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1 Introduction

Stock return is a key variable to firms’ capital structure decisions, portfolio management, asset pricing and

other financial problems. As such, forecasting return has been an active research area since Dow (1920).

Rapach and Zhou (2013), Campbell (2000) and Goyal and Welch (2008) illustrate a number of macroe-

conomic predictors and valuation ratios which are often employed in equity premium forecasting models.

Valuation ratios include the dividend-price, earnings-price and book-to-market ratios an macroeconomic

variables include nominal interest rates, the inflation rate, term and default spreads, corporate issuing ac-

tivity, the consumption-wealth ratio, and stock market volatility. However, if such predictors are weak in

the sense that their effects on the conditional mean of the equity premium are very small, then including

them in the forecasting equation will result in low-accuracy forecasts which may be outperformed by the

simplistic historical average (HA) model.

This paper develops a forecasting method that minimizes the negative effects of weak predictors and

estimation errors on equity premium forecasts. Our approach relies on the fact that the conditional mean

of a random variable can be approximated through the combination of its quantiles. This method has a

long tradition in statistics and has been applied in the forecasting literature by Judge et al. (1988), Taylor

(2007), Ma and Pohlman (2008) and Meligkotsidou et al. (2014). Our novel contribution to the literature

is that we explore the existence of weak predictors in the quantile functions, which are identified through

the `1-penalized (LASSO) quantile regression method (Belloni and Chernozhukov (2011)). In applying

such a method, we select predictors significant at the 5% level for the quantile functions. Next, we

estimate quantile regressions with only the selected predictors, resulting in the post-penalized quantiles.

These quantiles are then combined to obtain a point forecast of the equity premium, named the post-

LASSO quantile combination (PLQC) forecast.

Our approach essentially selects a specification for the prediction equation of the equity premium. If

a given predictor is useful to forecast some, but not all, quantiles of the equity premium, it is classified

as partially weak. If the predictor helps forecast all quantiles, it is considered to be strong, whereas

predictors that help predict no quantile are called fully weak predictors. The `1-penalized method sorts

the predictors according to this classification. The quantile averaging results in a prediction equation in

which the coefficients of fully weak predictors are set to zero, while the coefficients of partially weak

predictors are adjusted to reflect the magnitude of their contribution to the equity premium forecasts. Our

empirical results show that of the 15 commonly used predictors that we examine, 9 are fully weak and 6

2



are partially weak. We show that failing to account for partially weak predictors results in misspecified

prediction equations and, therefore, inaccurate equity premium forecasts.

We demonstrate that the proposed PLQC method offers significant improvements in forecast accuracy

over not only the historical average, but also over many other forecasting models. This holds for both

statistic and economic evaluations across several out-of-sample intervals. Furthermore, we develop a

decomposition of the mean-square-prediction-error (MSPE) in order to summarize the contribution of

each step of the proposed PLQC approach. In other words, we measure the additional loss that would arise

from weak predictors and/or the estimation errors caused by extreme observations of equity premium. In

particular, our results point out that in the 1967.1-1990.12 period, weak predictors explain about 15%

of additional loss resultant from the non-robust forecast relative to the PLQC forecast. However, when

we look at the 1991.1-2013.12 out-of-sample period, two-thirds of the loss of accuracy comes from the

existence of weak predictors. Not surprisingly, the forecasts that fail to account for weak predictors are

exactly the ones largely outperformed by the historical average during the 1991.1-2013.12 period.

Additionally, we conduct a robustness analysis by considering quantile combination models based on

known predictors.1 These models are not designed to deal with partial and fully weak predictors across

quantiles and over time. Our empirical results show that equity premium forecasts obtained by combining

quantile forecasts from such models are unable to provide a satisfactory solution to the original puzzle

reported by Goyal and Welch (2008).

The remainder of this paper is organized as follows. Section 2 presents the econometric methodology

and introduces the quantile combination approach. It also offers a comparison of the new and existing

forecasting methods. Section 3 presents the main results about using a quantile combination approach to

forecast the equity premium. Section 4 concludes.

1We also conducted a robustness analysis using the “kitchen-sink” and common-factor models. Results are shown in the

online appendix at http://econ.bus.utk.edu/department/faculty/lima.asp.
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2 Econometric Methodology

Suppose that an econometrician is interested in forecasting the equity premium2 of the S&P 500 index

{rt+1}, given the information available at time t, It. The data generating process (DGP) is defined as

rt+1 = X ′t+1,tα +
(
X ′t+1,tγ

)
ηt+1, (1)

ηt+1|It ∼ i.i.d. Fη (0, 1) ,

where Fη (0, 1) is some distribution with mean zero and unit variance that does not depend on It;

Xt+1,t ∈ It is a k×1 vector of covariates available at time t; α = (α0, α1, ...αk−1)′ and γ = (γ0, γ1, ..., γk−1)′

are k × 1 vectors of parameters, α0 and γ0 being intercepts. This is the conditional location-scale model

that satisfies assumption D.2 of Patton and Timmermann (2007) and includes most common volatility

processes, e.g. ARCH and stochastic volatility. Several special cases of model (1) have been considered

in the forecasting literature3. In this paper, we consider another special case of model (1) by imposing

X ′t+1,t = X ′t, a vector of predictors observable at time t. In this case, the conditional mean of rt+1 is given

by E (rt+1|Xt) = X ′tα, whereas the conditional quantile of rt+1 at level τ ∈ (0, 1), Qτ (rt+1|Xt), equals:

Qτ (rt+1|Xt) = X ′tα +X ′tγF
−1
η (τ) = X ′tβ (τ) (2)

where β (τ) = α + γF−1
η (τ), and F−1

η (τ) is the unconditional quantile of ηt+1. Thus, this model

generates a linear quantile regression for rt+1, where the conditional mean parameters, α, enter in the

definition of the quantile parameter, β (τ).4

Following the literature (Granger (1969), Granger and Newbold (1986), Christoffersen and Diebold

(1997), and Patton and Timmermann (2007)), we assume that the loss function is defined as:

Assumption 1 (Loss Function) The loss function L is a homogeneous function solely of the forecast

error et+1 ≡ rt+1− r̂t+1, that is, L = L(et+1), and L(ae) = g(a)L(e) for some positive function g.5

2The equity premium is calculated by subtracting the risk-free return from the return of the S&P 500 index.
3Gaglianone and Lima (2012) and (2014) assume Xt+1,t = (1, Ct+1,t)

′ and Xt+1,t =
(
1, f1t+1,t, ..., f

n
t+1,t

)′
respectively,

where Ct+1,t is the consensus forecast made at time t from the Survey of Professional Forecasts and f jt+1,t, j = 1, ..., n , are

point forecasts made at time t by different economic agents.
4Model (1) can be replaced with the assumption that the quantile function of rt+1 is linear. Another model that generates

linear quantile regression is the random coefficient model studied by Gaglianone, Lima, Linton and Smith (2011).
5This is exactly the same Assumption L2 of Patton and Timmermann (2007). Although it rules out certain loss functions

