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The Cognitive Behavioral Driver’s Inventory! (CBDI) was analyzed for its ability 1o discriminate
brain-damaged patients from intact subjects who feigned brain-damage. In a sample of 251 neuro-
logically impaired patients and 48 malingering volunieers, the computer-administered distinguished
maost malingerers from genuine patients, A jackknifed count revealed that the CBDI had 90%
sensitivity for detecting malingerers, and 98% specificity for detecting non-malingering brain
damaged patients. Success was due o the inability of malingerers 1o avoid quantitative errors:
excessive response latencies, unusual error rates, inflated variability in response latencies, and
excessive within-subject, between-item variability, The computer-administered battery may be an
effective clinical tool for identifying patients who malinger brain-damage in neuropsychological
testing. © 1997 National Academy of Neuropsychology. Published by Elsevier Science Lid

Malingering has been identified as . . . the intentional production of false or grossly
exaggerated physical or psychological symptoms, motivated by external incentives such as

! Version 2.0 of the CBD1 programmed by Odie L. Bracy, Ph.D.. was used in this study.
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avoiding work, obtaining financial compensation, avoiding military duty, evading criminal
prosecution, avoiding punishment for criminal behavior, or obtaining drugs” (Binder, 1992,
p- 353). The Diagnostic and Statistical Manual, Fourth Edition (American Psychological
Association, 1994) suggests that malingering must always be considered in a medico-legal
context, particularly in cases with significant discrepancies between claimed disability and
functioning in the community.

Within the neuropsychological context, the malingering client may fabricate deficits in
attention and concentration, sensory input and/or motor output, memory, sequencing, speech
and language skills, conceptual reasoning, problem solving, and learning. The malingering
patient may also falsely report such psychological deficits as irritability, impulsivity, emo-
tional lability, amotivational syndrome, aggression, apathy, paranoia, disinhibition, depres-
sion, or acting out. Further, there may also be different motivations and gradations of
malingering, as well as varying levels of conscious and unconscious deception (Rogers,
1988).

Many malingerers evade detection and unfairly burden society through expensive trials,
increased insurance premiums, and increased costly services by health care facilities and
professionals. At present, there is a complex literature that addresses the difficulty in
detecting individuals who malinger brain-damage. Part of the difficulty is the fact that many
neuropsychologists assume their clients are truthful. Therefore, it is not surprising that
clinicians have had a difficult time in developing methods of detection sophisticated enough
to unmask malingerers (Rogers, 1988).

Past attempts to detect malingering have typically employed traditional neuropsycholog-
ical methods to analyze test patterns from various assessment techniques such as the
Minnesota Multiphasic Personality Inventory (MMPI), the Wechsler Adult Intelligence
Scale-Revised (WAIS-R), and the Halstead-Reitan Battery (HRNB). Even with extensive
protocols, clinicians have difficulty identifying malingerers accurately. For example, in
Heaton et al. (1978) experienced clinicians examined protocols from brain-damaged subjects
and malingerers. The clinicians were forewarned that 50% of the neuropsychological pro-
tocols were produced by malingerers. Results suggested that clinicians’ success in separating
malingering from true brain-damage ranged from chance level to about 20% better than
chance. Other studies suggest that clinicians’ ability to detect malingerers may be no better
than chance. For example, Faust, Hart, Guilemette, and Arkes (1988) conducted two further
studies of clinicians’ ability to discriminate malingerers from brain-damaged subjects. In
both studies, neuropsychologists reviewed neuropsychological data from a fabricated history
of mild to moderate head injury for each subject. In the first study, none of the NEuropsy-
chologists detected malingering. In the second study, the clinicians’ appraisals did not surpass
the chance level, even though clinicians knew there was a 50% base rate for malingering.

In the past, formal methods for discriminating the performance of malingerers from that
of brain-damaged patients have been disappointing. For example, both Gillis, Rogers, and
Bagby (1991} and Smith and Borum (1992) demonstrated that the M Test produced only
minimal success in detecting malingerers. Rey’s 15-Item Visual Memory Test and the
Symptom Validity Technique (SVT) have initially produced impressive results of 90% or
better correct classification (Binder, 1990; Lee, 1992; Pankratz, 1979, 1983). However, in
actual clinical applications, such techniques have been far less successful due to the
transparent nature of the tasks and questions.

