bash
   pip install python
   ```

3.2 Sphinx Installation

```bash
pip install -U Sphinx
```
3.3 Latex Installation

You can download the MacTex from: https://www.tug.org/mactex/ and install it for Mac system. Or you can use the following command to install TexLive on Linux system:

```bash
sudo apt update && sudo apt install texlive-full
```
4.1 General HTML Configuration

4.1.1 General Environment Information

1. Sphinx extension

```python
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['sphinx.ext.autodoc',
              'sphinx.ext.todo',
              'sphinx.ext.doctest',
              'sphinx.ext.napoleon',
              'sphinx.ext.linkcode']

todo_include_todos = True
napoleon_google_docstring = False
napoleon_include_special_with_doc = False
```

2. Math formula support

```python
# We do it like this to support multiple sphinx version without having
# warning.
# Our buildbot consider warning as error.
try:
    from sphinx.ext import imgmath
```

(continues on next page)
3. Included and excluded folders options

```python
# Add any paths that contain templates here, relative to this directory.
templates_path = ['.templates']

# List of directories, relative to source directories, that shouldn't be searched for source files.
exclude_dirs = ['images', 'scripts', 'sandbox']
```

4. Image math formula preamble

```python
# If false, no module index is generated.
#latex_use_modindex = True

default_role = 'math'
pngmath_divpng_args = ['-gamma 1.5', '-D 110']
#pngmath_divpng_args = ['-gamma', '1.5', '-D', '110', '-bg', 'Transparent']
imgmath_latex_preamble = '\usepackage{amsmath}\\n' +
                        '\usepackage{mathtools}\\n' +
                        '\usepackage{amsfonts}\\n' +
                        '\usepackage{dsfont}\\n' +
                        '\def\Z{\mathbb{Z}}\\n' +
                        '\def\R{\mathbb{R}}\\n' +
                        '\def\bx{\mathbf{x}}\\n' +
                        '\def\X{\mathbf{X}}\\n' +
                        '\def\by{\mathbf{y}}\\n' +
                        '\def\Bbeta{\boldsymbol{\beta}}\\n' +
                        '\def\U{\mathbf{U}}\\n' +
                        '\def\V{\mathbf{V}}\\n' +
                        '\def\V1{\mathbf{1}}\\n' +
                        '\def\hU{\mathbf{\hat{U}}}\\n' +
                        '\def\hS{\mathbf{\hat{\Sigma}}}\\n' +
                        '\def\hV{\mathbf{\hat{V}}}\\n' +
                        '\def\hE{\mathbf{E}}\\n' +
```

(continues on next page)
4.1.2 General Project Information

1. The suffix of source filenames

```python
# The suffix of source filenames.
source_suffix = '.rst'
```

2. The master toctree document

```python
# The master toctree document.
master_doc = 'index'
```

3. General substitutions

```python
# General substitutions.
project = 'Sphinx with Github Webpages'
copyright = '2019, Wenqiang Feng'
```

4. Version and date format

```python
# We need this hokey-pokey because versioneer needs the current
directory to be the root of the project to work.
# The short X.Y version.
version = '1.00'
# The full version, including alpha/beta/rc tags.
release = '1.00'
```

There are two options for replacing |today|: either, you set today =
to some

(continues on next page)
non-false value, then it is used:
#today = '
Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['images']

If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
using the given strftime format.
html_last_updated_fmt = '%b %d, %Y'

If true, SmartyPants will be used to convert quotes and dashes to typographically correct entities.
html_use_smartypants = True

4.2 General LaTeX Configuration

4.2.1 General LaTeX Output Options

Options for LaTeX output

latex_elements = {
 # The paper size ('letter' or 'a4').
 #latex_paper_size = 'a4',

 # The font size ('10pt', '11pt' or '12pt').
 'pointsizes': '12pt',

 # Additional stuff for the LaTeX preamble.
 #latex_preamble = '',
}

Grouping the document tree into LaTeX files. List of tuples
{source start file, target name, title, author, document class

(continues on next page)
LaTeX preamble definitions

```latex
# Additional stuff for the LaTeX preamble.
latex_elements['preamble'] = '\usepackage{xcolor}'

\begin{itemize}
    \item \usepackage{amsmath}
    \item \usepackage{mathtools}
    \item \usepackage{amsfonts}
    \item \usepackage{amssymb}
    \item \usepackage{dsfont}
    \item \def\Z{\mathbb{Z}}
    \item \def\R{\mathbb{R}}
    \item \def\bX{\mathbf{X}}
    \item \def\X{\mathbf{X}}
    \item \def\By{\mathbf{y}}
    \item \def\Bbeta{\boldsymbol{\beta}}
    \item \def\bU{\mathbf{U}}
    \item \def\bV{\mathbf{V}}
    \item \def\V1{\mathds{1}}
    \item \def\hU{\mathbf{\hat{U}}}
    \item \def\hS{\mathbf{\hat{\Sigma}}}
    \item \def\hV{\mathbf{\hat{V}}}
    \item \def\E{\mathbf{E}}
    \item \def\F{\mathbf{F}}
    \item \def\x{\mathbf{x}}
    \item \def\h{\mathbf{h}}
    \item \def\v{\mathbf{v}}
    \item \def\nv{\mathbf{v}^\top}
    \item \def\nh{\mathbf{h}^\top}
    \item \def\s{\mathbf{s}}
    \item \def\b{\mathbf{b}}
    \item \def\c{\mathbf{c}}
    \item \def\W{\mathbf{W}}
\end{itemize}
```

(continues on next page)
4.3 Full conf.py Script

```python
# -*- coding: utf-8 -*-

# I heavily borrowed, modified and used the configuration in conf.py of Theano
# package project. I will keep all the comments from Theano team and the
# copyright of this file belongs to Theano team.
# reference:
#
# Theano repository: https://github.com/Theano/Theano
# conf.py: https://github.com/Theano/Theano/blob/master/doc/conf.py

