Skip to Main Content

The University of Tennessee

Frequently Used Tools:



                                     


Water on the Moon !!!

The Moon Mineralogy Mapper, a reflectance spectrometer, was flown on the Indian’s first lunar
mission, Chandrayaan-1.  Larry Taylor of our PGI was a member of the M3 team, headed by
Carle Pieters, of Brown University.  Most of the members of this team are remote sensing specialists,
with strong physics backgrounds.  However, Larry was chosen for his knowledge of the actual lunar
rocks and soils, sort of the “ground truth” for the observations.  After months of heated discussion
about interpretations and rendering of the spectral data, we all agreed on this great new finding of
“Water on the Moon.”  And after we discovered this evidence, two members of our team, who just happened to be on other mission teams, looked at their data and viola, it was there as well – great confirmation of this unequivocal evidence for water on our Moon.
This water is only a trace, being about 1000 ppm – squeeze a cubic yard of lunar soil, and you get
about one liter of water.  But, at ~$50,000/kg to take anything from Earth to the Moon’s surface,
this is GREAT!!   And this finding has nothing to do with the potential for water-ice in the permanently shadowed craters (~40 K) at the lunar poles. 

http://www.utk.edu/tntoday/2009/09/24/new-research-shows
-water-present-across-the-moons-surface/

http://www.nytimes.com/2009/09/24/science/space/24moon.html?
_r=2

http://www.space.com/scienceastronomy/090923-moon-water-discovery.html

http://news.bbc.co.uk/2/hi/science/nature/8272144.stm

Recent Publications (2014) from the Planetary Geosciencs Institute.

 

  • Barry, P.H., Hilton, D.R., Day, J.M.D., Pernet-Fisher, J.F., Howarth, G.H., 2015. Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event, Lithos 216–217, 73–80.
  • Day, J. M. D., Barry, P. H., Hilton, D. R., Burgess, R., Pearson, D. G., & Taylor, L. A., 2015. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochimica et Cosmochimica Acta, 153, 116-133. doi:10.1016/j.gca.2015.01.008
  • Howarth, G. H., Sobolev, N. V., Pernet-Fisher, J. F., Ketcham, R. A., Maisano, J. A., Pokhilenko, L. N., Taylor, L. A., 2015. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review. Journal of Asian Earth Sciences, 101, 39-67. doi:10.1016/j.jseaes.2014.10.039
  • Logvinova, A.M., Taylor, L.A., Fedorova, E.N., Yelisseyev, A.P., Wirth, R., Howarth, G.H., Reutsky, V.N., and Sobolev, N.V., 2015. A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe, Yakutia: role of subduction in diamond formation, Russian Geology and Geophysics 56, 306–320.
  • Pernet-Fisher, J. F., Howarth, G. H., Pearson, D. G., Woodland, S., Barry, P. H., Pokhilenko, N. P., Taylor, L. A, 2015. Plume impingement on the Siberian SCLM: Evidence from Re-Os isotope systematics. Lithos, 218-219, 141-154. doi:10.1016/j.lithos.2015.01.010
  • Carmody, L., Taylor, L.A., Thaisen, K.G., Tychkov, N., Bodnar, R.J., Sobolev, N.V., Pokhilenko, L.N., and Pokhilenko, N.P., 2014. Ilmenite as a Diamond Indicator Mineral in the Siberian Craton: A Tool to Predict Diamond Potential. Econ. Geol. 109, 431-439.
  • Howarth, G. H., Barry, P. H., Pernet-Fisher, J. F., Baziotis, I. P., Pokhilenko, N. P., Pokhilenko, L. N., Bodnar, R. J., Taylor, L. A., 2014. Superplume Metasomatism: Evidence from Siberian mantle xenoliths. Lithos. 184-187, 209-224. http://dx.doi.org/10.1016/j.lithos.2013.09.006
  • Howarth, G.H., Sobolev, N.V., Pernet-Fisher, J.F., Barry, P.B., Penumadu, D., Puplampu, S., Ketcham, R.A., Maisano, J.A., Taylor, D., and Taylor, L.A. 2014. The secondary origin of diamonds: multi-modal radiation tomography of diamondiferous eclogites. International Geology Review 56, 1172-1180.
  • Howarth, G.H., Pernet-Fisher, J.F., Balta, J.B., Barry, P.B., Bodnar, R.J., and Taylor, L.A. 2014. Two-stage polybaric formation of the new enriched, pyroxene-oikocrystic, lherzolitic shergottite, NWA 7397. Meteoritics and Planetary Science 49, 1812–1830.
  • McKay, D. S., Cooper, B. L., Taylor, L. A., James, J. T., Thomas-Keprta, K., Pieters, C. M., Lee, T. S., 2014. Physicochemical properties of respirable-size lunar dust. Acta Astronautica, 107, 163-176. doi:10.1016/j.actaastro.2014.10.032
  • Pernet-Fisher, J. F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J., Bodnar, R.J., Spetsius, Z.V., Taylor, L.A., 2014. Komsomolskaya Diamondiferous Eclogites: Evidence for Oceanic Crustal Protoliths. Contrib. Minera. Petrology 167, 981-999.
  • Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Chen, Y., Taylor, L.A., 2014. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility, Geochimica et Cosmochimica Acta 144, 326–341
  • Pieters, C. M., Hanna, K. D., Cheek, L., Dhingra, D., Prissel, T., Jackson, C., Taylor, L. A., 2014. The second conference on the lunar highlands crust and new directions. the distribution of Mg-spinel across the Moon and constraints on crustal origin. American Mineralogist, 99(10), 1893-1910. doi:10.2138/am-2014-4776
  • Vallianatos, F., Baziotis, I. P., Udry, A., & Taylor, L. A., 2014. Application of non-extensive statistical physics on Martian nakhlites: A first-order approach on the crystal size distribution of pyroxene using Tsallis entropy. EPL, 108(5). doi:10.1209/0295-5075/108/58002