Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface

WEI-MIN WU,‡ JACK CARLEY,† STEFAN J. GREEN,‡ JIAN LUO,‖ SHELLY D. KELLY,§ JOY VAN NOSTRAND,‡ KENNETH LOWE,‡ TONIA MEHLHORN,† SUE CARROLL,‡ BENJAPORN BOONCHAYANANT,† FRANK E. LÖFFLER,‖ V. DAVID WATSON,‡ KENNETH M. KEMNER,† JIZHONG ZHOU,*, PETER K. KITANIDIS,‡ JOEL E. KOSTKA,§ PHILIP M. JARDINE,‖ AND CRAIG S. CRIDDLE*†

Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332

Received January 10, 2010. Revised manuscript received May 13, 2010. Accepted May 14, 2010.

The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then decreased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption—adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H₂S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

1. Introduction

Bioremediation of soluble U(VI) by its reduction to sparingly soluble U(IV) was proposed in the early 1990s (1) and subsequently tested under field conditions (2–6). The reduction is mediated by dissimilatory iron-reducing bacteria (DIRB), such as Geobacter spp. and Anaeromyxobacter spp., various Clostridia, and by sulfate-reducing bacteria (SRB), such as Desulfovibrio spp. (1, 2, 7–14). Under some conditions, abiotic reductants containing Fe(II) and sulfide also play a role (13, 15, 16).

Pilot-scale studies of in situ U(VI) reduction have been conducted at a site adjacent to the former S3 ponds (source zone) within Area 3 of the U.S. Department of Energy Oak Ridge Integrated Field Research Center (ORIFRC), Oak Ridge, TN. The site contains uranium at concentrations up to 800 mg kg⁻¹ in the soil and 250 μM (60 mg L⁻¹) in acidic groundwater. In a series of field tests, a two-step process decreased aqueous U concentrations by more than 1000 fold: in the first step, groundwater pH was increased from 3.4 to 6.0 enhancing U(VI) sorption and decreasing aqueous U concentrations from 30–40 to ~1 mg L⁻¹; in the second step, ethanol addition stimulated microbial reduction of U(VI) and decreased U concentrations below the U.S. Environmental Protection Agency maximum contaminant level (MCL) for drinking water (30 µg L⁻¹) (6). The U(IV) was stable and immobile under anaerobic conditions, but remobilized upon exposure to dissolved oxygen (6), confirming results from laboratory studies (14, 17, 18). Other oxidants that may promote remobilization are nitrate and nitrite. At the ORIFRC, groundwater present in the near-source zone contains extreme nitrate levels, up to 160 mM (4). The present study addresses the effects of nitrate on uranium stability at the ORIFRC.

Nitrate does not directly oxidize U(IV) at appreciable rates (19), but microorganisms can mediate enzymatic oxidation of U(IV), and they can facilitate its abiotic oxidation. Nitrite slowly oxidizes U(IV) to U(VI) but does so rapidly in the presence of Fe(II) ions (19). Moreover, some bacteria oxidize U(IV) to U(VI) with nitrate as terminal electron acceptor. The DIRB Geobacter metallireducens carry out nitrate-dependent U(IV) oxidation without accumulation of nitrite (7). By contrast, Anaeromyxobacter dehalogenans 2CP-C produces nitrite as an intermediate in the reduction of nitrate to ammonium and oxidizes U(IV) to U(VI) (9). The iron-oxidizing bacterium (FeOB) Thiobacillus denitrificans can carry out denitrification coupled to oxidation of elemental sulfur, H₂S, and Fe(II), and it cometabolically oxidizes U(IV) to U(VI) (20). At circumneutral pH, Fe(III) hydroxides mediate U(IV) oxidation. These Fe(III) hydroxides are formed by nitrate-dependent Fe(II)-oxidizing bacteria, by DIRB, and by abiotic oxidation of Fe(II) by nitrite. Nitrite is also produced as a denitrification intermediate and during dissimilatory nitrate reduction to ammonia (DNRA). DNRA is carried out by some DIRB and SRB, such as Geobacter sp. and Desulfovibrio desulfuricans (21–23). Reduction of other denitrification...
pathway intermediates, such as nitric oxide (NO) and nitrous oxide (N₂O), can couple to U(IV) oxidation, and may be catalyzed by biotic or abiotic mechanisms (24, 25). The relevant reactions are summarized in Table S1 of the Supporting Information (SI).