# theano documentation build configuration file, created by
# sphinx-quickstart on Tue Oct 7 16:34:06 2008.
#
# This file is execfile()d with the current directory set to its containing
# directory.
#
# The contents of this file are pickled, so don't put values in the namespace
# that aren't pickleable (module imports are okay, they're removed automatically).
#
# All configuration values have a default value; values that are commented out
# serve to show the default value.
#
# If your extensions are in another directory, add it here. If the directory
# is relative to the documentation root, use os.path.abspath to make it absolute, like shown here.
# sys.path.append(os.path.abspath('some/directory'))
```

(continues on next page)
from __future__ import absolute_import, print_function, division
import os
import sys
theano_path = os.path.join(os.path.dirname(__file__), os.pardir)
sys.path.append(os.path.abspath(theano_path))
import versioneer

General configuration

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = ['sphinx.ext.autodoc',
 'sphinx.ext.todo',
 'sphinx.ext.doctest',
 'sphinx.ext.napoleon',
 'sphinx.ext.linkcode']

todo_include_todos = True
napoleon_google_docstring = False
napoleon_include_special_with_doc = False

We do it like this to support multiple sphinx version without having
warning. # Our buildbot consider warning as error.
try:
 from sphinx.ext import imgmath
 extensions.append('sphinx.ext.imgmath')
except ImportError:
 try:
 from sphinx.ext import pngmath
 extensions.append('sphinx.ext.pngmath')
 except ImportError:
 pass

Add any paths that contain templates here, relative to this
directory.
templates_path = ['.templates']

The suffix of source filenames.
source_suffix = '.rst'

(continues on next page)
The master toctree document.
master_doc = 'index'

General substitutions.
project = 'Sphinx with Github Webpages'
copyright = '2019, Wenqiang Feng'

The default replacements for |version| and |release|, also used in various
other places throughout the built documents.
#
We need this hokey-pokey because versioneer needs the current
directory to be the root of the project to work.
The short X.Y version.
version = '1.00'
The full version, including alpha/beta/rc tags.
release = '1.00'

There are two options for replacing |today|: either, you set today to some
non-false value, then it is used:
#today = ''
Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'

List of documents that shouldn't be included in the build.
#unused_docs = []

List of directories, relative to source directories, that shouldn't
be
searched for source files.
exclude_dirs = ['images', 'scripts', 'sandbox']

The reST default role (used for this markup: `text`) to use for all
documents.
#default_role = None

If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True

If true, the current module name will be prepended to all description
unit titles (such as .. function::).
#add_module_names = True

(continues on next page)
If true, sectionauthor and moduleauthor directives will be shown in the output. They are ignored by default.
#show_authors = False

The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

Options for HTML output

The style sheet to use for HTML and HTML Help pages. A file of that name must exist either in Sphinx' static/ path, or in one of the custom paths given in html_static_path.
#html_style = 'default.css'
html_theme = 'sphinxdoc'

Read the docs style:
if os.environ.get('READTHEDOCS') != 'True':
 try:
 import sphinx_rtd_theme
 except ImportError:
 pass # assume we have sphinx >= 1.3
 else:
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
 html_theme = 'sphinx_rtd_theme'

def setup(app):
 app.add_stylesheet("fix_rtd.css")

The name for this set of Sphinx documents. If None, it defaults to "<project> v<release> documentation".
#html_title = None

A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = None

The name of an image file (within the static path) to place at the top of
the sidebar.
#html_logo = 'images/theano_logo_allwhite_210x70.png'

The name of an image file (within the static path) to use as favicon of the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 pixels large.
#html_favicon = None

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['images']

If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
using the given strftime format.
html_last_updated_fmt = '%b %d, %Y'

If true, SmartyPants will be used to convert quotes and dashes to typographically correct entities.
html_use_smartypants = True

Custom sidebar templates, maps document names to template names.
html_sidebars = {'': []}

Additional templates that should be rendered to pages, maps page names to template names.
html_additional_pages = {}

If false, no module index is generated.
html_use_modindex = True

If false, no index is generated.
html_use_index = True

If true, the index is split into individual pages for each letter.
html_split_index = False

If true, the reST sources are included in the HTML build as _sources/<name>.
#html_copy_source = True

If true, an OpenSearch description file will be output, and all_pages will contain a <link> tag referring to it. The value of this option must be the base URL from which the finished HTML is served.
#html_use_opensearch = ''

If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = ''

Output file base name for HTML help builder.
htmlhelp_basename = 'spnixgitdoc'

Options for the linkcode extension

Resolve function
This function is used to populate the (source) links in the API
def linkcode_resolve(domain, info):
 def find_source():
 # try to find the file and line number, based on code from numpy:
 # https://github.com/numpy/numpy/blob/master/doc/source/conf.py
 obj = sys.modules[info['module']]
 for part in info['fullname'].split('.):
 obj = getattr(obj, part)

 import inspect
 import os
 fn = inspect.getsourcefile(obj)
 fn = os.path.relpath(fn, start=os.path.dirname(theano.__file__))

 source, lineno = inspect.getsourcelines(obj)
 return fn, lineno, lineno + len(source) - 1

 if domain != 'py' or not info['module']:
 return None
 try:
 filename = 'theano/%s\d-%L\%d' % find_source()
 except Exception:
 filename = info['module'].replace('.', '/') + '.py'
 import subprocess
tag = subprocess.Popen(['git', 'rev-parse', 'HEAD'],
 # (continues on previous page)
```
stdout=subprocess.PIPE,
universal_newlines=True).communicate()[0][:-1]
    return "https://github.com/runawayhorse001/%s/%s" % (tag, filename)

# Options for LaTeX output
# ------------------------
latex_elements = {
    # The paper size ('letter' or 'a4').
    #latex_paper_size = 'a4',
    
    # The font size ('10pt', '11pt' or '12pt').
    'pointsize': '12pt',
    
    # Additional stuff for the LaTeX preamble.
    #latex_preamble = '',
}

# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, document class
# [howto/manual]).
latex_documents = [
    ('index', 'sphinxgithub.tex', 'Sphinx Github Webpage Tutorials',
     'Wenqiang Feng', 'manual'),
]