There are some recent methodologies for detecting malingerers on the horizon, but
laboratory validation is not yet available. First, many studies utilize simple univariate
statistical analyses (Bernard & Fowler, 1990; Lee, Loring, & Martin, 1992). Merely reporting
that some variables have a significant ability to distinguish between malingerers and bona
fide patients does not provide the clinician a definitive procedure nor does is specify what
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degree of success can be expected. Methods must be designated for combining multiple
indicators. The sensitivity and specificity (Kraemer, 1992) of the resulting procedure must be
given to estimate how many malingerers and true patients are correctly classified.

A second limitation in some previous research is reliance on face valid variables that may
be transparent to the discerning malingerer (Bickart, Meyer, and Connell, 1991; Pankratz,
1983). Quantitative measures such as response latencies for grouped and ungrouped dot-
counting (Lezak, 1983, pp. 619-620) or a test utilizing computer-based reaction times, may
be much more difficult for even the most shrewd malingerer to fake. In addition to appearing
disabled, the malingerer must not appear so disabled as to be an outlier from patient norms.
A malingering profile of timed tasks with scores invisible to the test-taker, such as between-
item variances, would be even more difficult for the malingerer to fake.

A third problem is that many malingering detection methods are based on unidimensional
variables such as number of errors (Bernard & Fowler, 1990; Lee et al., 1992).

Fourth, many studies use samples that are too small, for example, less than 20 malingering
subjects (Binder, 1990; Faust et al.,, 1988; Frederick and Foster, 1991; Lee et al., 1992:
Prigatano & Amin, 1993). Willson and Reynolds (1982) present a meta-analysis showing the
danger of small samples. Of twelve studies reporting significant prediction, eight became
nonsignificant when statistical corrections for the number of cases and variables were
applied. Willson and Reynolds recommend that neuropsychological studies use many more
subjects than predictors and that results be cross-validated on fresh cases before publication
is appropriate. How the problem of small clinical samples applies to the present study is
discussed in the Method section.

Fifth, a review of the literature reveals no statistically valid technique for measuring
response consistency across numerous performances (Bernard, 1990; Binder, 1990, 1993;
Faust et al., 1988; Gillis et al., 1991; Iverson et al., 1991: Mittenberg et al., 1993; Prigatano
& Amin, 1993). Previous research has demonstrated that within-subject variability, or scatter
variance, effectively discriminates between brain-damaged and normal performance across
entire batteries (Lambert & Engum, 1990). In the present study, scatter variance was utilized
to distinguish malingerers from brain-damaged patients,

Sixth, most other studies compared malingerers with normal controls rather than with
brain-injured patients in a clinical setting (Bernard, 1990, Bernard & Fowler, 1990: Bernard,
Houston, & Natali, 1993; Bickart, Meyer, & Connell, 1991). Distinguishing malingerers from
normal controls offers no help to clinicians who must distinguish malingerers, because there
is “no reason to believe the regression weights that discriminate two groups will discriminate
cither from a third” (Willson & Reynolds, 1982, p. 137). The present study is unique in
discriminating malingerers from brain-injured patients on identical criteria.

A problem with assessment tasks administered by an examiner is the fact that malingerers
are highly field dependant; that is, they constantly search for cues in the environment to
suggest how they should respond (Rogers, 1988). Examiners can unknowingly provide
feedback to a perceptive malingerer. A computer-administered test, such as the CBDI,
provides no accidental clues to aid deception. Further, computer administration and scoring
enables the experimenter to carry our exceedingly fine-grained analyses of task responses and
variances in task responses which would be difficult, if not impossible, for malingerers to
mimie.