(e.g., those which also depend on the level of the predicted variable), many common loss functions are of this form, such as

MSE, MAE, lin-lin, and asymmetric quadratic loss.
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Proposition 1 presents our result on forecast optimality. It is a special case of the Proposition 3 of

Patton and Timmermann (2007) in the sense that we assume a DGP with specific dynamic for the mean

and variance. Under this case, we are able to show that the optimal forecast of the equity premium can be

decomposed as the sum of its conditional mean and a bias measure

Proposition 1 Under DGP(1) with X ′t+1,t = X ′t and a homogeneous loss function (Assumption 1), the

optimal forecast will be

r̂t+1 = Qτ (rt+1|Xt)

= E (rt+1|Xt) + κτ

where κτ = X ′tγF
−1
η (τ) is a bias measure relative to the conditional mean (MSPE) forecast. This bias

depends on Xt, the distribution Fη and loss function L.6

The above result suggests that, when estimation of the conditional mean is affected by the presence

of extreme observations as is the case with financial data, an approach to obtain robust MSPE forecasts

of equity premium is through the combination of quantile forecasts. That is:

τmax∑
τ=τmin

ωτQτ (rt+1|Xt) = E (rt+1|Xt) +
τmax∑
τ=τmin

ωτκτ

= E (rt+1|Xt) +X ′tγ
τmax∑
τ=τmin

ωτF
−1
η (τ)

where ωτ is the weight assigned to the conditional quantile Qτ (rt+1|Xt). Notice that the weights

are quantile-specific since they are aimed at approximating the mean of ηt+1, which is zero. In the

one-sample setting, integrating the quantile function over the entire domain [0, 1] yields the mean of

the sample distribution (Koenker, 2005, pg 302). Thus, given that ηt+1 is i.i.d., we have E (ηt+1) =∫ 1

0
F−1
η (t) dt = 0.7 However, with finite sample, we need to consider a grid of quantiles (τmin, ..., τmax)

and approximate
∫ 1

0
F−1
η (t) dt by

∑τmax

τ=τmin
ωτF

−1
η (τ). The choice of the weight ωτ reflects the potential

asymmetry and excess kurtosis of the conditional distribution of ηt+1, Fη. In the simplest case when Fη

is symmetric, assigning equal weight to quantiles located in the neighborhood of the median (τ = 0.5)

6The proof is in the online appendix available at http://econ.bus.utk.edu/department/faculty/lima.

asp.
7Recall that F−1η (τ)= Qτ (ηt+1).
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will suffice to guarantee that
∑τmax

τ=τmin
ωτQτ (rt+1|Xt) = E (rt+1|Xt). However, when Fη is asymmetric,

other weighting schemes should be used. In this paper, we consider two weighting schemes.

The robustness of this approach relies on the fact that Qτ (rt+1|Xt) are estimated using the quantile

regression (QR) estimator, which is robust to estimation errors caused by occasional but extreme observa-

tions of equity premium.8 Since the low-end (high-end) quantiles produce downwardly (upwardly) biased

forecast of the conditional mean, another insight from the combination approach is that the point forecast∑τmax

τ=τmin
ωτQτ (rt+1|Xt) combines oppositely-biased predictions, and these biases cancel out each other.

This cancelling out mitigates the problem of aggregate bias identified by Issler and Lima (2009).9

To our knowledge, the previous discussion is the first to provide a theoretical explanation of several

empirical results which use the combination of conditional quantiles to approximate the conditional mean

forecast (Judge et al. (1988), Taylor (2007), Ma and Pohlman (2008) and Meligkotsidou et al. (2014)).

A common assumption in those papers is that the specification of the conditional quantile Qτ (rt+1|Xt)

is fully known by the econometrician. However, DGP (1) is unknown. Therefore, the forecasting model

based on the combination of conditional quantiles with fixed predictors is still potentially misspecified,

especially when predictors are weak. In what follows, we explain how we address the problem of weak

predictability in the conditional quantile function.

2.1 The `1-penalized quantile regression estimator

Rewriting Equation 2, we have the conditional quantiles of rt+1:

Qτ (rt+1|Xt) = β0 (τ) + x′tβ1(τ) τ ∈ (0, 1)

where β0 (τ) = α0 + γ0F
−1
η (τ), β1 (τ) = α1 + γ1F

−1
η (τ), and xt is a (k − 1)× 1 vector of predictors

(excluding the intercept).

In this paper, we identify weak predictors by employing a convex penalty to the quantile regression co-

efficients, leading to the `1-penalized (LASSO) quantile regression estimator (Belloni and Chernozhukov

(2011)). The LASSO quantile regression estimator solves the following problem :

min
β0,β1

∑
t

ρτ (rt+1 − β0 (τ)− x′tβ1(τ)) + λ

√
τ (1− τ)

m
‖ β1(τ) ‖`1 (3)

8The robustness of an estimator can be obtained through what is known as an influence function. Following Koenker (2005,

section 2.3), the influence function of the quantile regression estimator is bounded whereas that of the OLS estimator is not.
9Aggregate bias arises when we combine predictions that are mostly upwardly (downwardly) biased. In a case like that,

the averaging scheme will not minimize the forecast bias.
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where ρτ denotes the “tick” or “check” function defined for any scalar e as ρτ (e) ≡ [τ − 1 (e ≤ 0)] e;

1 (·) is the usual indicator function; m is the size of the estimation sample; ‖ . ‖`1 is the `1-norm,

‖ β1 ‖`1=
∑k−1

i=1 |β1i|; xt =
(
x1,t, x2,t, ..., x(k−1),t

)′.
LASSO first selects predictor(s) from the information set {xi,t : i = 1, 2, ..., (k − 1)} for each quantile

τ at each time period t (Van de Geer (2008) and Manzan (2015)). As for the choice of the penalty level, λ,

we follow Belloni and Chernozhukov(2011) and Manzan (2015). Next, we estimate a quantile regression

with the selected predictors to generate a post-LASSO quantile forecast of the equity premium in t + 1,

denoted as f τt+1,t = β0 (τ) + x∗′t β(τ), where x∗t is(are) the predictor(s) selected at time t by the LASSO

procedure with 5% significance level. This procedure is repeated to obtain a PLQF at various τ ∈ (0, 1).

Finally, these PLQFs are combined to obtain the post-LASSO quantile combination (PLQC) forecast,

r̂t+1 =
∑k

j=1 ωτjf
τj
t+1,t. The (PLQC) is a point (MSPE) forecast of the equity premium in t+ 1.

2.2 An alternative interpretation to the PLQC forecast

In this section, we show that the PLQC forecast can be represented by a prediction equation, which is

robust to the presence of weak predictors and estimation errors.