Microbial community structure plays a role in U(IV) oxidation. In column experiments, nitrate addition stimulated uranium reoxidation and remobilization in bioreduced sediments (18, 26), but reoxidation did not occur when nitrate was added to a sulfate-reducing enrichment dominated by Desulfovibrio spp. or to an ethanol-fed Fe(III)-reducing enrichment dominated by Clostridium spp. (14). Both enrichments were derived from ORIFRC reduced sediment. Prior field assessments of microbial community structure at the ORIFRC revealed the presence of Geobacter, Anaeromyxobacter, Desulfovibrio, and Thiobacillus, species that can promote U(VI) reduction and U(IV) oxidation (6, 27–29). Accordingly, a field study was designed to assess the potential for nitrate-mediated reoxidation. The results established that nitrate promotes microbially mediated U(IV) reoxidation and mobilization; that the level of mobilized uranium then decreases, likely due to the enhanced capacity for U(VI) sorption of reduced/reoxidized sediment; and that reoxidation can restore low levels of aqueous uranium.

2. Materials and Methods

2.1. Field Subsurface System. In previous ORIFRC studies, intermittent injections of ethanol (industrial grade, containing 88.12% ethanol, 4.65% methanol, and 7.23% water, w/w, prepared as a 9.8 g COD L⁻¹ stock solution) were added to bioreduce a region of the subsurface. Denitrification, sulfate reduction, and U(VI) bioreduction and immobilization occurred within this region. The stability of the immobilized uranium was then evaluated in the absence of added ethanol and in the presence of dissolved oxygen (Days 811–884) (6). When reducing conditions were re-established, aqueous uranium levels fell to low values (6). Low U levels (<0.08 µM) were measured within the bioreduced region prior to the present study.

The present study used the same well infrastructure described previously (4, 6, 30) and detailed in the SI. Briefly, this system was designed to create two groundwater recirculation loops: an outer loop, with water extracted at extraction well FW103 at 0.45 L min⁻¹ and injected at injection well FW024; and a nested inner loop, with water extracted at well FW026 and injected at injection well FW104 at 0.45 L min⁻¹ (Figure 1). In normal operation, clean water was injected into the outer loop (0.9 L min⁻¹). In practice, some water passes from injection well 104 to outer loop extraction well FW103. Recirculation creates a hydraulic barrier that prevents highly contaminated groundwater from entering the inner loop, where controlled chemical additions can be performed (30). In the present study, four multilevel sampling wells within the inner loop were used to monitor changes in groundwater quality: FW101-2 (13.7 m below ground surface (bgs)), FW101-3 (12.2 m bgs), FW102-2 (13.7 m bgs), and FW102-3 (12.2 m bgs). These wells were chosen because of their hydraulic connection to the inner loop injection well FW104 (31).

2.2. Field Tests. The following experiments were performed:

1. Baseline Assessment of Hydraulic Connectivity and Ethanol Usage (Day 1166). To determine initial levels of connectivity between wells and baseline ethanol usage patterns, ethanol (1.1 mM) and bromide were injected into injection well FW104 at a COD/bromide mass ratio of 2.46 g g⁻¹ (31).