# The name of an image file (relative to this directory) to place at
# the top of
# the title page.
latex_logo = 'images/logo.png'
# The name of an image file (relative to this directory) to place at
# the top of
# the title page.
#latex_logo = 'images/snake_theta2-trans.png'
#latex_logo = 'images/theano_logo_allblue_200x46.png'

# For "manual" documents, if this is true, then toplevel headings are
# parts,
# not chapters.
#latex_use_parts = False

# Documents to append as an appendix to all manuals.
#latex_appendices = []

# If false, no module index is generated.
```

(continues on next page)
#latex_use_modindex = True

#latex_elements['preamble'] = '\usepackage{xcolor}'
Additional stuff for the LaTeX preamble.
latex_elements['preamble'] = '
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{dsfont}
\def\Z{\mathbb{Z}}
\def\R{\mathbb{R}}
\def\bX{\mathbf{X}}
\def\X{\mathbf{X}}
\def\By{\mathbf{y}}
\def\Bbeta{\mathbf{\beta}}
\def\bU{\mathbf{U}}
\def\bV{\mathbf{V}}
\def\V1{\mathds{1}}
\def\hU{\mathbf{\hat{U}}}
\def\hS{\mathbf{\hat{\Sigma}}}
\def\hV{\mathbf{\hat{V}}}
\def\E{\mathbf{E}}
\def\F{\mathbf{F}}
\def\x{\mathbf{x}}
\def\h{\mathbf{h}}
\def\v{\mathbf{v}}
\def\nv{\mathbf{v^{\mathbb{f} -}}}
\def\nh{\mathbf{h^{\mathbb{f} -}}}
\def\s{\mathbf{s}}
\def\b{\mathbf{b}}
\def\c{\mathbf{c}}
\def\W{\mathbf{W}}
\def\C{\mathbf{C}}
\def\P{\mathbf{P}}
\def\T{\mathbf{T}}
\def\B{\mathbf{B}}
\def\mcT{\mathcal{T}}
\def\mcB{\mathcal{B}}

Documents to append as an appendix to all manuals.
latex_appendices = []

If false, no module index is generated.
latex_use_modindex = True

(continued from previous page)
default_role = 'math'
ingmath_divpng_args = ['-gamma 1.5', '-D 110']
#pngmath_divpng_args = ['-gamma', '1.5', '-D', '110', '-bg', 'Transparent']
ingmath_latex_preamble = '\usepackage{amsmath}'
'\usepackage{mathtools}'
'\usepackage{amsfonts}'
'\usepackage{amssymb}'
'\def\Z{\mathbb{Z}}'
'\def\R{\mathbb{R}}'
'\def\bX{\mathbf{X}}'
'\def\X{\mathbf{X}}'
'\def\By{\mathbf{y}}'
'\def\Bbeta{\boldsymbol{\beta}}'
'\def\U{\mathbf{U}}'
'\def\V{\mathbf{V}}'
'\def\V1{\mathds{1}}'
'\def\hU{\mathbf{\hat{U}}}'
'\def\hS{\mathbf{\hat{\Sigma}}}'
'\def\hV{\mathbf{\hat{V}}}'
'\def\E{\mathbf{E}}'
'\def\F{\mathbf{F}}'
'\def\x{\mathbf{x}}'
'\def\h{\mathbf{h}}'
'\def\v{\mathbf{v}}'
'\def\nv{\mathbf{v^{\beta-f}}}'
'\def\nh{\mathbf{h^{\beta-f}}}'
'\def\s{\mathbf{s}}'
'\def\b{\mathbf{b}}'
'\def\c{\mathbf{c}}'
'\def\W{\mathbf{W}}'
'\def\C{\mathbf{C}}'
'\def\P{\mathbf{P}}'
'\def\T{\mathbf{\mathcal{T}}}'
'\def\B{\mathbf{\mathcal{B}}}'

4.4 General Documentation Generator Configuration

4.4.1 Output Options

throot = os.path.abspath(
os.path.join(sys.path[0], os.pardir, os.pardir))

options = defaultdict(bool)
opts, args = getopt.getopt(
 sys.argv[1:],
 'o:f:',
 ['rst', 'help', 'nopdf', 'cache', 'check', 'test'])
options.update(dict((x, y or True) for x, y in opts))
if options['--help']:
 print('Usage: $s [OPTIONS] [files...]' % sys.argv[0])
 print(' -o <dir>: output the html files in the specified dir')
 print(' --cache: use the doctree cache')
 print(' --rst: only compile the doc (requires sphinx)')
 print(' --nopdf: do not produce a PDF file from the doc, only HTML')
 print(' --test: run all the code samples in the documentation')
 print(' --check: treat warnings as errors')
 print(' --help: this help')
 print('If one or more files are specified after the options then only '
 'those files will be built. Otherwise the whole tree is ' '
 'processed. Specifying files will implies --cache.')
 sys.exit(0)
if not (options['--rst'] or options['--test']):
 # Default is now rst
 options['--rst'] = True

4.4.2 Output Directory

def mkdir(path):
 try:
 os.mkdir(path)
 except OSError:
 pass

create the output folder docs, since github page will use /docs folder for Github page.
outdir = options['-o'] or (throot + '/docs')
create the output folder latex
latexdir = options['-o'] or (throot + '/latex')
files = None

(continues on next page)
if len(args) != 0:
 files = [os.path.abspath(f) for f in args]
currentdir = os.getcwd()
mkdir(outdir)
mkdir(latexdir)
os.chdir(outdir)

4.4.3 Documentation Compiler

def call_sphinx(builder, workdir):
 import sphinx
 if options['--check']:
 extraopts = ['-W']
 else:
 extraopts = []
 if not options['--cache'] and files is None:
 extraopts.append('-E')
docpath = os.path.join(throot, 'doc')
inopt = [docpath, workdir]
 if files is not None:
 inopt.extend(files)
 ret = sphinx.build_main(['', '-b', builder] + extraopts + inopt)
 if ret != 0:
 sys.exit(ret)

if options['--all'] or options['--rst']:
 mkdir("doc")
 sys.path[0:0] = [os.path.join(throot, 'doc')]
 call_sphinx('html', '.')

 if not options['--nopdf']:
 # Generate latex file in a temp directory
 import tempfile
 # workdir = tempfile.mkdtemp()
 workdir = latexdir
 call_sphinx('latex', workdir)
 # Compile to PDF
 os.chdir(workdir)
 os.system('make')
 try:
 shutil.copy(os.path.join(workdir, 'sphinxgithub.pdf'), ..
..outdir)
os.chdir(outdir)
remove the workdir folder
#shutil.rmtree(workdir)
except OSError as e:
 print('OSError:', e)
except IOError as e:
 print('IOError:', e)

if options['--test']:
 mkdir("doc")
 sys.path[0:0] = [os.path.join(throot, 'doc')]
 call_sphinx('doctest', '.')

To go back to the original current directory.
os.chdir(currentdir)

Reset THEANO_FLAGS
os.environ['THEANO_FLAGS'] = env_th_flags

Makefile Wrapper

all:
 python scripts/docgen.py

Full docgen.py Script

"""
I heavily borrowed, modified and used the configuration in docgen.py of Theano
package project. I will keep all the comments from Theano team and the
copyright of this file belongs to Theano team.
reference:
Theano repository: https://github.com/Theano/Theano
docgen.py: https://github.com/Theano/Theano/blob/master/doc/scripts/docgen.py
"""

from __future__ import print_function
import sys
import os
import shutil
import inspect
import getopt
from collections import defaultdict

if __name__ == '__main__':

 throot = os.path.abspath(os.path.join(sys.path[0], os.pardir, os.pardir))

 options = defaultdict(bool)
 opts, args = getopt.getopt(sys.argv[1:],
 ['o:', 'f:',
 'rst', 'help', 'nopdf', 'cache', 'check', 'test'])
 options.update(dict((x, y or True) for x, y in opts))
 if options['--help']:
 print('Usage: %s [OPTIONS] [files...]' % sys.argv[0])
 print(' -o <dir>: output the html files in the specified dir')
 print(' --cache: use the doctree cache')
 print(' --rst: only compile the doc (requires sphinx)')
 print(' --nopdf: do not produce a PDF file from the doc, only HTML')
 print(' --test: run all the code samples in the documentation')
 print(' --check: treat warnings as errors')
 print(' --help: this help')
 print('If one or more files are specified after the options, then only ')
 'those files will be built. Otherwise the whole tree is ')
 'processed. Specifying files will implies --cache.')
 sys.exit(0)

 if not (options['--rst'] or options['--test']):
 # Default is now rst
 options['--rst'] = True

 def mkdir(path):
 try:
 os.makedirs(path)
 except OSError:
 pass

 # create the output folder docs, since github page will use /docs_
outdir = options['-o'] or (throot + '/docs')
create the output folder latex
latexdir = options['-o'] or (throot + '/latex')

files = None
if len(args) != 0:
 files = [os.path.abspath(f) for f in args]
currentdir = os.getcwd()
mkdir(outdir)
mkdir(latexdir)
os.chdir(outdir)

add .nojekyll file to fix the github pages issues
nojekyll_path = os.path.join(outdir, '.nojekyll')
if not os.path.exists(nojekyll_path):
os.makedirs(nojekyll_path)

Make sure the appropriate 'theano' directory is in the PYTHONPATH
pythonpath = os.environ.get('PYTHONPATH', '')
pythonpath = os.pathsep.join([throot, pythonpath])
sys.path[0:0] = [throot] # We must not use os.environ.

Make sure we don't use gpu to compile documentation
env_th_flags = os.environ.get('THEANO_FLAGS', '')
os.environ['THEANO_FLAGS'] = 'device=cpu,force_device=True'

def call_sphinx(builder, workdir):
 import sphinx
 if options['--check']:
 extraopts = ['-W']
 else:
 extraopts = []
 if not options['--cache'] and files is None:
 extraopts.append('-E')
docpath = os.path.join(throot, 'doc')
inopt = [docpath, workdir]
 if files is not None:
 inopt.extend(files)
 ret = sphinx.build_main(['', '-b', builder] + extraopts + inopt)
 if ret != 0:
 sys.exit(ret)
if options['--all'] or options['--rst']:
 mkdir("doc")
 sys.path[0:0] = [os.path.join(throot, 'doc')]
 call_sphinx('html', '.')

if not options['--nopdf']:
 # Generate latex file in a temp directory
 import tempfile
 workdir = latexdir
 call_sphinx('latex', workdir)
 # Compile to PDF
 os.chdir(workdir)
 os.system('make')
 try:
 shutil.copy(os.path.join(workdir, 'sphinxgithub.pdf'), outdir)
 except OSError as e:
 print('OSError:', e)
 except IOError as e:
 print('IOError:', e)

if options['--test']:
 mkdir("doc")
 sys.path[0:0] = [os.path.join(throot, 'doc')]
 call_sphinx('doctest', '.')

To go back to the original current directory.
os.chdir(currentdir)

Reset THEANO_FLAGS
os.environ['THEANO_FLAGS'] = env_th_flags
Chinese proverb
Making full preparation will not delay your job but quicken the process. – old Chinese proverb

5.1 reStructuredText Primer

I would refer the reader to [Sphinx2019] and [Georg2018] for more details.

5.1.1 Sections

Sections are identified through their titles, which are marked up with adornment: “underlines” below the title text, or underlines and matching “overlines” above the title. More details can be found at: http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections

reStructuredText:

```
=.Section Title=

Subsection Title
++++++++++++++++

Subsubsection Title
------------------
```
5.1.2 Paragraphs

The paragraph is the most basic block in a reST document. Paragraphs are simply chunks of text separated by one or more blank lines. As in Python, indentation is significant in reST, so all lines of the same paragraph must be left-aligned to the same level of indentation. More details can be found at: http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs

1. General Paragraphs

reStructuredText:

This is the first demo paragraph. The blank line above the first line is required; The blank line below the last line is required.

This is the second demo paragraph. The blank line above the first line is required; The blank line below the last line is required.

Syntax diagram:

```
+-----------------------------+
| paragraph                  |
|                            |
+-----------------------------+
+-----------------------------+
| paragraph                  |
|                            |
+-----------------------------+

Result:

This is the first demo paragraph. The blank line above the first line is required; The blank line below the last line is required.