The CBDI and Patient Sample

The CBDI was originally designed to determine which brain-damaged patients could
safely operate a motor vehicle. For the standardization and norming, two samples were
employed: a brain damaged sample of 271 patients and a normal control sample of 41. Of
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these patients, 65 sustained left cerebral vascular accidents, 63 sustained right cerebral
vascular accidents, 78 suffered traumatic head injuries, 9 suffered spinal cord injuries, and 36
experienced other disabling and debilitating neurological disorders (Lambert & Engum,
1992). The last category contained individuals suffering from Guillian-Barre syndrome,
myasthenia gravis, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, intrinsic and
extrinsic tumors of the brain, and toxic encephalopathy. The average age of patients was 48,
The normal controls were hospital employees. The average age of the normal controls was
31. The descriptive statistics on these samples are further described in Engum, Lambert, and
Scott (1990).

The CBDI was validated against the decisions of experienced driving instructors as to the
patients’ safety in operating a motor vehicle (r = 0.81, p <C .0001); instructors were blind as
to CBDI scores. The CBDI measures overall deficit with high internal consistency reliability
{Cronbach’s Alpha = 0.949).

The purpose of the present study is to determine the efficacy of the CBDI in differentiating
malingerers and genuine brain-damaged subjects. There are several reasons to believe the
CBDI might be effective in detecting malingering: (a) the CBDI is a timed quantitative test
that might detect malingerer’s scores that are either too impaired or not impaired enough; (b)
CBDI scores include response latencies, within-subject variance, error rates, and perfor-
mance speed that might be quite difficult for malingerers to feign; (¢) quantitative CBDI
scores can be summarized in a malingering profile that includes all evidence that distin-
guishes malingerers from brain-damaged patients.

The responses of 48 malingering subjects were compared to the responses of 251
brain-damaged patients above described. The CBDI is composed of 28 items, 25 of which
were used in the present study. Five of the seven tasks utilized were scored on multiple
dimensions. For example, a task such as Visual Reaction Differential Response (items
87ndash;14) contain four separate measures, including overall response latency, number of
errors, variance? and four visual quadrant response latencies,

METHOD

Subjects

The 48 malingering subjects were volunteers from an Abnormal Psychology class of 110
students at the University of Tennessee, Knoxville. Subjects were informed before volun-
teering that the study involved cash rewards for those individuals who could best “‘fake”
brain damage. It was further explained that the 20 students whose scores best matched the
scores of 251 brain-damaged patients would receive as much as $50 in cash. Subjecis were
also informed that the cash, totaling $250, was divided as follows: $50 for first place, $40 for
second place, $30 for third place, $20 for fourth place, six prizes of $10 each for fifth through
tenth place, and ten prizes of $5 for eleventh through twentieth place. These awards were paid
before the end of the academic quarter in which subjects participated. Each subject filled out
a consent form and a medical questionnaire. The medical questionnaire was used to screen
subjects who might have had prior difficulties such as head injury or learning disability. Such
difficulties might have affected their CBDI scores, confounding malingering with true
organic brain damage. A confidential master sheet with the students’ names was kept in order
to notify the winners.

2 Variance literally, the sum of the squared deviation of 27 scores about the standardized mean of the 27 scores. This
inherently quantitative measure is easy for a computer program to calculate from a list of scores, but very difficult
for an unaided human observer to chserve and feign.
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A total of 57 subjects were recruited; of these, 5 were unqualified to take part in the study
due to history of head injury; another four other were excluded because of computer failures,
There were 20 males and 28 females in the sample and their average age was 25.

Materials

The Cognitive Behavioral Driver’s Inventory (CBDI) includes 10 tasks yielding 28
response measures dealing with such aspects of cognitive/behavioral functioning as attention,
concentration, rapid decision-making, stimulus discrimination/response differentiation, se-
quencing, visual-motor speed and coordination, visual scanning and acuity, and attention-
shifting from one task to another (Bracy, 1982, 1985). The Digit Symbol and Picture
Completion tasks of the WAIS-R, along with Trails A and Trails B from the Halstead-Reitan
Neuropsychological Battery compose the four paper and pencil tests, which were recorded by
the experimenter. A stop-watch was used to time the subjects on the noncomputer items,
CBDI Ttems 1-3 (brake reaction time and the left and right perimeters) require special
equipment and were not utilized for this study.

On the computerized portion of the CBDI (items 8-27) subjects used an 80386 computer
with MS-DOS. Subjects used a standard joystick for items 8-23 and a keyboard for items
24-217.