2. Controlled Nitrate Addition (Days 1398–1419). Controlled addition of nitrate at FW 104 was used to assess the stability of reduced uranium previously immobilized within the inner loop. The flow rates of both the inner and outer loop extraction wells were set to 0.45 L min⁻¹. Water injected at the outer loop injection well FW024 was augmented with 0.9 L min⁻¹ of clean water (deoxygenated). The study was executed in four phases:

Phase 1 (Days 1398–1403). Bromide and nitrate were added to the inner loop injection well FW104. Breakthrough patterns for bromide and nitrate were monitored at the monitoring wells and at both extraction wells. The ratios of nitrate to bromide enabled estimates of nitrate removal in situ. At the inner loop extraction well FW 026, in situ nitrate removal ranged from 42 to 94%. At the outer loop extraction well FW103, in situ nitrate removal ranged from 51 to 76%. On Day 1402, however, changes in groundwater flow paths led to an abrupt increase in nitrate concentrations at FW103 with extraction of nitrate-rich source zone groundwater. By Day 1403, nitrate/bromide ratios at FW103 were >18 times those of inner loop extraction well FW026.

Phase 2 (Days 1403–1404). Nitrate, bromide, and ethanol were added to the inner loop injection well FW104. The ratios of nitrate to bromide measured at the inner loop extraction well FW026 indicated 71–94% nitrate removal. By contrast, nitrate levels at outer loop injection well FW103 increased to 7 mM. By the end of Day 1404, nitrate/bromide ratios at FW103 were 142 times those of FW026, indicating continued extraction of nitrate-rich groundwater from the source zone.

Phase 3 (Days 1405–1408). Ethanol alone (no nitrate or bromide) was added to the inner loop injection well FW104. Nitrate concentrations at FW104 decreased to low levels (0.1–0.01 mM), as did nitrate levels at the inner loop extraction well FW026 (0.1–0.2 mM), but nitrate concentrations at the outer loop extraction well FW103 remained elevated at 3–7 mM (Figure S1).

Phase 4 (Days 1408–1419). Ethanol, nitrate, and bromide additions to the inner loop stopped, but the inner loop extraction well continued to extract and recirculate groundwater. Nitrate concentrations within the inner loop increased slightly, with concentrations at inner loop injection well FW104 increasing to 0.4 mM by Day 1419.

3. Exposure of the Reduced Inner Loop to Source Zone Groundwater (Days 1420–1496). From Day 1420 to Day 1434, ethanol was injected intermittently at FW104. Despite the added ethanol, nitrate concentrations increased in the outer loop extraction well FW103, reaching ~20 mM by Day 1428 (SI Figure S3A), and in the inner loop injection well FW104 increasing to 4 mM by Day 1438 and then slowly decreasing. On Day 1451, the groundwater extraction pump in well FW103 was turned off, enabling penetration of source zone groundwater to the inner loop extraction well FW026. Water was
TABLE 1. Groundwater Composition and Uranium Speciation in Monitoring Well Sediments before and after Nitrate Exposurea