This is the second demo paragraph. The blank line above the first line is required; The blank line below the last line is required.

2. Bullet Lists Paragraphs

reStructuredText:

- This is the first bullet list item. The blank line above the first list item is required; blank lines between list items (such as below this paragraph) are optional.

- This is the first paragraph in the second item in the list.

(continues on next page)
This is the second paragraph in the second item in the list. The blank line above this paragraph is required. The left edge of this paragraph lines up with the paragraph above, both indented relative to the bullet.

- This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

- This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

- This is the third item of the main list.

This paragraph is not part of the list.

Syntax diagram:

```
+-------+-----------------------+
| "- " | list item |
|-------| (body elements)+ |
|-------+-----------------------+
```

Result:

- This is the first bullet list item. The blank line above the first list item is required; blank lines between list items (such as below this paragraph) are optional.

- This is the first paragraph in the second item in the list.

This is the second paragraph in the second item in the list. The blank line above this paragraph is required. The left edge of this paragraph lines up with the paragraph above, both indented relative to the bullet.

  - This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

  - This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

- This is the third item of the main list.

This paragraph is not part of the list.

3. **Bullet Lists Paragraphs**

reStructuredText:
1. This is the first bullet list item. The blank line above the first list item is required; blank lines between list items (such as below this paragraph) are optional.

2. This is the first paragraph in the second item in the list.

   This is the second paragraph in the second item in the list. The blank line above this paragraph is required. The left edge of this paragraph lines up with the paragraph above, both indented relative to the bullet.

   a. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

   b. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

3. This is the third item of the main list.

Result:

1. This is the first bullet list item. The blank line above the first list item is required; blank lines between list items (such as below this paragraph) are optional.

2. This is the first paragraph in the second item in the list.

   This is the second paragraph in the second item in the list. The blank line above this paragraph is required. The left edge of this paragraph lines up with the paragraph above, both indented relative to the bullet.

   a. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

   b. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

3. This is the third item of the main list.

Syntax diagram:

```
+-------+----------------------+
| "1. " | list item |
|-------| (body elements)+ |
| | ---------------------+
```

Result:
1. This is the first bullet list item. The blank line above the first list item is required; blank lines between list items (such as below this paragraph) are optional.

2. This is the first paragraph in the second item in the list.

   This is the second paragraph in the second item in the list. The blank line above this paragraph is required. The left edge of this paragraph lines up with the paragraph above, both indented relative to the bullet.

   a. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

   b. This is a sublist. The bullet lines up with the left edge of the text blocks above. A sublist is a new list so requires a blank line above and below.

3. This is the third item of the main list.

4. **Blocked Paragraphs**

   a. **Line Blocks**

   reStructuredText:

   ```reStructuredText
 Take it away, Eric the Orchestra Leader!

 | A one, two, a one two three four
 | Half a bee, philosophically,
 | *ipso facto*, half not be.
 | But half the bee has got to be,
 | *vis a vis* its entity. D'you see?
 | But can a bee be said to be
 | or not to be an entire bee,
 | when half the bee is not a bee,
 | due to some ancient injury?
 | Singing...

 Syntax diagram:

 +------|-----------------------+
 | "| | line |
 +------| continuation line |
 +-----------------------+

 Result:

 Take it away, Eric the Orchestra Leader!

 A one, two, a one two three four
   ```

5.1. reStructuredText Primer
Half a bee, philosophically,
    must, *ipso facto*, half not be.
But half the bee has got to be,
    *vis a vis* its entity. D’you see?

But can a bee be said to be
    or not to be an entire bee,
    when half the bee is not a bee,
    due to some ancient injury?

Singing…

5. **Doctest Blocks**

reStructuredText:

```
This is an ordinary paragraph.

>>> print 'this is a Doctest block'
this is a Doctest block

The following is a literal block:

 >>> This is not recognized as a doctest block by
 reStructuredText. It *will* be recognized by the doctest
 module, though!
```

Result:

This is an ordinary paragraph.

```
>>> print 'this is a Doctest block'
this is a Doctest block
```

The following is a literal block:

```
>>> This is not recognized as a doctest block by
reStructuredText. It *will* be recognized by the doctest
module, though!
```

3. **Field Lists**

reStructuredText:
:Date: 2001-08-16
:Version: 1
:Authors: - Me
- Myself
- I

:Indentation: Since the field marker may be quite long, the second and subsequent lines of the field body do not have to line up with the first line, but they must be indented relative to the field name marker, and they must line up with each other.

:Parameter i: integer

Result:

**Date** 2001-08-16

**Version** 1

**Authors**

- Me
- Myself
- I

**Indentation** Since the field marker may be quite long, the second and subsequent lines of the field body do not have to line up with the first line, but they must be indented relative to the field name marker, and they must line up with each other.