Procedures

Upon arriving for the experiment, subjects were provided a brief overview of the
experiment with instructions to fake brain damage. They were once again informed of the
cash reward contingencies and then administered the CBDI, They commenced with the
WAIS-R Picture Completion task followed by the WAIS-R Digit Symbo! task, both admin-
istered as described in the WAIS-R manual. Next, Trails A and Trails B from the HRNB were
administered according to the Reitan and Wolfson (1985) method. Both Trails A and Trails
B were administered with a2 S-minute maximum allowance to complete each task, which is
part of the nermal administration of the CBDI (Engum, Lambert, Womac, & Pendergrass,
1988). Without such a time limitation, Trails A and B could take too long and a single outlier
score could be overweighed in the resuits. In addition to recording times in seconds, the
experimenter also registered a hand-written error count,

Next, the subjects were administered the four tasks of the computerized portion of the
CBDI. Task 1 corresponds to items 814, task two corresponds to items 15-21, task three
corresponds to items 22-23, and task four corresponds to items 24-27. Before each task, the
subject was required to read the directions and commence the task when ready. When
subjects finished, they were told that they would be notified before the semester ended
whether they won a cash prize.

Cases, Items, and Cross-Validation

The available sample was split by a random number into two subsamples; discovery and
cross-validation. In cross validation “. . . both samples are drawn independently from the
same population. Often a single sample is split into two halves” (Willson & Reynolds, 1982,
p. 137). The cross-validation estimates the stability of results in the local sample, not how
well they apply to new samples with different characteristics, The present study utilizes a
sample of 48 malingerers and 251 brain-damaged patients. With 25 predictors, this results in
12 cases per variable (299/25). In this study, a 50% discovery sample would have 6 subjects
per variable, less than Edwards’ (1976, p. 153) recommendation ““that n/k be equal to or
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TABLE 1
Seven Summary Scores for Patients and Malingering Students

Summary Score Rehab Patients Malingering Students Univariate
(N =251) (N =48) ANOVA
$’s Variance Across Items 50.2 101 417 8313 764 118 445 833 259 <001
Range High-Low SD Score 505 105 366 822 1031 522 448 2822 214 <001
Mean 25-Item SD Score 30.0 6.8 413 743 66.5 115 441 92,3 180 <.001
SD N ltems Failed 49.7 9.7 397 759 62.2 76 397 69.2 72 <0
SD N ltems Passed 506 9.6 353 686 6l.5 60 427 66.1 58 <001
Average of 10 Most Valid Items  50.1 8.2 390 755 57.3 79 393 70.6 32 <001
5’s §D Skew 49.7 101 19.6 884 57.1 137 208 92.5 19 <.001

Note. All scores have a mean of 50 and 8§D = 10 for the original research sample used to norm the CBDL.

The univariate ANOVAs {df = 1,297) compare 251 patients with 48 malingering students.

A seven-variable two-group MANOVA found listwise significance for these seven variables across the two groups
[F(7,291) = 102, p << 001].

greater than 10,” a little more than Tabachnick and Fidell’s (1989) ““bare minimum . . . [of]
five times more cases than IVs [independent variable].” Green’s (1991) rule-of-thumb states
that the minimum number of subjects must be N greater than 50 + 8 X the number of items.
For the present study, this translates into 50 + 8 * 25 = 250 cases. By Green’s standard, 500
cases would be needed for a 50-50 split. To balance the conflicting demands for a large
discovery group and cross-validation, 75% of the cases were assigned to the discovery
sample, 25% to cross-validation sample. A formula for distinguishing malingerers from bona
tide patients was discovered using 75%, then its stability was tested on the 25% subsample.
If discovered results capitalize on chance, accuracy should be considerably less in the
cross-validation sample. This 75% to 25% compromise, compared with 50% to 50% pays for
a more stable classification rule by larger standard errors in the cross-validation resuits.

