Accident Presentations

On April 23, we will spend class time with presentations on several of the criticality accidents. Each student team is to make a 15 minute presentation that tells us about the accident and its ramifications in 5 categories listed below.

1. An overview of the configuration, including:

- A. A map showing the geographic part of the world this occurred at.
- B. A drawing of the geometry of the process area
- C. A description of the important equipment (with pictures, if available)
- D. A description of the normal steps of the process.
- 2. A discussion of what actually went on in the accident:
 - A. Changes in the normal geometry and process,
 - B. How the accident progressed,
 - C. What the emergency response was,
 - D. What the outcome was (fission events, property damage, health effects, financial consequences).
- 3. Lessons learned.
- 4. Your approximation of the contingency table that SHOULD have governed the process, noting where it went wrong. (You may have some gaps where information is lacking.)
- 5. Your best approximation (through Oktoc/KENO/MCNP calculations) of the keffective vs depth of fissile material (or some other appropriate variable) for your configuration using Appendix B models.

Assignments

Here is a list of the assignments.

Student	Accident # in
	LA-13638
	TOC
	(Reading 5)
Bethel	I.A.2
Brackbill	I.A.3
Freeman	I.A.4
Jackson	I.A.5
Lowe	I.A.14
McKinney	I.A.18
Mitchell	I.A.20
Tucker	I.A.22