We assume a vector of potential predictors xt = (1 x1,t x2,t x3,t)
′ available at time t and quantiles

τ ∈ (τ1, ..., τ5) . Based on xt and τ , we obtain PLQFs of the equity premium in t+1, f τjt+1,t, j = 1, 2, ..., 5:

f τ1t+1,t

f τ2t+1,t

f τ3t+1,t

f τ4t+1,t

f τ5t+1,t


=



β0 (τ1) β1 (τ1) 0 0

β0 (τ2) β1 (τ2) 0 0

β0 (τ3) β1 (τ3) 0 0

β0 (τ4) 0 β2 (τ4) 0

β0 (τ5) 0 β2 (τ5) 0


×


1

x1,t

x2,t

x3,t

 (4)

In this example, x3,t is fully weak in the population because it does not help predict any quantile. In

contrast, we define x1,t and x2,t as partially weak predictors because they help predict some, but not all

quantiles. The PLQC forecast is generated based on Equation (5):

r̂t+1 =
5∑
j=1

ωτjβ0 (τj) +
3∑
j=1

ωτjβ1 (τj)x1,t +
5∑
j=4

ωτjβ2 (τj)x2,t (5)

= β0 + β1x1,t + β2x2,t

where β0 =
∑5

j=1 ωτjβ0 (τj), β1 =
∑3

j=1 ωτjβ1 (τj) and β2 =
∑5

j=4 ωτjβ2 (τj).
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Standard model selection procedures such as the one proposed by Koenker and Machado (1999)

are not useful to select weak predictors for out-of-sample forecasting. Indeed, with only 3 predictors,

5 different quantile levels, τ ∈ (τ1, ..., τ5), and 300 time periods, there would potentially exist 12,000

models to be considered for estimation, which is computationally prohibitive. This is why we use the

`1-penalized quantile regression method to determine the most powerful predictors among all candidates.

The `1-penalized quantile regression method rules out the fully weak predictor x3,t from the prediction

equation, whereas x1,t and x2,t are included but their contribution to the point forecast r̂t+1 will reflect

their partial weakness. Indeed, since the contribution of x1,t to predict f τ4t+1,t and f τ5t+1,t is weak, our

forecasting device eliminates β1 (τ4) and β1 (τ5) from β1 in Equation (5). The same rationale explains the

absence of β2 (τ1) , β2 (τ2) and β2 (τ3) in β2.

Moreover, if we assume that τ1 and τ2 are low-end quantiles whereas τ4 and τ5 are high-end quantiles,

the coefficient matrix (4) suggests that predictor x1,t is prone to make downwardly biased forecasts,

whereas predictor x2,t is prone to make upwardly biased forecasts. These oppositely-biased forecasts are

then combined by Equation (5) to generate a low-bias and low MSPE point forecast. Thus, we avoid the

problem of aggregate bias that affects traditional forecast combination methods (Issler and Lima (2009)).

Two inefficient special cases may arise when one ignores the presence of partially weak predictors. In

the first case, we estimate quantile regressions with the same predictors across τ ∈ (τ1, ..., τ5) to obtain

the Fixed-predictor Quantile Regression (FQR) forecast:

r̂t+1 = b0 + b1x1,t + b2x2,t (6)

where b0 =
∑5

j=1 ωτjβ0 (τj), b1 =
∑5

j=1 ωτjβ1 (τj) and b2 =
∑5

j=1 ωτjβ2 (τj).

The second special case corresponds to the estimation of the prediction Equation (6) by OLS regres-

sion of rt+1 on the selected predictors, x1,t, x2,t, and an intercept, resulting in the Fixed OLS (FOLS)

forecast. Although both FQR and FOLS forecasts rule out the fully weak predictors, they do not account

for the presence of partially weak predictors in the population. Moreover, the FOLS forecasts will not be

robust against extreme observations, since the influence function of the OLS estimator is unbounded.

To show the relative importance of accounting for partially weak predictors and estimation errors, we

consider the following decomposition:

MSPEFOLS−MSPEPLQC = [MSPEFOLS−MSPEFQR] + [MSPEFQR−MSPEPLQC] (7)

Hence, we decompose the MSPE difference between FOLS and PLQC forecasts into two elements.

The first element on the righthand side of Equation (7) measures the additional loss of the FOLS forecast
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resulted from OLS estimator’s lack of robustness to the estimation errors, while the second element rep-

resents the extra loss caused by the presence of partially weak predictors in the population. We will apply

this decomposition later in the empirical section.

2.3 Weight selection

In this paper, we consider both time-invariant and time-variant weighting schemes. The former are simple

averages of f τt+1,t. More specifically, we consider a discrete grid of quantiles τ ∈ (τ1, τ2, ..., τJ) and set

equal weights ωτ = ω . Two leading examples are

PLQC1 :
1

3
f 0.3
t+1,t +

1

3
f 0.5
t+1,t +

1

3
f 0.7
t+1,t

PLQC2 :
1

5
f 0.3
t+1,t +

1

5
f 0.4
t+1,t +

1

5
f 0.5
t+1,t +

1

5
f 0.6
t+1,t +

1

5
f 0.7
t+1,t

Thus, the PLQC1 and PLQC2 attempt to approximate the point (MSPE) forecast by assigning equal

weights to a discrete set of conditional quantiles. However, the importance of quantiles in the determina-

tion of optimal forecasts may not be equal and constant over time. To address this problem, we estimate

the weights from a constrained OLS regression of rt+1 on f τt+1,t, τ ∈ (τ1, τ2, ..., τJ), with the following

two leading examples:

PLQC3 : rt+1 =

τ3∑
τ=τ1

ωτf
τ
t+1,t + εt+1 τ ∈ (0.3; 0.5; 0.7) (8)

s .t . ωτ1 + ωτ2 + ωτ3 = 1

PLQC4 : rt+1 =

τ5∑
τ=τ1

ωτf
τ
t+1,t + εt+1 τ ∈ (0.3; 0.4; 0.5; 0.6; 0.7)

s .t . ωτ1 + ωτ2 + ωτ3 + ωτ4 + ωτ5 = 1

Similar weighting schemes have been used in the forecasting literature by Judge et al. (1988), Taylor

(2007), Ma and Pohlman (2008) and Meligkotsidou et al. (2014), among others.

2.4 The forecasting data, procedure and evaluation

Before explaining the forecasting data, we introduce the standard univariate predictive regressions esti-

mated by OLS (Goyal and Welch (2008) and Rapach et al. (2010)). They are expressed as:

rt+1 = αi + βixi,t + εi,t+1 (9)
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where xi,t is a variable whose predictive ability is of interest; εi,t+1 is an i.i.d. error term; αi and βi

are respectively the intercept and slope coefficients specific to model i = 1, ..., N . Each univariate model

i yields its own forecast of rt+1 labeled as f it+1,t = Ê (rt+1|Xt) = α̂i + β̂ixi,t, where α̂i and β̂i are OLS

estimates of αi and βi.