<table>
<thead>
<tr>
<th>monitoring well</th>
<th>day</th>
<th>status</th>
<th>pH</th>
<th>U (μM)</th>
<th>Fe2+ (mM)</th>
<th>Ca2+ (mM)</th>
<th>HCO3− (mM)</th>
<th>NO3− (mM)</th>
<th>H2S (mM)</th>
<th>U (mg/kg)</th>
<th>% U(IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW101-2</td>
<td>1202</td>
<td>R</td>
<td>5.96</td>
<td>0.14</td>
<td>0.009</td>
<td>0.75</td>
<td>1.23</td>
<td>nd</td>
<td>0.11</td>
<td>555</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>O</td>
<td>6.00</td>
<td>0.82</td>
<td>nd</td>
<td>0.90</td>
<td>1.82</td>
<td>0.13</td>
<td>nd</td>
<td>691</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>1578</td>
<td>R</td>
<td>6.24</td>
<td>0.10</td>
<td>0.013</td>
<td>0.77</td>
<td>1.89</td>
<td>0.034</td>
<td>0.008</td>
<td>840</td>
<td>67</td>
</tr>
<tr>
<td>FW101-3</td>
<td>1202</td>
<td>R</td>
<td>6.00</td>
<td>0.052</td>
<td>0.013</td>
<td>0.72</td>
<td>1.01</td>
<td>nd</td>
<td>0.056</td>
<td>935</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>O</td>
<td>5.99</td>
<td>0.59</td>
<td>nd</td>
<td>0.87</td>
<td>1.03</td>
<td>0.19</td>
<td>nd</td>
<td>956</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>1578</td>
<td>R</td>
<td>6.12</td>
<td>0.40</td>
<td>0.014</td>
<td>0.82</td>
<td>0.99</td>
<td>0.21</td>
<td>0.001</td>
<td>733</td>
<td>nd</td>
</tr>
<tr>
<td>FW102-2</td>
<td>1202</td>
<td>R</td>
<td>5.89</td>
<td>0.097</td>
<td>0.025</td>
<td>0.65</td>
<td>1.01</td>
<td>nd</td>
<td>0.073</td>
<td>465</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>O</td>
<td>6.47</td>
<td>0.30</td>
<td>nd</td>
<td>1.05</td>
<td>1.56</td>
<td>0.14</td>
<td>nd</td>
<td>284</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1578</td>
<td>R</td>
<td>6.31</td>
<td>0.13</td>
<td>0.027</td>
<td>0.77</td>
<td>1.77</td>
<td>0.02</td>
<td>0.02</td>
<td>264</td>
<td>64</td>
</tr>
<tr>
<td>FW102-3</td>
<td>1202</td>
<td>R</td>
<td>6.07</td>
<td>0.36</td>
<td>0.028</td>
<td>0.57</td>
<td>0.91</td>
<td>nd</td>
<td>0.044</td>
<td>1404</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>O</td>
<td>5.93</td>
<td>0.86</td>
<td>nd</td>
<td>0.75</td>
<td>0.86</td>
<td>0.1</td>
<td>nd</td>
<td>1814</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1578</td>
<td>R</td>
<td>6.07</td>
<td>0.11</td>
<td>0.036</td>
<td>0.62</td>
<td>1.37</td>
<td>0.003</td>
<td>0.022</td>
<td>1793</td>
<td>85</td>
</tr>
</tbody>
</table>

Note: (1) R = reduced; O = oxidized. (2) nd = below detection: Fe2+ < 0.001 mM; NO3− < 0.0005 mM; sulfide < 0.05 μM; U(IV) < 10%. (3) Analytical error of XANES for U(IV) is about ±10%.

extracted at FW026 at a flow rate of 0.45 L min−1 augmented with 0.9 L min−1 of clean, deoxygenated water injected into injection well FW104 (30, 31). Nitrate levels decreased due dilution by the added clean water and a shift in microbial community structure. Both ferrous iron and sulfide fell, and sulfate levels increased. *T. denitrificans* a species known to couple the oxidation of reduced sulfur and Fe(II) to nitrate reduction, was detected in clone libraries.

(4) Rereduction of U (Days 1497–1578) and Reassessment of Well Connectivity (Day 1559). On Day 1497, ethanol was added to inner loop injection well FW104. Ethanol was rapidly consumed. Accordingly, on Day 1500, the flow rate of the outer loop recirculation was restored at 0.45 L min−1 augmented with 0.4 L min−1 of clean water. Ethanol was added to inner loop injection well FW104 each week from Day 1500 to Day 1578 over 2-day periods. On Day 1559, bromide was added (COD/Br- ratio of 2.46 g g−1) to reassess connectivity of the monitoring wells.

2.3. Groundwater and Sediment Sampling. Sampling protocols for groundwater and sediment are described in prior publications (5, 6) and in the SI. Sediment samples were collected using the surge-block method before nitrate exposure (Day 1202), after groundwater intrusion from the source zone (Day 1490), and after rereduction (Day 1578).

2.4. Chemicals and Analytical Methods. Protocols used for the analysis of U(VI), chemical oxygen demand (COD), sulfide, anions (including NO3−, Br−, Cl−, SO42−, and PO43−), metals (Al, Ca, Fe, Mn, Mg, K, etc.), ethanol, and acetate are described in previous publications (5, 6), and in the SI. Fe(II) and nitrite were assayed colorimetrically using a HACH DR 2000 spectrophotometer (Hach Chemical, Loveland, CO). The oxidation state of U in sediment samples was determined by X-ray adsorption near edge spectroscopy (XANES) (6, 32).