RESULTS

An overall multivariate analysis of variance (MANOVA) compared the means of the
malingerers and brain-damaged patients on the seven CBDI summary scores:

The subjects variance across 25 CBDI items;

the range from the highest to lowest CBDI standard scores;

the mean of the 25 CBDI items;

the number of CBDI items failed;

the number of CBDI items passed,

the average of the 10 most valid CBDI items; and,

the skew of the subject’s scores about his or her own mean score,

A

The overall MANQVA revealed significant differences between patients and malingerers
[F(7, 291y = 102, p < .001]. In addition, all univariate analyses of variance (ANOVA)
revealed significant differences for the seven summary scores (p < .001). Means and F ratios
for summary scores appear in Table 1.

For all seven summary scores, malingerers performed more pathologically than brain-
damaged patients referred for driver’s evaluation. The summary scores in Table 1 appear in
order of significance, The two most significant summary scores for discriminating malin-
gerers from brain-damaged subjects were both measures of within-subject variance (scatter).
The average malingering subject produced both a significantly larger variance across scales
and a much larger range from best to worst CBDI score. The third most significant score was
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TABLE 2
Average Malingerer’s Summary Scores: Percentiles in the Patient Populations

Summary Score Malingerer’s Average  Percentile Among Patients
l. 8’s Variance Across Items 76 99.5%

2. Range High-Low $D Score 103 >099.995

3. Mean 25 Item SD Score 66 94.52%

4. SD N ltems Failed 62 88.49%

5. 8D N Items Passed 61 86.43%

6. Average of 10 Most Valid Items 57 75.80%

7. 8°s 8D Skew 57 75.80%

Note, Percentiles based on normal distribution.

the CBDI total score, the General Driver’s Index (GDI25), which is the standardized (50, 10)
mean score for 25 CBDI items. Additionally, a subject’s item skew differentiated malingerers
from brain-damaged subjects, with malingerers having more extreme positive skew. The
findings that malingerers performed in a significantly more pathological manner was also
observed for other summary scores, including total items failed, total items passed, the
10-item “short-form™ of the CBDL

Further evidence of the extreme exaggeration of the malingerers’ cognitive impairment
and behavioral inconsistency was revealed by comparing their scores to the normal distri-
bution of brain-damaged patients. Examination of the percentile ranks of summary scores of
malingerers compared with the patient sample revealed that the average malingerer’s score,
as shown in Table 2, was very high, compared with a sample of actual brain-damaged
patients. The average malingerer’s scores on the three best discriminators were: (a) subjects’
variance (99th percentile); (b) range (99th percentile); and, (c) the GDI2S score (94th
percentile}. If a patient is so severely brain-damaged, one would expect signs of organicity
to be clinically obvious.

Clinically, patients in the standardization sample had an average CBDI item or total
standard score of 50 (SD = 10) and were at least moderately impaired. A patient scoring over
70 [two standard deviations (SD) worse than the average patient] should appear dramatically
disabled; for example, suffering from a left hemiparesis, a left homonymous hemianopsia,
left hemineglect, or severe visual, spatial, and perceptual deficits. If a patient has a score over
70, yet drives to the neuropsychological evaluation and behaves without obvious impairment,
s/he may be malingering.

CBDI Scores

The 25 scores of the CBDI. In Figure 1, 95% confidence intervals of * two SD of the CBDI
scores were plotted for malingerers, brain-damaged patients, and normal controls. The
normal controls, data taken from Engum, Lambert, and Scott (1990}, were not brain-injured.
Normal controls were administered the CBDI with instructions to do as well as they could.

In Figure 1, the patient sample scores had a mean of 50 and a SD of 10 for all 28 items.
The error bars show intervals of 95% confidence around the means; for most CBDI items,
malingerers scored more pathologically than brain-damaged patients. The three exceptions
are discussed below.

Means of CBDI items 10 through 22 were excellent discriminators; these items were
based on the following tasks: (a) VRDR (simple forced choice reaction time task); (b) VRDR
Reversed (complex forced choice reaction time task); (¢) VDDR (stimulus discrimination/



498 E. C, Ray et al.

150
@
E L
S 125 |
= |
2
g8
5 100 —_—
g
o [Brain-injured patients
=) [seeking to drive
8 75— !I
@
‘g k I\\ ff [f
2 L
=] L
E 50 /I\ / \\ f
c L x \
g E -/JI\I-I_-I—I-__ 1'/ P Bt \J -~ \&l; A
W