Our data10 contain monthly observations of the equity premium to the S&P 500 index and 15 predic-

tors, which include Dividend-price ratio (DP), Dividend yield (DY), Earnings-price ratio (EP), Dividend-

payout ratio (DE), Stock variance (SVAR), Book-to-market ratio (BM), Net equity expansion (NTIS),

Treasury bill rate (TBL), Long-term yield (LTY), Long-term return (LTR), Term spread (TMS), Default

yield spread (DFY), Default return spread (DFR), Inflation (INFL) and a moving average of Earning-

price ratio (E10P), from December 1926 to December 2013. Contrary to Goyal and Welch (2008), we

do not lag the predictor INFL, which implies that we are assuming adaptive expectations for future price

changes.11

In our empirical application, we generate out-of-sample forecasts of the equity premium, rt+1, using

(i) 15 single-predictor regression models based on Equation (9); (ii) the PLQC and FQR methods with

the four weighting schemes presented above; (iii) the FOLS method; (iv) the complete subset regressions

(CSR) with k = 1, 2 and 3. The CSR method (Elliott, Gargano and Timmermann (2013)) combine

forecasts based on predictive regressions with k number of predictors. Hence, forecasts based on CSR

with k = 1 correspond to an equal-weighted average of all possible forecasts from univariate prediction

models (Rapach et al. (2010)). CSR models with k = 2 and 3 correspond to equal-weighted averages of

all possible forecasts from bivariate and tri-variate prediction equations, respectively.

Following Rapach et al. (2010), Campbell and Thompson (2008) and Goyal and Welch (2008) among

others, we use the historical average of equity premium, rt+1 = 1
t

∑t
m=1 rm, as our benchmark mod-

el. If the information available at Xt = (1, x1,t, x2,t, ..., x15,t)
′ is useful to predict equity premium, the

forecasting models based on Xt should outperform the benchmark.

The forecasting procedure is based on recursive estimation window (Rapach et al. (2010)). Our

estimation window starts with 361 observations from December 1926 to December 1956 and expands

periodically as we move forward. The out-of-sample forecasts range from January 1957 to December

2013, corresponding to 684 observations. In addition, forecasts that rely on time-varying weighting

10The raw data come from Amit Goyal’s webpage (http://www.hec.unil.ch/agoyal/).
11A more complete definition for each variable can be found in the online appendix http://econ.bus.utk.edu/

department/faculty/lima.asp.
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schemes (PLQC3,PLQC4,FQR3,FQR4) require a holdout period to estimate the weights. Thus, we use

the first 120 observations from the out-of-sample period as an initial holdout period, which also expands

periodically. In the end, we are left with a total of 564 post-holdout out-of-sample forecasts available

for evaluation.12 In addition to the whole (long) out-of-sample period (January 1967 to December 2013),

we test the robustness of our findings by considering the following out-of sample subperiods: January

1967 to December 1990, January 1991 to December 2013, and the most recent interval January 2008 to

December 2013.

The first evaluation measure is the out-of-sample R2, R2
OS , which compares the forecast from a con-

ditional model, r̂t+1, to that from the benchmark (unconditional) model rt+1 (Campbell and Thompson

(2008)). We report the value of R2
OS in percentage terms, R2

OS (%) = 100×R2
OS . Second, to test the null

hypothesis R2
OS ≤ 0, we apply both the Diebold-Mariano (1995) and the Clark and West (2007) tests13.

Lastly, to evaluate the economic value of equity premium forecasts, we calculate the certainty equivalent

return (or utility gain), which can be interpreted as the management fee an investor would be willing to

pay to have access to the additional information provided by the conditional forecast models relative to

the information available in the benchmark model14.

3 Empirical Results

3.1 Out-of-sample forecasting results

In Figures 1 and 2, we present time series plots of the differences between the cumulative squared predic-

tion error for the benchmark forecast and that of each conditional forecast. This graphical analysis informs

the cumulative performance of a given forecasting model compared to the benchmark model over time.

When the curve in each panel increases, the conditional model outperforms the benchmark, while the

opposite holds when the curve decreases. Moreover, if the curve is higher at the end of the period, the

conditional model has a lower MSPE than the benchmark over the whole out-of-sample period.

12This forecasting procedure follows exactly the same one adopted by Rapach et al. (2010).
13The Diebold and Mariano (1995) and West (1996) statistics are often used to test the null hypothesis, R2

OS ≤ 0, among

non-nested models. For nested models, as the ones in this paper, Clark and McCracken (2001) and McCraken (2007) show

that these statistics have nonstandard distribution. Thus, the Diebold-Mariano (DM) and West tests can be severely undersized

under the null hypothesis and have low power under the alternative hypothesis.
14For more detailed information on the calculation of utility gains, please refer to the online appendix at http://econ.

bus.utk.edu/department/faculty/lima.asp.
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Figure 1: Cumulative squared prediction error for the benchmark model minus the cumulative squared prediction

errors for the single-predictor regression forecasting models, 1967.1-2013.12

A positively sloped curve in each panel indicates that the conditional model outperforms the HA, while the opposite holds for a downward sloping curve.

Moreover, if the curve is higher at the end of the period, the conditional model has a lower MSPE than the benchmark over this period. Figure 1 shows that in

terms of cumulative performance, few single-predictor models consistently outperform the benchmark.

In general, Figure 1 shows that in terms of cumulative performance, few single-predictor models

consistently outperform the historical average.15 A number of the panels (such as the one based on

TMS) exhibit increasing predictability in the first half of the sample period, but lose predictive strength

thereafter. Also, the majority of the single-predictor forecasting models have a higher MSPE than the

benchmark. Figure 1 looks very similar to that in Rapach et al. (2010, page 833) which uses quarterly

data. Our results, which are based on monthly observations, show a significant deterioration of the single-

predictor models after 1990.16 In sum, Figure 1 strengthens the arguments already reported throughout

the literature (Goyal and Welch (2008), Rapach et al. (2010)), that it is difficult to identify individual

predictors that help improve equity premium forecasts over time.

Figure 2 shows the same graphical analysis for PLQCj , FQRj , j = 1, 2, 3, 4, FOLS1, FOLS2
17 and

15One exception is the single predictor model based on INFL. Its curve is sloped upward for most of the time.
16Goyal and Welch (2008) as well as Rapach et al. (2010) considered quarterly forecasts of the equity premium.
17Recall that FOLS forecasts are based on the OLS estimation of an equation whose predictors are selected by the
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Figure 2: Cumulative squared prediction error for the benchmark model minus the cumulative squared prediction

errors for the FQR, FOLS, CSR and PLQC models, 1967.1-2013.12

A positively sloped curve in each panel indicates that the conditional model outperforms the HA, while the opposite holds for a downward sloping curve.

Moreover, if the curve is higher at the end of the period, the conditional model has a lower MSPE than the benchmark over this period. Figure 2 shows that

the PLQC forecasts are among top performers, especially after 1990.
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CSR with k = 1, 2, 3. The curves for PLQCj and FQRj do not exhibit substantial falloffs as those

observed in the single-predictor forecasting models (9). This indicates that the PLQCj and FQRj forecasts

deliver out-of-sample gains on a considerably more consistent basis over time. The PLQC and FQR

forecasts perform similarly, and FQR forecasts are only slightly better before 1990. Since the PLQC

method accounts for partially weak predictors whereas FQR does not (this being the only difference

between the two), the results shown in Figure 2 suggest that most of the predictors are not weak until

1990. The results in Figure 2 also provide the first empirical evidence about the ability of the PLQC

model to efficiently predict monthly equity premium of the S&P 500 index18.