**Parameter i** integer

### 5.1.3 Table

More details can be found at: http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables

1. **Grid Tables**

reStructuredText:

```
+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+------------------------+------------+----------+----------+
| body row 1, column 1 | column 2 | column 3 | column 4 |
| | | | |
| body row 2 | Cells may span columns. | |
+------------------------+------------+---------------------+
| body row 3 | Cells may | - Table cells |
```

(continues on next page)
2. Simple Tables

reStructuredText:

```
A B A and B
False False False
True False False
False True False
True True True
```

Result:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A and B</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

reStructuredText:

```
col 1 col 2
1 Second column of row 1.
2 Second column of row 2.
```

(continues on next page)
3  - Second column of row 3.
   - Second item in bullet list (row 3, column 2).
\  Row 4; column 1 will be empty.
   ===== =====

Result:

<table>
<thead>
<tr>
<th>col 1</th>
<th>col 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Second column of row 1.</td>
</tr>
<tr>
<td>2</td>
<td>Second column of row 2. Second line of paragraph.</td>
</tr>
<tr>
<td>3</td>
<td>• Second column of row 3.</td>
</tr>
<tr>
<td></td>
<td>• Second item in bullet list (row 3, column 2).</td>
</tr>
</tbody>
</table>

Row 4; column 1 will be empty.

3. **CSV Tables**

reStructuredText:

```reStructuredText
.. csv-table:: Frozen Delights!
 :header: "Treat", "Quantity", "Description"
 :widths: 15, 10, 30

 "Albatross", 2.99, "On a stick!"
 "Crunchy Frog", 1.49, "If we took the bones out, it wouldn't be crunchy, now would it?"
 "Gannet Ripple", 1.99, "On a stick!"
```

Table 1: Frozen Delights!

<table>
<thead>
<tr>
<th>Treat</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatross</td>
<td>2.99</td>
<td>On a stick!</td>
</tr>
<tr>
<td>Crunchy Frog</td>
<td>1.49</td>
<td>If we took the bones out, it wouldn’t be crunchy, now would it?</td>
</tr>
<tr>
<td>Gannet Ripple</td>
<td>1.99</td>
<td>On a stick!</td>
</tr>
</tbody>
</table>

4. **List Tables**

reStructuredText:

```
```
.. list-table:: Frozen Delights!
   :widths: 15 10 30
   :header-rows: 1

   * - Treat               
     - Quantity           
     - Description       
   * - Albatross          
     - 2.99              
     - On a stick!       
   * - Crunchy Frog       
     - 1.49              
     - If we took the bones out, it wouldn't be crunchy, now would it? 
   * - Gannet Ripple      
     - 1.99              
     - On a stick!       

Table 2: Frozen Delights!

<table>
<thead>
<tr>
<th>Treat</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albatross</td>
<td>2.99</td>
<td>On a stick!</td>
</tr>
<tr>
<td>Crunchy Frog</td>
<td>1.49</td>
<td>If we took the bones out, it wouldn't be crunchy, now would it?</td>
</tr>
<tr>
<td>Gannet Ripple</td>
<td>1.99</td>
<td>On a stick!</td>
</tr>
</tbody>
</table>

5.1.4 Images and Figures

There are two image directives: `img` and `figure`. More details can be found at: http://docutils.sourceforge.net/docs/ref/rst/directives.html#image.

1. Simple import

reStructuredText:

```plaintext
.. image:: images/boxp.png
```
2. Complex import
Fig. 1: This is the caption of the figure (a simple paragraph).

This is the caption of the figure (a simple paragraph).

.. figure:: images/boxp.png
   :height: 400 px
   :width: 800 px
   :scale: 50 %
   :alt: alternate text
   :align: center

This is the caption of the figure (a simple paragraph).
This is the caption of the figure (a simple paragraph).

Result:

Figure 2: This is the caption of the figure (a simple paragraph).
Fig. 3: This is the caption of the figure (a simple paragraph).

Fig. 4: This is the caption of the figure (a simple paragraph).

3. **Figures in table**

reStructuredText:

```
+-------------------------------+-------------------+
| Figures | Description |
+-------------------------------+-------------------+
| .. figure:: images/corr.png | Figure 1: test |
| :scale: 20 % | |
+-------------------------------+-------------------+
```
Result:
5.1.5 Math

The input language for mathematics is LaTeX markup. I will not do a LaTeX tutorial as here.

1. **Inline formula**

   reStructuredText:
   
   The area of a circle is \( A_c = \frac{\pi}{4} d^2 \).

   Result:

   The area of a circle is \( A_c = \frac{\pi}{4} d^2 \).

2. **Equations**

   reStructuredText:
   
   .. math::
      :label: eq_lin_cost_func

   .. math::
      :label: eq_lin_cost_func

   \begin{equation}
   \min_{\beta \in \mathbb{R}^p} \frac{1}{n} \| \hat{X} \beta - \hat{Y} \|^2
   \end{equation}

   The equation :eq:`eq_lin_cost_func` is the cost function for linear regression.

   Result:

   \[
   \min_{\beta \in \mathbb{R}^p} \frac{1}{n} \| \hat{X} \beta - \hat{Y} \|^2
   \] (5.1)

   The equation (5.1) is the cost function for linear regression.

3. **User defined symbol and equation**

   Add your definitions to the `latex_elements['preamble']` and `imgmath_latex_preamble`, then you can apply your own notations for symbol and equations.

   my definitions for \( \mathcal{B} \) symbol and \( e^{i\pi} + 1 = 0 \) equation:

   reStructuredText:
   
   \[
   '\def\B{\bf \mathcal B}\n+ \n\def\euler{e^{i\pi} + 1 = 0}\n'
   \]

   The is a test for the user defined math symbol: :math:`\B`.

   The is a test for the user defined math equation:

   .. math::

   \euler
The is a test for the user defined math symbol: $\mathcal{B}$.