An SRI model 8610-0072 TCD GC was used to measure dissolved N2O, as described elsewhere (33).

2.5. Bacterial Community Analysis. Microbial communities were characterized by analysis of 16S rRNA gene clone libraries, as described previously (35, 36) and in the SI. A threshold of 97% sequence similarity was used for the determination of operational taxonomic units (OTU). A total of 351 clones were analyzed from four samples, with 44–114 clones per sample.

3. Results and Discussion

3.1. Chemical and Hydral Characterization. Groundwater pH ranged from 5.7 to 6.1 at injection well FW104 and from 5.9 to 6.3 at the monitoring wells. Alkalinity ranged from 0.9 to 2.0 mM at the monitoring wells (Table 1). Subsurface temperatures ranged from 12 °C (Winter) to 21 °C (Summer) as shown in SI Figure S5.

3.2. Tracer Studies and Quantification of Nitrate Removal. Injection well FW104 remained hydraulically connected to monitoring wells FW101-2, FW102-3, and FW102-2 throughout the study, but the connection to FW 101-3 was gradually lost (SI Table S1, Figure S2). The pattern of hydraulic connection (ranked best to worse) was FW101-2 > FW102-3 > FW102-2 > FW101-3. FW101-2, the monitoring well closest to the injection well, was also the best connected, with >92% recovery of bromide and a mean travel time of <9 h. Monitoring well FW102-3 had 63–84% recovery of bromide, with travel times ranging from 10 to 38 h. FW102-2 was only partially connected, with 36–42% recovery of bromide and mean travel times of 74–106 h. Monitoring well FW101-3 had 70% bromide recovery on Day 1166, but <10% on Day 1559. Because of this connectivity loss, data from this well were not used for the analysis of nitrate effects.

Ethanol (1.1 mM) was injected at FW 104 on Days 1166 and 1559, along with bromide (COD/Br- of 2.46 g g−1). Based on changes in the COD/Br- ratio, more than 50% of the injected COD (as ethanol) was consumed between the injection and monitoring wells. Acetate was produced as an intermediate; its concentration increased to 0.9, 0.4, and 0.7 mM at wells FW101-2, FW102-2, and FW102-3, respectively.

3.3. Effects of Controlled Nitrate Addition on U Stability (Days 1398–1419). Figure 2 summarizes geochemical changes during each phase. By the end of phase 2, bromide concentrations peaked at the monitoring wells (Figure 2a). Nitrate concentrations leveled off at the end of phase 1, and either remained stable or decreased in phase 2 (Figure 2b), indicating removal of nitrate. The fraction removed was computed as follows:

\[
nitrate \text{ removal fraction} = 1 - \frac{\text{NO}_3^-_{\text{measured}}}{\text{NO}_3^-_{\text{theoretical maximum}}} \]

where

\[
\text{NO}_3^-_{\text{theoretical maximum}} = \frac{\text{NO}_3^-_{\text{injected}} \cdot \text{Br}^-_{\text{measured}}}{\text{Br}^-_{\text{injected}}}
\]