The comparison between FQR and FOLS shows the importance of using quantile regression to obtain

a robust estimation of the prediction equation. Recall that FQR and FOLS rely on the same specification

for the prediction equation, but they differ in how the coefficients are estimated. Comparing the panels

corresponding to FQR and FOLS forecasts, we see how estimation errors in the prediction equation can

result in a severe loss of forecasting accuracy. The curves of the FOLS forecasts are not only lower in

magnitude but also much more erratic than the ones corresponding to the FQR forecasts. Finally, the CSR

forecasts do not outperform the PLQC forecast. Besides being robust to the presence of weak predictors

and estimation errors, the PLQC forecast results from the combination of different quantile forecasts,

whose biases cancel out each other. This avoids the aggregate bias problem that affects most existing

forecast combination methods including the CSR model (Issler and Lima (2009)).

We next turn to the analysis of all four out-of-sample periods. The results are displayed in Table 1.

This table reports R2
OS statistics and its significance through the p-values of the Clark and West (2007)

test (CW). It also displays the annual utility gain ∆ (annual%) associated with each forecasting model

and the p-value of the Diebold-Mariano (1995) test (DM). The results for the entire 1967.1:2013.12 out-

of-sample period confirm that few single-predictor forecasting models have positive and significant R2
OS .

The same thing happens to the CSR forecasts. The only exceptions in this long out-of-sample period are

the PLQC and FQR forecasts. Their performance are similar in the sense that they both outperform the

FOLS forecast in terms ofR2
OS and utility gain ∆ (annual%). Among the PLQC forecasts, we notice that

`1-penalized quantile regression method. Since we have considered two sets of quantiles τ = (0.3, 0.5, 0.7) and τ =

(0.3, 0.4, 0.5, 0.6, 07), there will be two such prediction equations and therefore two FOLS forecasts, denoted by FOLSj ,

j = 1, 2.
18Based on a Monte-Carlo simulation experiment, we found that weak predictors can be harmful for forecasting. Our Monte-

Carlo experiment can be found in the online appendix at http://econ.bus.utk.edu/department/faculty/

lima.asp.
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the ones that rely on the combination of 5 quantiles perform better than those based on the combination

of 3 quantiles during this period.

As for the subperiod 1967.1-1990.12, Table 1 shows that some single-predictor models perform well.

In particular, forecasts from single-predictor models using either DY or E10P present positive and sig-

nificant R2
OS and also sizable utility gains. The CSR forecasts are also reasonable and outperform the

FOLS forecast. Recall that the difference between PLQC and FQR is that the latter ignores partially

weak predictors, and therefore the result reported by Table 1 suggests that there is no advantage in us-

ing a forecasting device that is robust to (partially) weak predictors when predictors are actually strong.

However, since FQR outperforms OLS-based FOLS, we conclude that forecasts which are robust against

estimation errors provide a predictive advantage.

As for the 1991.1-2013.12 sub-period, we notice that the R2
OS of all single-predictor models fall

substantially and become non-significant, suggesting that most of the predictors become weak after 1990.

The same results for CSR forecasts indicate that this methodology is also affected by the presence of weak

predictors. On the other hand, the results in Table 1 show that the R2
OS of the PLQC forecast does not

fall much across the two sub-periods, confirming that this method is robust to weak predictors. Also, the

R2
OS of the FQR forecasts falls on average by 0.22% whereas the R2

OS of the PLQC forecasts increases

on average by 0.18%. This happens because the latter is robust to both fully and partially weak predictors

whereas the former is only robust to fully weak predictors.

Finally, we look at the most recent out-of-sample subperiod, 2008.1-2013.12, characterized by the

occurrence of the sub-prime crisis in the United States. A practitioner should expect that a good forecast-

ing model would work reasonably well in periods of financial turmoil. However, the results in Table 1

suggest that none of the single-predictor models and the CSR forecasts perform well during this period

of financial instability. In contrast, the statistic and economic measures of the PLQC forecasts are even

better than those in other periods. More specifically, the R2
OS and utility gain statistics for PLQCj are at

least twice as large as those for other out-of-sample periods. This suggests that the PLQC method works

very well even during periods with multiple episodes of financial turmoil. These results provide strong

evidence that we have identified an effective method for forecasting monthly equity premium on the S&P

500 index based on economic variables.

Table 2 shows the decomposition of the mean-square-prediction-error (MSPE) introduced in section

2.2. Recall that this decomposition measures the additional MSPE loss of FOLS forecasts relative to

the PLQC forecasts. The first element on the right-hand side of equation measures the additional loss
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Table 1: Out-of-sample Equity Premium Forecasting
OOS: 1967.1 - 2013.12 OOS: 1967.1 - 1990.12 OOS:1991.1 - 2013.12 OOS: 2008.1 - 2013.12

Model R2
OS(%) DM CW ∆(annual%) R2

OS(%) DM CW ∆(annual%) R2
OS(%) DM CW ∆(annual%) R2

OS(%) DM CW ∆(annual%)

