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Abstract

This paper investigates estimation of censored quantile regression models with fixed
effects. Standard available methods are not appropriate for estimation of a censored
quantile regression model with a large number of parameters or with covariates cor-
related with unobserved individual heterogeneity. Motivated by these limitations, the
paper proposes estimators that are obtained by applying fixed effects quantile regres-
sion to subsets of observations selected either parametrically or nonparametrically.
We derive the limiting distribution of the new estimators under joint limits, and con-
duct Monte Carlo simulations to assess their small sample performance. An empirical
application of the method to study the impact of the 1964 Civil Rights Act on the
black-white earnings gap is considered.
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1 Introduction

Censored observations are common in applied work. Standard examples are survey data on

wealth and income. In order to obtain responses from wealthy individuals or households,

some surveys only ask about the amount of wealth up to a given threshold, allowing wealthy

individuals to simply indicate if their wealth is above a threshold. Due to the presence of

censoring, standard regression methods employed to estimate linear conditional mean models

lead to inconsistent estimates of the parameters of interest. Censored regression models are

usually estimated using likelihood techniques. Schnedler (2005) shows the general validity of

this approach and provides methods to find the likelihood for a broad class of applications.

When the interest lies on the effect of a given covariate on the location and scale param-

eters of the conditional distribution of a latent variable, likelihood methods can be replaced

by quantile regression (QR) techniques. In this context, Powell (1984, 1986) proposed the

celebrated Powell estimator based on the equivariance to monotone transformation property

of quantiles. Despite its intuitive appeal, the slow convergence of the Powell estimator when

the degree of censoring is high or when the number of estimated parameters is large limited

the use of the method in empirical research. Motivated in part by such limitations, Cher-

nozhukov and Hong (2002) and Tang, Wang, He, and Zhu (2012) proposed simple, easily

implementable, and well-behaved estimation procedures.

Recently, there has been a growing literature on estimation and testing of QR panel data

models. Koenker (2004) introduced a general approach to estimation of QR models for longi-

tudinal data. Individual specific (fixed) effects are treated as pure location shift parameters

common to all conditional quantiles. Controlling for individual specific heterogeneity while

exploring heterogeneous covariate effects within the QR framework, offers a more flexible

approach to the analysis of panel data than the afforded by the classical Gaussian fixed and

random effects estimators. In spite of the large literature on censored QR for cross-sectional

models [see, e.g., Powell (1986), Fitzenberger (1997), Buchinsky and Hahn (1998), Bilias,

Chen, and Ying (2000), Khan and Powell (2001), Honoré, Khan, and Powell (2002), Cher-

nozhukov and Hong (2002), Portnoy (2003), Peng and Huang (2008), Lin, He, and Portnoy

(2012), Tang, Wang, He, and Zhu (2012)], the literature on censored QR for panel data

is still very limited. Honoré (1992) proposes estimators for trimmed least absolute devia-

tion censored models with individual fixed effects, which do not parametrically specify the

distribution of the error term. Chen and Khan (2008) consider an estimation procedure for
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median censored regression models that is robust to non-stationary errors in the longitudinal

data context. Wang and Fygenson (2009) develop inference procedures for a QR panel data

model, while accounting for issues associated with censoring and intra-subject correlation.

More recently, Khan, Ponomareva, and Tamer (2011) analyze identification in a censored

panel data model where the censoring can depend on both observable and unobservable

variables in arbitrary ways under a median independence assumption.

This paper investigates estimation of a panel data censored QR model with fixed effects.

In the analysis of panel data, it is natural to treat the individual effects as nuisance param-

eters in the model. Although one could estimate this model using the Powell estimator, it

is well known that this estimation method suffers from computational instability [see, e.g.,

Buchinsky (1994) and Fitzenberger (1997)]. The Powell estimator simply does not perform

well when the number of estimated parameters is large and the degree of censoring is high.

Motivated by these limitations, the paper proposes estimators that are obtained by applying

fixed effects QR to subsets of observations. We propose two-step estimators in which the first

step selects a subset of observations by estimating a propensity score either parametrically

or nonparametrically, and the second step applies fixed effects QR to the selected subset of

observations. These estimators are simple to compute and easy to be implemented in panel

data applications with a large number of subjects. We derive their asymptotic properties

under joint limits, assuming that the conditional censoring probability satisfies smoothness

conditions and can be estimated at an appropriate nonparametric rate. Finally, we suggest

an alternative parametric estimator which can be employed in models with polychotomous

independent variables, although it comes at the cost of employing additional steps.

Monte Carlo simulations are conducted to evaluate the finite sample performance of the

proposed methods. The simulations indicate that the estimators offer good performance

in terms of bias, mean squared error, and coverage probability of the confidence interval.