Prior to ethanol addition (i.e., during phase 1), the fraction of nitrate removed at the monitoring wells ranged from 0.2 to 0.8 (Figure 2a). Part of this nitrate was removed by incomplete reduction to nitrite and part by DNRA (Figure 2c and d; Figure 3b and c) (23, 36). Both processes require reducing equivalents (SI Table S1, eqs 9 and 10). The likely
FIGURE 2. Geochemical effects of controlled nitrate additions (Days 1398 to 1408): (a) Br⁻, (b) NO₃⁻, (c) NO₂⁻, (d) NH₄⁺, (e) COD, (f) ethanol, (g) acetate, (h) uranium, (i) pH, (j) SO₄²⁻, (k) H₂S, (l) Fe(II). Vertical lines indicate four phases, horizontal brown lines indicate NO₃⁻/Br⁻ injections; horizontal red lines indicate ethanol injections.
sources of reducing equivalents were reduced solids, including Fe(II) compounds, reduced forms of sulfur (SI Table S1, eqs 5–7), and decaying biomass which had accumulated in the sediments as a result of two years of prior biostimulation. From the bromide data, 16% of the nitrate-N was converted to nitrite-N and at least 7% to NH$_4^+$-N (Figure 3b and c). The conversion to NH$_4^+$-N likely exceeded 7% because aqueous NH$_4^+$-N concentrations were used to estimate this value; a more accurate value would include NH$_4^+$ sorbed to illite (37), a clay constituting about 17% of the total clay fraction of ORIFRC soils.

Upon addition of ethanol in phase 2 (Days 1403–1404), the nitrate removal fraction approached 1.0, indicating essentially complete removal. The % conversion to nitrite and ammonium decreased over time, suggesting complete denitrification to N$_2$. Nitrous oxide, a potential intermediate, was not detected in gas phase samples obtained before and at the end of nitrate injection. During phase 1, nitrite concentrations increased at FW102-3, indicating that the rate of nitrite production exceeded the removal rate (Figure 2b). Later, levels fell as the removal rate exceeded the production rate. During phase 2, nitrite levels increased, indicating that nitrite reduction proceeded faster than nitrite reduction. But at wells FW101-2 and FW102-2, ethanol addition stimulated more rapid nitrite removal. In phase 3, nitrite levels decreased below the detection limit at all wells, while ammonium levels remained somewhat elevated, likely due to ammonification of decaying biomass and desorption from soil.

Ethanol addition during phase 2 increased COD at the injection and monitoring wells, but ethanol was only detected at injection well FW104 (Figure 2f). Over time, ethanol concentrations decreased as acetate levels increased (Figure 2g), indicating partial oxidation of ethanol to acetate (SI Table S1, eq 15). Acetate was detected at the monitoring wells in previous studies (5). On Day 1405, acetate accounted for >90% of the COD at wells FW102-3 and FW101-2, and >60% of the COD at FW 102-2.

Sequential, interrelated geochemical changes occurred in Fe(II), sulfide, sulfate, and soluble uranium (Figure 2f–i). Initially, the reduced sediments released Fe(II), but, over time, Fe(II) concentrations decreased, likely due to Fe(II) oxidation. Increasing levels of sulfate (Phase 1) suggest oxidation of reduced sulfur (SI Table S1, eqs 5, 17, 18) and/or sulfate desorption. Ethanol addition (Phase 2) reversed this pattern, stimulating Fe(II) production and sulfate reduction. Fe(II) levels increased at the beginning of phase 3. Sulfide was not detected until nitrate and nitrite levels were nearly absent (beginning of phase 3). As sulfide accumulated, Fe(II) levels leveled off then decreased, consistent with onset of FeS precipitation (SI Table S1, eq 19).

During phase 4 (recirculation without ethanol), sulfate levels increased, and sulfide levels fell (Figure 2j and k). Complete removal of sulfide as FeS likely explains the increase in Fe(II) observed at well FW 101-2 (Figure 2i).

The above patterns can be related to changes in dissolved uranium. Aqueous uranium levels increased during controlled nitrate additions (Figure 2, phase 1), indicating mobilization of solid-associated uranium. Upon initiation of ethanol addition, aqueous levels of uranium increased further then decreased (Phases 2 and 3). The initial increase was likely due to reduction of Fe(III) solids, with release of U(VI) sorbed to ferric(hydro)oxide precipitates. Continued addition of reducing equivalents drove reduction of U(VI) and a decrease in aqueous uranium levels (Phase 3). The decline in U(VI) was accompanied by a decrease in Fe(II) and an increase in sulfide, again with likely formation of FeS. Both sulfide and Fe(II) species are implicated in U(VI) reduction (13–15). U(VI) reduction by oxidation of hydrogen sulfide generates elemental sulfur (13, 14), a possible source of electrons for nitrate reduction (SI eqs 8 and 18, Table S1).