Single Predictor Model Forecasts

DP -0.60 1.00 0.26 -0.10 1.31 0.30 0.03 1.72 -2.99 1.00 0.78 -1.99 -0.54 0.90 0.54 -0.73

DY -1.01 1.00 0.22 0.22 1.55 0.38 0.02 2.16 -4.24 1.00 0.76 -1.79 -0.43 0.89 0.47 0.22

EP -1.51 1.00 0.48 -0.29 -0.99 0.93 0.43 -0.67 -2.15 0.99 0.53 0.11 -3.17 0.92 0.61 2.36

DE -0.71 0.98 0.98 -0.55 -0.90 1.00 1.00 -0.95 -0.48 0.57 0.73 -0.14 -1.15 0.84 0.75 -0.35

SVAR -0.54 0.71 0.81 -0.26 -0.74 0.57 0.75 -0.10 -0.29 0.94 0.83 -0.43 -0.77 0.85 0.85 -1.53

BM -3.54 1.00 0.62 -1.43 -2.75 0.95 0.44 -0.97 -4.53 1.00 0.79 -1.90 -0.85 0.95 0.52 0.11

NTIS -0.96 0.58 0.36 -1.12 0.38 0.54 0.09 -0.34 -2.65 0.58 0.83 -1.92 -5.38 0.67 0.85 -6.82

TBL 0.09 0.24 0.07 2.09 0.37 0.27 0.06 4.11 -0.26 0.29 0.53 -0.01 0.56 0.04 0.24 1.25

LTY -0.64 0.40 0.14 1.84 -1.08 0.38 0.13 3.60 -0.09 0.65 0.54 0.01 0.53 0.02 0.11 1.03

LTR 0.12 0.81 0.12 0.25 0.55 0.69 0.09 1.16 -0.43 0.79 0.42 -0.71 -0.08 0.56 0.40 -1.75

TMS 0.28 0.42 0.07 0.86 1.26 0.43 0.03 1.90 -0.96 0.46 0.53 -0.23 -0.24 0.13 0.45 -0.28

DFY 0.13 0.73 0.22 0.01 1.00 0.10 0.01 1.14 -0.97 0.99 0.87 -1.17 -1.16 0.53 0.75 -2.57

DFR 0.04 0.55 0.36 0.06 0.01 0.60 0.43 0.10 0.08 0.52 0.37 0.02 0.64 0.55 0.33 0.71

INFL 0.37 0.01 0.10 0.69 0.78 0.06 0.07 1.47 -0.14 0.03 0.51 -0.13 -1.07 0.34 0.83 -1.80

E10P -1.42 1.00 0.17 0.06 1.32 0.58 0.04 1.84 -4.86 1.00 0.66 -1.78 0.03 0.86 0.33 0.70

Complete Subset Regression Forecasts

CSR k=1 0.39 0.86 0.06 0.49 1.29 0.07 0.00 1.58 -0.75 1.00 0.82 -0.65 -0.32 0.81 0.81 -0.54

CSR k=2 0.24 0.96 0.11 0.46 1.61 0.23 0.00 1.96 -1.48 1.00 0.83 -1.11 -0.49 0.70 0.71 -0.45

CSR k=3 -0.02 0.99 0.20 0.39 1.49 0.45 0.02 1.84 -1.93 1.00 0.82 -1.12 -0.56 0.57 0.60 0.56

Forecasts based on LASSO-Quantile Selection

FOLS1 0.53 0.50 0.03 1.35 0.45 0.58 0.11 1.12 0.63 0.43 0.09 1.58 3.24 0.18 0.10 4.40

FOLS2 0.27 0.62 0.04 1.18 -0.19 0.75 0.17 0.71 0.84 0.40 0.07 1.67 3.69 0.20 0.09 4.16

FQR1 2.27 0.00 0.00 2.42 2.34 0.15 0.01 2.23 2.20 0.00 0.02 2.60 5.07 0.01 0.04 6.74

FQR2 2.10 0.02 0.00 2.25 1.96 0.38 0.02 2.15 2.29 0.01 0.02 2.34 5.33 0.01 0.04 5.79

FQR3 1.83 0.07 0.01 2.07 2.04 0.18 0.04 2.46 1.56 0.13 0.08 1.65 4.83 0.07 0.09 6.32

FQR4 1.56 0.13 0.02 1.83 1.82 0.33 0.05 2.27 1.24 0.12 0.11 1.37 3.29 0.08 0.14 4.57

PLQC1 2.12 0.01 0.01 1.59 1.81 0.16 0.05 1.03 2.50 0.02 0.04 2.19 6.50 0.07 0.06 5.19

PLQC2 2.27 0.00 0.01 1.86 2.23 0.09 0.04 1.76 2.31 0.01 0.04 1.96 5.84 0.04 0.06 4.71

PLQC3 1.62 0.09 0.04 1.69 1.61 0.13 0.10 2.46 1.62 0.21 0.11 1.79 5.63 0.17 0.10 3.55

PLQC4 2.16 0.06 0.03 2.16 2.20 0.16 0.08 2.97 2.11 0.11 0.08 1.32 6.08 0.10 0.08 4.51

This table reports R2
OS statistics (in%) and its significance through the p-values of the Clark and West (2007) test (CW). It also reports the p-value of

the Diebold-Mariano (1995) test (DM) and the annual utility gain ∆ (annual%) associated with each forecasting model over four out-of-sample periods.

R2
OS > 0, if the conditional forecast outperforms the benchmark. The annual utility gain is interpreted as the annual management fee that an investor would

be willing to pay in order to get access to the additional information from the conditional forecast model.
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Table 2: Mean Squared Prediction Error (MSPE) Decomposition

MSPEFOLS −MSPEPLQC = (MSPEFOLS −MSPEFQR)+ (MSPEFQR −MSPEPLQC)

OOS % of total % of total

1967.1 - 1990.12 84.3% 15.7%

1991.1 - 2013.12 31.3% 68.7%

The decomposition measures the additional MSPE loss of FOLS forecasts relative to the PLQC forecasts. The first element (MSPEFOLS−MSPEFQR)

measures the additional loss from OLS estimator’s lack of robustness to estimation errors, while the second element (MSPEFQR − MSPEPLQC )

represents the extra loss caused by the presence of partially weak predictors in the population. Note: the PLQC, FQR and FOLS forecasts correspond to

models noted as PLQC4, FQR4 and FOLS2 in the paper.

of the FOLS forecast resulted from OLS estimator’s lack of robustness to the estimation errors, while

the second element represents the extra loss caused by the presence of partially weak predictors in the

population. For the 1967.1-1990.12 subperiod, the contribution of partially weak predictors is much

smaller compared to that of estimation errors. This is consistent with the results shown in Figures 1 and

2 and also those in Table 1. In case of strong predictors, most of the loss will be explained by OLS

estimator’s lack of robustness to estimation errors, so using quantile regression presents an advantage in

that it avoids the effect of estimation errors. The situation changes dramatically when weak predictors

become a more severe issue during the post-1990 out-of-sample period. As a result, the second element

dominates, indicating that most of the forecast accuracy loss is ascribed to the presence of partially weak

predictors.

In the next section, we provide more information that explains the benefits of the PLQC forecasts.

3.2 Explaining the benefits of the PLQC forecasts

In this section, we decompose the mean-square prediction error (MSPE) into two parts: the forecast

variance and the squared forecast bias. We calculate the MSPE of any forecast r̂t+1 as 1
T ∗

∑
t(rt+1−r̂t+1)2

and the unconditional forecast variance as 1
T ∗

∑
t(r̂t+1 − 1

T ∗

∑
t r̂t+1)2, where T ∗ is the total number of

out-of-sample forecasts. The squared forecast bias is computed as the difference between MSPE and

forecast variance (Elliott et al. (2013) and Rapach et al. (2010)).

Figures 3 and 4 depict the relative forecast variance and squared forecast bias of all single-predictor

models, CSR, FOLS, FQR and PLQC models for two out-of-sample subperiods: 1967.1:1990.12 and

1991.1:2013.12. The relative forecast variance (squared bias) is calculated as the difference between the

forecast variance (squared bias) of the ith model and the forecast variance (squared bias) of the historical
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Figure 3: Scatterplot of forecast variance and squared forecast bias relative to historical average, 1967.1-1990.12

The y-axis and x-axis represent relative forecast variance and squared forecast bias of all single-predictor models, CSR, FOLS, FQR and PLQC models,

calculated as the difference between the forecast variance (squared bias) of the conditional model and the forecast variance (squared bias) of the HA. Each

point on the dotted line represents a forecast with the same MSPE as the HA; points to the right are forecasts outperformed by the HA, and points to the left

represent forecasts that outperform the HA.

average (HA). Hence, the value of relative forecast variance (squared bias) for the HA is necessarily equal

to zero. Each point on the dotted line represents a forecast with the same MSPE as the HA; points to

the right of the line are forecasts outperformed by the HA, and points to the left represent forecasts that

outperform the HA. Finally, both forecast variance and squared forecast bias are measured in the same

scale so that it is possible to determine the trade-off between variance and bias of each forecasting model.