25

T T 1 T r—T 1T 1T T T T77T N T T T T T T T T
N kB e AR 0,0 SRG OB LA REP PN PP P

Nofes: CBDI Item 1 {0 28

1. Error bars show 95% confidence infervals (+ 1.96 standard errors) about the mean.
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4. Controls from Engum, Lambert & Scott (1980)

FIGURE 1. Mean standard scores for 48 malingering students, 251 brain-injured patients, and 42 normal
controls.

response differentiation task). These tasks, respectively, measure: (a) attention, concentration,
and basic reaction time; (b) sustained attention, dynamic cognitive processing, resistance to
cognitive interference, and rapid decision-making; and, (c)} all of the items mentioned for
VRDR and VRDR Reversed plus stimulus discrimination and response differentiation
(Engum, Lambert, & Bracy, 1990).

Two CBDI items (VRDR variance, item 9, and VDDR2 errors, item 23) were limited in
discriminating ability by large SD) among malingerers, These items have SDs of 108 and 41
respectively (all items have SD = 10 for patients). While the malingerers have very high
means on these items, the large between-subject variation limits their usefulness.

Three items with means below 50 for malingerers: Trails B (item 7), Visual Scanning 3
Left Time (item 25), and Visual Scanning 3 Right Time (item 27) initially appeared
ineffective for discriminating malingerers from brain-damaged patients because their means
on these items were almost identical to those of brain-damaged patients. However, a
multivariate study revealed that two of these items; namely Visual Scanning Left Time (item
25) and Trails B (item 7), are among those items most useful in detecting malingering, as
described below,

Incremental validity of CBDI items.

The univariate analyses above show that malingerers have significantly higher means on
22 of the 25 CBDI items. Clinical applications of the CBDI require a method to combine all
relevant evidence into a single recommendation (malingerer or true patient). The stepwise
discriminant analysis® dropped items that made no unique contribution to produce a discrim-

*Discriminant analysis is a multiple regression, ¥ = b0 + 52X2 . . . in which the ¥ is categorical.
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TABLE 3
CBDI Items with Incremental Ability to Discriminate Malingerers from Actual Patietits

CBDI Items Stepwise p (o) B
25. Vscan3 Left Time <0.0001 —0.078
13. VRDR Q3 Time <0.0001 +0.101
28. Scatter Variance <0.0001 +0.059
23. VDDR2 N <(3,0001 +0.025
8. VRDR Time : . <0.0001 -0.112
12. VRDR Q2 Time <(0.0001 +0.063
4. WAIS Picture Completion <0.0001 +0.035
22. VDDR2 % Correct <(.0001 - —0.040
7. Trials B (3.0002 —0.034
16. VRDR Rev. Variance 0.0034 -0.019
24, Vscan3 Left N 0.0062 +0.029

Item numbers on left based on original CBDI, which has 28 items.

Ttems appear in order of their incremental (stepwise) ability to distinguish malingerers from patients. Item
#25 is the best single item.

Trails B lacks univariate significance but contributes significantly at the ninth step.

If the signs of beta were all the same, the discriminate function would be a simple measure of overall
impairment, rather than a malingerer’s profile.

inant function. Each subject’s score on this discriminant function indicated whether they
most resembled patients or malingerers.

Of the 25 CBDI items, 11 demonstrated incremental validity in the stepwise discriminant
analysis. Variables dropped out if they made no significant contribution to R2 beyond items
already accepted. These !1 “best discriminators” appear in Table 3.

The last column in Table 3 shows the standardized beta-weights (positive or negative) of
each variable on the discriminant function. These beta-weights are not entirely positive or
entirely negative. All CBDI scores are pathology-high with means of 50 and SDs of 10 on the
patient sample. The fact that the beta-weights in Table 3 were both positive and negative
suggests that the discriminant analysis utilized an intelligent multivariate profile not simply
classifying the most pathological cases as malingerers.

Analysis of the Discriminant Function

Hit rates. The critical feature of the analysis is how well the discriminate function distin-
guishes malingerers from actual patients. Both sensitivity (the percentage of correctly
identified malingerers) and the specificity (the percent of correctly identified non-
malingerers) are needed to judge the merit of a diagnostic technique (Kraemer, 1992). This
sensitivity-specificity analysis appears in Table 4.