3.4. Effects of Exposure of the Reduced Inner Loop to Source Zone Groundwater (Days 1420–1496)

In the course of the controlled nitrate addition experiments, outer loop extraction well FW 103 began to extract high levels of nitrate that entered the outer loop from the nitrate-rich source zone. This change was apparently due to partial loss of hydraulic connection to the outer loop injection well FW 024. As a result of this change, nitrate levels in the outer loop extraction well FW103 increased to 20 mM (SI Figure S3). Some of this water was withdrawn by the inner loop extraction well FW 026 and injected into the inner loop injection well FW104. By Day 1434, sulfide and Fe(II) concentrations fell to below the detection limit. By Day 1446, nitrate concentrations at FW104 had increased to 4.0 mM, despite ethanol additions and the injection of clean water (Figure 4a).

On Day 1451, the outer loop recirculation pump was turned off but recirculation continued within the inner loop. Nitrate levels fell to ~0.1 mM by day 1490 (Figure 4a). Likely explanations for the decrease in nitrate are dilution from the addition of clean water and microbial denitrification coupled to oxidation of reduced forms of sulfur, iron, and uranium, as evidenced by increased levels of sulfate (data not shown), decreased levels of Fe(II), increased levels of U(VI), and detection of *T. denitrificans* sequences and those of closely related species. Uranium levels increased then decreased at all of the monitoring wells, mirroring the rise and fall of nitrate in the injection well FW104. At wells FW101-2 and FW102-3, aqueous uranium levels were higher than those of the injection well FW104, indicating that the increased uranium concentration at these wells was due to remobilization; not simply recirculation of source zone groundwater containing...
uranium. Eventually, the concentrations of uranium at well FW104 and at the monitoring wells converged.

3.5. Rereduction of Uranium (Days 1497–1578). On Day 1497, daily ethanol injections resumed. On Day 1500, the outer loop recirculation was restored, with weekly two-day ethanol injections at FW104. Fe(II) concentrations initially increased to >0.08 mM, then decreased as sulfide concentrations increased (Figure 4c and d). U concentrations in FW102-2 and FW102-3 initially increased to levels exceeding those of injection well FW104, indicating U remobilization. This increase was likely due to reduction of Fe(III) solids, with release of Fe(II) and sorbed U(VI), as noted previously in the controlled nitrate addition experiment. As sulfide accumulated, aqueous uranium concentrations decreased to levels below those of the injection well. After 2 months of ethanol injection, aqueous U concentrations were less than 0.1 µM.

3.6. Uranium Valence in Sediment Samples and U Distribution. Table 1 summarizes geochemical properties of the groundwater and solid-phase U concentrations in sediment samples from the monitoring wells. The percentage of total U present as U(IV) was determined by XANES. Prior to reoxidation with nitrate, the treatment area was reduced and anaerobic. The soluble U(IV) concentrations in groundwater from the monitoring wells were low, and the uranium in sediment was present mainly as U(IV) (Day 1202). After >2 months of exposure to nitrate from the contaminated source-zone (Day 1490), no Fe(II) or sulfide was detected in the groundwater, and U in the sediment was mainly present as U(VI) (uranyl). After weekly injections of ethanol for 2 months (Day 1578), U(VI) levels in the sediment of FW101-2, 102-2, and 102-3 decreased, although the %U(IV) was less than the value on Day 1202. After Day 1490, the connectivity of FW101-3 to the injection well was poor; consequently, it received little electron donor, and its sediment did not contain Fe(II) and U(IV), and to reduce nitrate to N2 (20). 16S rRNA gene sequences from this genus increased in relative abundance (% of total sequence) after exposure to nitrate (SI Table S3). Bacteria from the families Desulfobacteraceae, Desulfovibrionaceae, Desulfofabaclaceae, and Peptococcaceae) was present, but after reoxidation with nitrate, sequences from SRB were negligible.