Since the HA forecast is a simple average of historical equity premium, it will have a very low variance

but will be biased. Figure 3 shows that, in the 1967.1-1990.12 subperiod, most of the forecasts based on

single-predictor models outperformed the HA. Combining this result with the empirical observation that

the variances of forecasts based on single-predictor models are not lower than the variance of the HA,

we conclude that such performance relies almost exclusively on a predictor’s ability to lower forecast

bias relative to that of HA. As a result, a predictor is classified as exhibiting strong predictability if it can
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Figure 4: Scatterplot of forecast variance and squared forecast bias relative to historical average, 1991.1-2013.12

The y-axis and x-axis represent relative forecast variance and squared forecast bias of all single-predictor models, CSR, FOLS, FQR and PLQC models,

calculated as the difference between the forecast variance (squared bias) of the conditional model and the forecast variance (squared bias) of the HA. Each

point on the dotted line represents a forecast with the same MSPE as the HA; points to the right are forecasts outperformed by the HA, and points to the left

represent forecasts that outperform the HA.

produce forecasts in which the reduction in bias is greater than the increase in variance, relative to the HA

forecast.

The preceding discussion offers an explanation of the results presented in Figure 4. For the subperiod

1991.1-2013.12, almost all single-predictor models are outperformed by the HA, suggesting the presence

of weak predictors. This weak performance is mainly driven by the substantial increase in the squared

biases of such forecasts. We notice that when predictors are strong (in Figure 3), PLQC and FQR per-

form equally well. However, when predictors become weak (in Figure 4), the PLQC outperforms other

forecasting methods.

Overall, the success of the PLQC forecast is explained by its ability to substantially reduce the squared

forecast bias at the expense of a moderate increase in forecast variance. Additional reduction in the

forecast variance of the PLQC forecasts can be obtained by increasing the number of quantiles used in

the combination, as shown by points PLQC2 and PLQC4 in Figures 3 and 4. The main message is that
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Table 3: Frequency of variables selected over OOS : Jan 1967 ∼ Dec 2013
τ = SVAR BM LTR DFY INFL E10P

30th 63.30% 0.18% – 0.18% 79.61% 11.35%

40th 81.56% – – – 100.00% –

50th 40.78% 3.37% – – 88.65% 0.89%

60th – – 32.98% – 89.18% –

70th – 20.74% 34.04% – – 55.32%

Table 3 presents the frequency with which each predictor is selected over the out-of-sample period (1967.1-2013.12) and across quantiles (τ =

0.3, 0.4, 0.5, 0.6, and 0.7)

the forecasting models that yield a sizeable reduction in the forecast bias while keeping variance under

control are able to improve forecast accuracy over HA. This explains the superior performance of PLQC

forecasts.

Another analysis that we find interesting is the identification of which predictors are chosen by the

`1-penalized method across quantiles and over time. This analysis was originally suggested by Pesaran

and Timmermann (1995) for the mean function. Table 3 shows the frequency with which each predictor

is selected over the out-of-sample period, 1967.1-2013.12, and across the quantiles used to compute the

PLQC forecast, i.e. τ = 0.3, 0.4, 0.5, 0.6, and 0.7. Recall from section 2 that a predictor is defined to

be partially weak if it is useful to forecast some, but not all, quantiles of the equity premium. If it helps

forecast all quantiles, it is considered to be strong, whereas if it helps predict no quantile, it is fully weak.

Notice that Table 3 reports selection frequency for only 6 predictors, meaning that 9 (out of 15) predictors

are fully weak. Thus, the prediction Equation (5) that results from this selection procedure will include

at most 6 predictors but these predictors are not equally important due to their different levels of partial

weakness. For instance, the selection frequency for DFY is no more than 1% at some quantiles. Whereas

the predictor INFL seems to be strong at almost all quantiles, except τ = 0.7. Failing to account for

partially weak predictors results in misspecified prediction equations and, therefore, inaccurate forecasts

of equity premium as shown before.

Figure 5 shows in detail how the proposed selection procedure works over time and across quantiles.

There are 5 charts, one for each quantile used to compute the PLQC forecast. For each chart, we list 15

predictors on the vertical axis. The horizontal axis shows the out-of-sample period. Red dots inside the

charts indicate that a predictor was selected to forecast a given quantile of the equity premium at time t.

Figure 5 shows that predictor INFL is useful for forecasting almost all quantiles until 2010 (with noted
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Figure 5: Variables selected by PLQC for quantile levels τ = 0.3, 0.4, 0.5, 0.6, 0.7 over OOS 1967.1-2013.12

The 5 charts, one for each quantile used in the PLQC forecast, display the selected predictor(s) at each time point t over the out-of-sample period, 1967.1-

2013.12.

exceptions at τ = 0.7), but it loses predictability power after that. Other predictors, such as LTR, BM

and SVAR, are not important at the beginning of the period but become useful for forecasting after 1985,

whereas predictor E10P seems to be very useful only for forecasting the two most extreme quantiles

τ = 0.3 and τ = 0.7. Thus, by carefully excluding fully weak predictors and identifying the relative

importance of partially weak predictors, our forecasting approach can yield much better out-of-sample

forecasts, which helps us understand why models that overlook weak predictors are outperformed by the

proposed PLQC method.
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3.3 Robustness analysis: other quantile forecasting models

Meligkotsidou et al. (2014) propose the asymmetric-loss LASSO (AL-LASSO) model, which estimates

the conditional quantile function as a weighted sum of quantiles by using LASSO to select the weights,

that is:

θt = arg min
θt∈R15

∑
t

ρτ

(
rt+1 −

15∑
i=1

θi,tr̂i,t+1 (τ)

)
s.t.

15∑
i=1

θi,t = 1;
15∑
i=1

|θi,t | ≤ δ1 (10)

where ρτ (·) is the asymmetric loss, r̂i,t+1 (τ) is the quantile function obtained from a single-predictor

quantile model, i.e., r̂i,t+1 (τ) = αi (τ) + βi (τ)xi,t and xi,t ∈ Xt = (x1,t, ..., x15,t)
′. The parame-

ter δ1 controls for the level of shrinkage. A solution to problem (10) results in an estimation of the

τth conditional quantile of rt+1, r̂t+1 (τ) =
∑15

i=1 θ̂i,tr̂i,t+1 (τ). This process is repeated for every

τ ∈ (0.3, 0.4, 0.5, 0.6, 0.7).