The is a test for the user defined math equation:

\[ e^{i\pi} + 1 = 0 \]

4. More examples

reStructuredText:

```reStructuredText
.. math::

 f(x)
 =
 \Biggl \lbrace
 \begin{cases}
 0, \text{ if } x > 0 \\
 1 \text{ otherwise }
 \end{cases}
 \atop
 1 \text{ otherwise }
\}

.. math::

 (a + b)^2 &= (a + b)(a + b) \\
 &= a^2 + 2ab + b^2

.. math::

 \begin{eqnarray}
 y &=& ax^2 + bx + c \\
 f(x) &=& x^2 + 2xy + y^2
 \end{eqnarray}

.. math:: e^{i\pi} + 1 = 0

:label: euler
```

Result:

\[
\begin{align*}
    f(x) &= \begin{cases} 
        0, & \text{if } x > 0 \\
        1 & \text{otherwise} 
    \end{cases} \\
    (a + b)^2 &= (a + b)(a + b) \\
    &= a^2 + 2ab + b^2 \\
    y &= ax^2 + bx + c \\
    f(x) &= x^2 + 2xy + y^2 \\
    e^{i\pi} + 1 &= 0
\end{align*}
\]
5.1.6 Source Codes

1. Source code block

reStructuredText:

```python
.. code-block:: python

 '''
 This is a source Python code demo for Sphinx.
 @date: Apr 25, 2016
 @author: Wenqiang Feng
 '''
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 from pandas.tools.plotting import scatter_matrix
 from docutils.parsers.rst.directives import path

 if __name__ == '__main__':
 print("This is a source Python code demo for Sphinx.")
```

Result:

```python
'''
This is a source Python code demo for Sphinx.
@date: Apr 25, 2016
@author: Wenqiang Feng
'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.tools.plotting import scatter_matrix
from docutils.parsers.rst.directives import path

if __name__ == '__main__':
 print("This is a source Python code demo for Sphinx.")
```

reStructuredText:

```r
.. code-block:: r

 '''
 (continues on next page)
```

5.1. reStructuredText Primer
This is a source R code demo for Sphinx.
@date: Apr 25, 2016
@author: Wenqiang Feng
'''

library(reshape2)
library(ggplot2)

# import data
d <- melt(diamonds[, -c(2:4)])

# plot histogram
ggplot(d, aes(x = value)) +
  facet_wrap(~variable, scales = "free_x") +
  geom_histogram()

print("This is a source R code demo for Sphinx.")

'''

2. Source code import

- Python Source code

reStructuredText:

```reStructuredText
.. literalinclude:: code/sourceCodePy.py
 :language: python
```

Result:
This is a source Python code demo for Sphinx.
@date: Apr 25, 2016
@author: Wenqiang Feng

```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.tools.plotting import scatter_matrix
from docutils.parsers.rst.directives import path

if __name__ == '__main__':
 print("This is a source Python code demo for Sphinx.")
```

- **R Source code**

reStructuredText:

```reStructuredText
.. literalinclude:: code/sourceCodeR.R
 :language: r
```

Result:

```r
This is a source R code demo for Sphinx.
@date: Apr 25, 2016
@author: Wenqiang Feng

```r
library(reshape2)
library(ggplot2)

```r
import data
d <- melt(diamonds[, -c(2:4)])
plot histogram
ggplot(d, aes(x = value)) +
 facet_wrap(~variable, scales = "free_x") +
 geom_histogram()

print("This is a source R code demo for Sphinx.")
```

### 5.1.7 Reference

1. Paper reference
reStructuredText:

.. [Ref] Book or article reference, URL or whatever.

Lorem ipsum [Ref] dolor sit amet.

Result:

Lorem ipsum [Ref] dolor sit amet.

I would refer the reader to [Sphinx2019] for more details.

2. **Equation reference**

reStructuredText:

.. math::
   :label: eq_condition

\[
\begin{aligned}
f(x) = \\
\left\{ \\
0, \text{ if } x > 0 \\
1 \text{ otherwise }
\right. \\
\end{aligned}
\]

The Equation :eq:`eq_condition` is the definition of :math:`f(x)`.

Result:

\[
f(x) = \begin{cases}
0, & \text{if } x > 0 \\
1 & \text{otherwise}
\end{cases}
\] (5.3)

The Equation (5.3) is the definition of \(f(x)\).

4. **Figure reference**

reStructuredText:

.. _fig_hist_demo:
.. figure:: images/avg_rating_mon.png
   :scale: 50 %
   :alt: map to buried treasure

The histogram of the grouped dataset

The Figure. :ref:`fig_hist_demo` is the histogram of the grouped dataset.
Fig. 5: The histogram of the grouped dataset

The Figure. *The histogram of the grouped dataset* is the histogram of the grouped dataset.

5. Table reference

reStructuredText:

```reStructuredText
.. _table_demo:
.. table:: The general table demo

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | Cells may | | |
| | span columns. | | |
+------------------------+------------+----------+----------+
| body row 3 | Cells may | | |
| | - Table cells | | |
+------------------------+------------+----------+----------+
| body row 4 | | | |
+------------------------+------------+----------+----------+

Please see the above Table. :ref:`table_demo`.
```

Result:
Table 3: The general table demo

<table>
<thead>
<tr>
<th>Header row, column 1 (header rows optional)</th>
<th>Header 2</th>
<th>Header 3</th>
<th>Header 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>body row 1, column 1</td>
<td>column 2</td>
<td>column 3</td>
<td>column 4</td>
</tr>
<tr>
<td>body row 2</td>
<td>Cells may span columns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>body row 3</td>
<td>Cells may span rows.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| body row 4                                 | • Table cells
|                                           | • contain
|                                           | • body elements. |

Please see the above Table. *The general table demo.*

6. **Footnotes**

reStructuredText:

```plaintext
Lorem ipsum [#f1] dolor sit amet ... [#f2]_
```

.. _rubric:: Footnotes

.. [#f1] Text of the first footnote.

.. [#f2] Text of the second footnote.

Result:

Lorem ipsum¹ dolor sit amet ... ²

7. **Hyperlinks**

• General hyperlink

reStructuredText:

```plaintext
You are more than welcome to visit my personal webpage: `Feng Website`

.. _Feng Website: http://web.utk.edu/~wfeng1/
```

Result:

You are more than welcome to visit my personal webpage: Feng Website.

• Embeded Youtube link:

reStructuredText:

¹ Text of the first footnote.