To estimate hit rates, the SPSS subprogram DISCRIMINANT calculated a discriminant
function score for every malingerer and brain-damaged patient. This discriminant function
score was the weighted sum of the significant predictors, fo example, +0.38 * (z Picture
Completion) —0.35 * (z Trails B) . . . and so forth. Then DISCRIMINANT assigned each case
to the most likely group to determine if the calculated assignment was correct.

In the 75% discovery sample, 98.67% of the cases were correctly identified. Sensitivity
(correctly identified malingerers) was 91% and specificity (correctly identified brain-
damaged patients) was 100%. Accuracy in the discovery can be inflated by chance when
“correlation maximizing procedures have been used [such as] stepwise discriminant analy-
sis”” (Willson & Reynolds, 1982, p. 137). Stepwise analysis, like other automated selection
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TABLE 4
Sensitivity and Specificity for the Discriminant Function

Actual Group Predicted Group

Discovery Sample 75% Hold Back® 25% Jackknifed Count
(N =225) {Random N = 74) (N =299)
Patient Malingerer Patient Malingerer Patient Malingerer

Paticnts 191, 0, 59, 1, 247, 4,
(n =251) 100.0% 0% 98.3% 1.7% 98.0% 2.0%
specilicity false — specificity false — specificity false —

Malingering Students 3, 31, 3, 11, 5, 43,
(n = 48) 8.8% 91.2% 21% 78.6% 10.4% 89.6%

false + sensitivity false + sensitivity false + sensitivity

“The hold back analysis was done in two steps. First, a discriminant analysis was done on 75% of the sample chosen
by a random number. Then the resulting discriminate function was applied to the fresh cases.

algorithms, can detect random “noise variables™ as significant (Derksen & Keselman, 1992;
Flack & Chang, 1987) even though they would be useless predictors in a new sample.

To determine how much of the accuracy of the CBDI resulted from capitalization on
chance, sensitivity and specificity were calculated for the cross-validation (hold back)
subsample. In addition to the hold back sample, jackknifed accuracy estimates were calcu-
lated. Jackknifed classification utilized the whole sample (N = 299}, correcting the discovery
sample’s potentially optimistic accuracy estimates by using classification functions based on
all cases except the one being classitied (Dixon, 1992; Lachenbruch & Micky, 1968). The
cross-validation* and jackknifed results appear in Table 4. Compared with the discovery
sample, specificity remained above 98% accuracy in classifying brain-damaged patients
correctly. Sensitivity in detecting malingerers decreased from 91.2% to 89.6% in the
jackknifed count, and 78.6% in the hold back sample. These diminished sensitivities are high
enough to be clinically useful in the absence of other detecting methods with better sensitivity
and specificity.

Is there a malingering profile? Figure 1 compellingly demonstrates that malingerers score
worse than legitimate patients on 22 of 25 CBDI items. The discriminant analysis revealed
a differentiated profile for malingering, one with both positive and negative beta-weights.
Does this complex profile actually add anything beyond the simple observation that grossly
pathological scores indicate malingering?

To answer this question, a jackknifed discriminant analysis was implemented first with 25
items and then again with only one predictor, the GDI25 total impairment score. The GDI25
score has been previously demonstrated as the best single estimate of overall performance on
the CBDI (Lambert & Engum, 1990). The sensitivity of the multivariate profile version was
higher than that of the multivariate version (90% to 77%), but this difference was not
significant® with 48 malingering cases [x*(1) = 2.7, p = .10, NS|. The specificity of the
multivariate profile version was higher as well (98% to 88%), and this difference was
significant [x*(1) = 20, p < .00001]. This significant difference suggests that there are profile

*The 95% confidence interval for 11 correct out of 14 is 57% to 100%.

“The effect size of this nonsignificant difference was Cohen’s (1988) W = .237. The power of this x* with N = 48
was only 38%; if there were a real result with W = 237 there would be a 62% chance of a B error (missing a real
result).
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differences between patients and malingerers beyond the obvious fact that the malingerers
had a more pathological total score than the brain-damaged patients,

Post-study interviews were carried out with the two “most successsful” malingerers,
winners of the top two financial rewards ($50.00, $40.00) to learn what strategies they
employed. The most successful subject stated that he simply forgot to feign brain-damage.
The second best malingerer stated that he tried to respond normally.