As the first robustness test, we investigate whether our PLQF, f τt+1,t outperform other single-predictor

quantile forecasts r̂i,t+1 (τ), i = 1, ..., 15 and the AL-LASSO based on the quantile score (QS) function

(Manzan (2015)). The QS represents a local out-of-sample evaluation of the forecasts in the sense that

rather than providing an overall assessment of the distribution, it concentrates on a specific quantile. The

higher the QS, the better the model does in forecasting a given quantile. It is computed as:

QSk(τ) =
1

T ∗

T ∗∑
t=1

(rt+1 − Q̂k
t+1,t(τ))(1.(rt+1 ≤ Q̂k

t+1,t(τ))− τ) (11)

where T ∗ is the number of out-of-sample forecasts, rt+1 is the realized value of equity premium,

Q̂k
t+1,t(τ) represents the quantile forecast at level τ of model k, and indicator function 1.() equals 1 if

rt+1 ≤ Q̂k
t+1,t(τ); otherwise it equals 0. As a result, quantile scores are always negative. Thus, the larger

the QS is, i.e., the closer it is to zero, the better.

Table 4 shows the QS for each single-predictor quantile model (r̂i,t+1 (τ)), AL-LASSO (r̂t+1 (τ)) and

PLQF (f τt+1,t), over the full out-of-sample period 1967.1-2013.12. We see that AL-LASSO does not

perform well because its quantile scores are among the lowest ones for most quantiles τ . On the other

hand, PLQF possesses one of the highest quantile scores across the same quantiles τ . Moreover, none of

the single-predictor quantile forecasts consistently outperform PLQF across τ . Since accurate quantile

forecasts are essential to yield successful point forecasts in the second step, the success of the PLQC point

forecast relative to other quantile combination based models is explained by the fact that it averages the

most accurate quantile forecasts of equity premium.
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Table 4: Quantile Scores
No. Model QS (×10−2) across quantile levels τ

τ= 0.3 0.4 0.5 0.6 0.7

PLQF -1.499 -1.641 -1.672 -1.615 -1.457

AL-LASSO -1.532 -1.652 -1.708 -1.637 -1.464

DP -1.532 -1.675 -1.692 -1.626 -1.459

DY -1.533 -1.676 -1.692 -1.624 -1.460

EP -1.539 -1.677 -1.695 -1.626 -1.461

DE -1.568 -1.697 -1.698 -1.625 -1.450

SVAR -1.512 -1.660 -1.688 -1.628 -1.449

BM -1.526 -1.674 -1.694 -1.632 -1.467

NTIS -1.527 -1.672 -1.689 -1.623 -1.449

TBL -1.527 -1.658 -1.679 -1.619 -1.462

LTY -1.529 -1.664 -1.689 -1.625 -1.467

LTR -1.536 -1.678 -1.696 -1.617 -1.448

TMS -1.532 -1.668 -1.689 -1.626 -1.462

DFY -1.537 -1.673 -1.690 -1.618 -1.446

DFR -1.523 -1.670 -1.692 -1.621 -1.454

INFL -1.517 -1.648 -1.674 -1.610 -1.445

E10P -1.529 -1.673 -1.696 -1.627 -1.466

Table 4 shows the QS for each single-predictor quantile model, AL-LASSO and PLQF models. Quantile scores are always negative. Thus, the larger the QS

is, i.e., the closer it is to zero, the better. The quantile scores of AL-LASSO are among lowest ones for most quantiles τ . On the other hand, PLQF possesses

one of the highest quantile scores across the same quantiles.

Figure 6 shows the cumulative squared forecast error of the HA minus the cumulative squared forecast

errors of point forecasts obtained by combining quantile forecasts from PLQF, AL-LASSO and single-

predictor quantile models19. We additionally report what Meligkotsidou et al. (2014) called robust fore-

cast combination (RFC1) forecast, which is computed by averaging all the 15 point forecasts obtained

from the single-predictor quantile forecasting models.

Figure 6 suggests that the point forecasts obtained from single-predictor quantile models and AL-

LASSO are still unable to outperform the HA consistently over time in terms of their cumulative perfor-

mance. The RFC1 hardly outperforms the historical average in any consistent basis of time. This happens

because, unlike the PLQC forecast, these models are not designed to deal with partially and fully weak

predictors across quantiles and over time, and thus are severely affected by misspecification. The failure

of the AL-LASSO can also be explained by that quantiles are not additive.20 In other words, the AL-LASSO

19For the sake of brevity and without affecting our conclusions, we only use the first weighting scheme to compute these

point forecasts. Each single-predictor quantile forecasting model generates one point forecast. Thus, there will be 15 such

point forecasts.
20It means that for two random variables X and Y , Qτ (X + Y ) is not necessarily equal to Qτ (X) +Qτ (Y ).
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Figure 6: Cumulative squared prediction error for the benchmark model minus the cumulative squared prediction

errors for the PLQC 1, AL-LASSO 1, RFC 1, and singe-predictor quantile forecasting models, 1967.1-2013.12

A positively sloped curve in each panel indicates that the conditional model outperforms the HA, while the opposite holds for a downward sloping curve.

Moreover, if the curve is higher at the end of the period, the conditional model has a lower MSPE than the benchmark over this period. In this figure, the

cumulative performance of single-predictor quantile models, AL-LASSO and RFC1 hardly beat that of the HA consistently over time, as the PLQC forecast

does.

method assumes quantile additivity, r̂t+1 (τ) =
∑15

j=1 θ̂i,tr̂i,t+1 (τ), which may not hold in practice. The

cumulative performance of PLQC forecast beats the HA over time and shows a clear superiority over

other point (MSPE) forecasts obtained from a combination of quantile forecasts.

4 Conclusion

This paper studies equity premium forecasting using monthly observations of returns to the S&P 500 from

1926.12 to 2013.12. A common feature of existing models is that they produce inaccurate forecasts due to

the presence of weak predictors and estimation errors. We propose a model selection procedure to identify

partially and fully weak predictors, and use this information to make optimal MSPE forecasts based on
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an averaging scheme applied to quantiles. The quantiles combination, as a robust approximation to the

conditional mean, avoids accuracy loss caused by estimation errors. The resulting PLQC forecasts achieve

a middle ground in terms of variance versus bias whereas existing methods reduce forecast variance

significantly but are unable to lower bias by a large scale. For this reason, the PLQC forecast outperforms

the historical average, and other existing forecasting models by statistically and economically meaningful

margins.

In the robustness analysis, we consider other quantile forecasting models based on fixed predictors.

These models are not designed to deal with partial and fully weak predictors across quantiles and over

time. The empirical results show that the quantile forecasts from such models are outperformed by the

proposed post-LASSO quantile forecast (PLQF). Moreover, the point forecasts obtained from the combi-

nation of such quantile forecasts are still unable to provide a solution to the original puzzle reported by

Goyal and Welch (2008).

In conclusion, equity premium forecasts can be improved if a method minimizes the effect of mis-

specification caused by weak predictors and estimation errors. Our results support the conclusion that an

optimal MSPE out-of-sample forecast of the equity premium can be achieved when we integrate LASSO

estimation and quantile combination into the same framework.
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