ne.gif (2791 bytes)     NE406 Radiation Protection and Shielding

Return to Course Outline  


                

Review for Test #1

To adequately prepare for this test, you should be able to:

  1. Give the full names of the following organizations: RSICC, NNDC, IAEA, NCRP, ICRP, and EPA.
  2. Determine the solid angle associated with objects that have circular shadows--sphere, flat disk, torus
  3. Define and give symbols for fluence, flux, flow, and current.
  4. Translate a given physical source description among the different source configurations -- point, line, surface, or volumetric.
  5. Provide the reasons that "mass interaction coefficient" is a useful concept.
  6. Create mass interaction coefficient for a material (at a given energy) if elemental mass interaction coefficients are provided.
  7. Describe the physical mechanisms of Compton scattering, photoelectric effect, and pair production.
  8. Find the maximum energy loss for given gamma rays due to Compton scattering or pair production.
  9. Find threshold energies for neutron inelastic scattering for given level data.
  10. Find maximum or average energy loss from elastic or inelastic neutron scattering for a given isotope (levels provided).
  11. Explain why Rayleigh scattering is generally ignored.
  12. Explain why we generally shield first for neutrons and then for gamma rays.
  13. Be able to work problems like any of the homework problems (#1-9)

From our MCNP studies, you should be able to:

  1. Create the surfaces and cells for a simple geometry described to you utilizing spheres, boxes, or cylinders (which may intersect with each other).
  2. Describe the materials and geometry from an MCNP input deck I provide to you
  3. Describe the three ways to STOP an MCNP calculation.

 

 

 


Return to Course Outline                                                                                               1998 by Ronald E. Pevey.  All rights reserved.