² Text of the second footnote.
5.2 Roles

A role or “custom interpreted text role” is an inline piece of explicit markup. It signifies that that the enclosed text should be interpreted in a specific way. Sphinx uses this to provide semantic markup and cross-referencing of identifiers, as described in the appropriate section. More details can be found at: http://docutils.sourceforge.net/docs/ref/rst/roles.html#customization

5.2.1 Standard Roles

- Line markup

reStructuredText:

* emphasis - equivalent of *emphasis*
* strong - equivalent of **strong**
* literal - equivalent of `literal`
* subscript - H \ :sub:`2` \ O
* superscript - E = mc \ :sup:`2`
* title-reference - for titles of books, periodicals, and other materials

Result:

- emphasis – equivalent of emphasis
- strong – equivalent of strong
- literal – equivalent of literal
• subscript – H$_2$O
• superscript – E = mc$^2$
• title-reference – for titles of books, periodicals, and other materials

### 5.2.2 Specialized Roles

- **raw**

reStructuredText:

```restructuredtext
.. raw:: html

 <iframe width="700" height="315"
 src="https://www.youtube.com/embed/2Mg8QD0F1dQ"
 frameborder="0" allowfullscreen></iframe>
```

Result:

reStructuredText:

```restructuredtext
.. role:: raw-html(raw)

:format: html

If there just *has* to be a line break here,
:raw-html:`

it can be accomplished with a "raw"-derived role.
But the line block syntax should be considered first.
```

Result:

If there just *has* to be a line break here,
it can be accomplished with a “raw”-derived role. But the line block syntax should be considered first.

- **replace**

reStructuredText:

```restructuredtext
|sphx| replace:: Sphinx
|reST| replace:: reStructuredText

|reST| is awesome!
```

Sphinx and reStructuredText are awesome!
5.3 Directives

A directive is a generic block of explicit markup. Along with roles, it is one of the extension mechanisms of reST, and Sphinx makes heavy use of it.

5.3.1 Admonitions

Admonitions: attention, caution, danger, error, hint, important, note, tip, warning

- attention

reStructuredText:

```reStructuredText
.. attention::

 You neen to pay attention at here!
```

Result:

```
Attention: You neen to pay attention at here!
```

- caution

reStructuredText:

```reStructuredText
.. caution::

 This is a caution alert!
```

Result:

```
Caution: This is a caution alert!
```

- important

reStructuredText:

```reStructuredText
.. important::

 This is important!
```

Result:
Important: This is important!

- User defined admonition

reStructuredText:

```admonition:: User defined name
You can make up your own admonition too.
```

Result:

User defined name
You can make up your own admonition too.

-seealso

reStructuredText:

```seealso::

The authoritative `reStructuredText User Documentation <http://docutils.sourceforge.net/rst.html>`_. The "ref" links in this document link to the description of the individual constructs in the reST reference.
```

Result:

See also:

The authoritative `reStructuredText User Documentation`_. The “ref” links in this document link to the description of the individual constructs in the reST reference.

See more details at `Admonitions`_.

58 Chapter 5. reStructuredText Markup
Chinese proverb
sharing your happiness is much better than enjoying your happiness by your own.

6.1 Create reStructuredTexts

6.1.1 Create reStructuredTexts

Use the tips in *reStructuredText Markup* to create your reStructuredTexts. And out them in one folder, for example `doc`. 
6.1.2 Add them in \texttt{index.rst}

\begin{verbatim}
.. toctree::
   :maxdepth: 2

  preface
  intro
  pkgs
  sphinx
  rtxt
  github
  reference
\end{verbatim}

6.1.3 Compile the reStructuredTexts files

1. Change the directory to the folder

\begin{verbatim}
cd MyTutorial/SphinxGithub/doc
\end{verbatim}

2. Compile

\begin{verbatim}
make
\end{verbatim}

Then you should get two more folders: docs and latex.

6.2 Create Repository on Github

6.3 Commit reStructuredTexts folder to Repository

Open Terminal and do the following steps:

\begin{verbatim}
git init

# Adds the files in the local repository and stages them for commit. →
# To unstage a file, use 'git reset HEAD YOUR-FILE'.
git add .
git commit -m "First commit"
\end{verbatim}

(continues on next page)
Create a new project
Coordinate, track, and update your work in one place, so projects stay transparent and on schedule.

Project board name
Project board name

Description (optional)

Project template
Save yourself time with a pre-configured project board template.

Linked repositories
Search runawayhorse001 to link repositories to this project for more accurate suggestions and better search results.

Linked repositories: None yet!
# Commits the tracked changes and prepares them to be pushed to a remote repository. To remove this commit and modify the file, use 'git reset --soft HEAD~1' and commit and add the file again.

```bash
Adds the new remote
git remote add origin remote repository URL

Sets the remote
git remote -v

Verifies the new remote URL

Pushes the changes in your local repository up to the remote repository you specified as the origin
```

6.4 Setup Github Pages on Github

6.4.1 Repository

Once you committed your repository to the Github, you will get:
6.4.2 Setup Github Pages

1. Go to Settings button in your repository

2. Set up the Github pages source

3. Enjoy your Github Pages
GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

- Your site is published at https://runawayhorse001.github.io/SphinxGithub/

Source

Your GitHub Pages site is currently being built from the /docs folder in the master branch. Learn more.

- master branch /docs folder
- Save

Select source

- master branch
  - Use the master branch for GitHub Pages.
- master branch /docs folder
  - Use only the /docs folder for GitHub Pages.
- None
  - Disable GitHub Pages.

Enforce HTTPS

- Required for your site because you are using the default domain (runawayhorse001.github.io)

HTTPS provides a layer of encryption that prevents others from snooping on or tampering with traffic to your site. When HTTPS is enforced, your site will only be served over HTTPS. Learn more.
Welcome to my `Sphinx github webpage` tutorials! In those tutorials, you will learn how to use `Sphinx` to create `.html` and `.pdf` and how to hook up your `Sphinx` webpage to github. The PDF
BIBLIOGRAPHY

[Ref] Book or article reference, URL or whatever.