DISCUSSION

The results of this study suggest that a timed quantitative test administered by computer
can discriminate malingering pseudo-patients from patients whose impairment is genuine.
There are four reasons to support this conclusion: {a) the ability of individual items to
discriminate malingerers from brain-damaged patients; (b) the subtlety of CBDI scores, such
as overall reaction time, four quadrant reaction times, variance, error scores, and “hidden’
items (of which the potential malingerer would not be aware): (¢) the misleading face-validity
of certain CBDI items, inviting malingerers to identify themselves by markedly poor
performances; and (d) a discriminant function with both positive and negative beta-weights.

There were highly significant differences between brain-damaged patients and malinger-
ers on subtle aspects of task response on the CBDI. For example, on VRDR, a simple choice
reaction time task, brain-damaged patients averaged approximately 0.57 seconds while
malingerers averaged 1.24 seconds. Normal controls in the study by Engum, Lambert, and
Scott (1990) responded in approximately 0.41 seconds. Instead of delaying their responses an
average of 0.16 seconds, malingerers produced response latencies averaging 0.83 seconds.
Malingerers grossly exaggerated their response latencies when attempting to feign brain-
damage. The small confidence intervals around the item means (Figure 1) suggest that a
malingerer would have to be very precise to deceive the CBDIL.

Second, the complexity of many of the CBDI tasks makes what we believe to be
impossible demands on the malingerer, such as manipulating seven variables simultaneously
on the VRDR (overall response latency, response latencies in each of the four visual
quadrants, an overall variance, and an error score). Merely being familiar with the test does
not enable the malingerer to “get the right scores.” In addition, between-item variance
(scatter) based on 25 items was one of the most sensitive variables discriminating brain-
injured patients from malingerers. We posit that response consistency is very difficult for a
malingerer to fake. Malingerers’ inability to control multiple response measures, some with
tolerances as fine as (.20 seconds, resulted in their detection.

Third, CBDI items have a face validity that might mislead malingerers. For example,
Visual Scanning 3 yielded surprisingly high response latencies for the normal controls {right
= 5.7 seconds; left = 6.1 seconds)} and for the brain-damaged patients (right = 12.0 seconds;
lett = 12.5 seconds). Malingerers, unaware of the test norms, had mean response latencies
more closely resembling normal controls than brain-damaged patients.

Finally, the discriminant function included both negative and positive beta-weights.
Evidently individuals feigning brain-damage were impaired on some tasks and not impaired
enough on others. Utilizing a weighted sum of 11-item scores enhanced the ability to
discriminate malingerers from brain-damaged patients. While the discriminant function
would be complicated to calculate by hand, it could be calculated easily by a spreadsheet or
the software used to administer and score the CBDI.

The present research has limitations. First, the malingerers were undergraduate psychol-
ogy students. Malingering studies are needed with different populations. The ideal sample
would be difficult to identify, since malingerers seeking financial compensation or evading
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criminal responsibility are not going admit that they are malingering. One of the authors
(ESE) has clinically identified real malingerers with both the CBD1 and other psychometric
evidence, but not in numbers adequate for statistical comparisons.

Second, the sophistication of subjects, instructed to malinger but not taught how, may be
lower than that of real malingerers. Research in progress teaches subjects the signs of
brain-damage. If in fuwre research informed subjects can be detected, subjects could be given
feedback on CBDI items to determine if it is possible under ideal conditions to control
multiple quantitative scores on a timed computer-administered test.

Because of the possibility of coaching, the CBDI is a qualification level “C” test
according to the Standards for Educational and Psychological Testing. Only these individuals
with advanced graduate degrees in psychology and advanced training in psychological
assessment may utilize the CBDI. Detailed information about the CBDI must not be
disseminated to the general public. In this way, even if coaching is possible, the CBDI can
be maintained as a highly effective detection methodology for foiling the best efforts of
disingenuous pseudo-patients.
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