Prior to nitrate oxidation, nitrate-, iron-, and sulfate-reducing bacteria of the phyla Proteobacteria and Acidobacteria dominated the bacterial clone libraries. The dominance of β-Proteobacteria in these reduced sediments was reported previously (27, 28, 34, 35). Most of these β-Proteobacterial sequences belonged to the families Rhodocyclaceae and Hydrogenophilaceae. Within the Hydrogenophilaceae, all sequences were affiliated with the genus Thiobacillus, which includes T. denitrificans, a bacterium known to oxidize reduced forms of sulfur as well as minerals containing Fe(II) and U(IV), and to reduce nitrate to N2 (20). 16S rRNA gene sequences from this genus increased in relative abundance (% of total sequence) after exposure to nitrate (SI Table S4). T. denitrificans is a chemolithoautotroph that would likely persist before and after nitrate exposure. Within the family Rhodocyclaceae, all samples contained sequences of three putative denitrifying genera: Ferribacterium, Denitratisoma, and Sterolobacterium (38, 39). The relative abundance of δ-Proteobacteria, including putative SRB and DIRB, decreased from 27–32% to 7–8% after nitrate exposure, consistent with prior research suggesting that these organisms require a continuous supply of reductant (40). Before reoxidation with nitrate, a diverse assemblage of SRB (from the families Desulfobacteraceae, Desulfovibrionaceae, Desulfobulbacceae, and Peptococcaceae) was present, but after nitrate exposure, sequences from SRB were negligible. Sequences from bacteria from the DIRB family Geobacteraceae were well represented in monitoring well FW101-2, but decreased after nitrate exposure from 13 to 7% of the
sequences recovered (SI Table S3). Most of the 16S rRNA sequences affiliated with the phylum Acidobacteria were closely related to Geothrix fermentans, an Fe(III)- and nitrate-reducing microorganism (27, 41). The relative abundance of these sequences varied between the sampled wells before and after nitrate exposure.

3.8. Implications. Introduction of nitrate into the reduced subsurface led to U mobilization. Long-term U immobilization as U(IV) may thus require removal of nitrate. But the results also suggest that immobilization of uranium may be facilitated by controlled reoxidation after reduction. Aqueous levels of uranium initially increased after reoxidation, then decreased (6). Rereduction of these oxidized sediments released Fe(II) and soluble U(VI), suggesting that the decrease in soluble U during reoxidation was due to U(VI) sorption to Fe(III) oxides. Sediments in the near-source zone at the ORIFRC site contain >3% Fe(III) coatings on clay minerals (42), and HCl-extractable iron of up to 50 mg g⁻¹ (or 5% of solids) is detected in monitoring well sediment samples. Levels of uranium in the nitrate-oxidized sediment increased in two monitoring wells (FW101-2 and FW102-3) (Table 1). Reoxidation of iron-rich sediments after bioreduction may thus generate Fe(III)(hydro)oxides with increased capacity for U(VI) sorption. Figure 5 integrates these insights with those of previous studies to give an overview of biogeochemical processes that control the mobility of uranium in iron-rich sediments. Critical factors are the levels of Fe(II) and Fe(III), dissolved oxygen, nitrate, and sulfate; levels of electron donor (ethanol or acetate in this case); concentrations of U(VI) ligands, especially carbonate and calcium; and the activity of SRB, FeRB, and FeOB.

Acknowledgments
This work was funded by the U.S. DOE Subsurface Biogeochemical Research Program under grant DE06-00OR22725. We thank Xiangping Ying for analytical help and Julie Stevens for her daily work in project administration. Support for XANES data collection at the MRCAT at the Advanced Photo Source, and analyses was provided by the U.S. DOE SBR and DOE Office of Science, Office of Basic Energy Sciences.

Supporting Information Available
Description of field system, major geochemical reactions, bacterial community analysis, XANES measurements, results of tracer tests, invasion of nitrate-containing groundwater after nitrate injection test, groundwater temperature and uranium distribution. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