We also consider an empirical application to investigate whether the 1964 Civil Rights Act

contributed to reduce the black-white earning gap. Our approach shows that the policy

had a small and insignificant effect among mature workers, while significantly reducing the

earning gap among young workers at the upper quantiles. This finding is not uncovered

by other competing methods that fail to simultaneously address censoring at the maximum

taxable earnings and unobserved heterogeneity.

The paper is organized as follows. Section 2 presents the model, the estimators, and the
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large sample theory. Section 3 investigates the small sample performance of the methods.

Section 4 extends the asymptotic results to allow for dependence across time. An empirical

illustration is considered in Section 5. Section 6 concludes. The technical proofs are in the

Appendix.

2 Censored quantile regression with fixed effects

2.1 The model

Let y∗it denote the potentially left censored t-th response of the i-th individual and let yit =

max (Cit, y
∗
it) be its corresponding observed value, where Cit is a known censoring point.

Moreover, y∗it is assumed to be conditionally independent of the censoring point Cit, such

that, conditional on covariates, xit, and an individual effect, αi, P(y∗it < y|xit, αi, Cit) =

P(y∗it < y|xit, αi). Given a quantile τ ∈ (0, 1), we define the following quantile regression

(QR) model,

y∗it = αi0(τ) + x>itβ0(τ) + uit, i = 1, ...N, t = 1, ...T,

where xit is a p × 1 vector of regressors, β0(τ) is a p × 1 vector of parameters, αi0(τ) is

a scalar individual effect for each i, and uit is the innovation term whose τ -th conditional

quantile is zero. Qy∗it
(τ |xit, αi0) = inf{y : Pr(y∗it < y|xit, αi0) ≥ τ} is the conditional τ -

quantile of y∗it given (xit, αi0). The quantile-specific individual effect, αi0(τ), is intended to

capture individual specific sources of variability, or unobserved heterogeneity that was not

adequately controlled by other covariates. In general, each αi0(τ) and β0(τ) can depend

on τ , but we assume τ to be fixed throughout the paper and suppress this dependence for

notational simplicity. The model is semiparametric in the sense that the functional form

of the conditional distribution of y∗it given (xit, αi0) is left unspecified and no parametric

assumption is made on the relation between xit and αi0. Thus, the QR model can be

written as,

Qy∗it
(τ |xit, αi0) = αi0 + x>itβ0. (2.1)

Equivariance to monotone transformation is an important property of QR models. For a

given monotone transformation =c(y) of variable y∗, Q=c(y∗it)(τ |xit, αi0) = =c(Qy∗it
(τ |xit, αi0)).

The transformation of (2.1) naturally leads to a version of the Powell’s censored QR model,

Qyit(τ |xit, αi0, Cit) = max(Cit, αi0 + x>itβ0). (2.2)
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We consider the fixed effects estimation of β0, which is implemented by treating each

individual effect as a parameter to be estimated. Throughout the paper, as in Hahn and

Newey (2004) and Fernández-Val (2005), we treat αi as fixed by conditioning on them. Thus,

the parameter of interest, β0, can be interpreted as representing the effect of xit on the τ -th

conditional quantile function of the dependent variable while controlling for heterogeneity,

here represented by αi. This model can be viewed as a conditional model. There are other

conditional models available in the QR literature and we refer the reader to Kim and Yang

(2011) for additional discussion on marginal and conditional quantile regression models.

Following Powell (1986), if we control for fixed effects we could define the estimator (α̂, β̂)

solving the following minimization problem:

Q1,N(α,β) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit −max(Cit, αi + x>itβ)), (2.3)

where α := (α1, ..., αN)> and ρτ (u) = u(τ − 1(u < 0)) denotes the loss function of Koenker

and Bassett (1978). Throughout the paper, the number of individuals is denoted by N and

the number of time periods is denoted by T = TN that depends on N . In what follows, we

omit the subscript N of TN . Hence, only N is explicitly shown in Q1,N(α,β).

In despite of its intuitive appeal, the Powell estimator has not become popular in empirical

research due to its computational difficulty. The problem with estimating (2.3) is caused

by its low frequency of convergence. The Powell estimator involves the minimization of a

non-convex problem, and thus iterative linear programming methods are only guaranteed to

converge to local minimum [see Fitzenberger (1997) and Khan and Powell (2001)]. Additional

regressors, large proportions of censored observations, and large samples only worsen the

problem. Furthermore, its finite sample performance has come into question, and has been

addressed in simulation studies [see, e.g., Paarsch (1984)].

In order to overcome the above problems, we consider an alternative approach to estimate

model (2.2). Following the arguments in Honoré, Khan, and Powell (2002) and Tang, Wang,

He, and Zhu (2012), it can be shown that (2.3) is asymptotically equivalent to the minimizer

of

Q2,N(α,β) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit − αi − x>itβ)1(αi0 + x>itβ0 > Cit). (2.4)

Denote δit = 1(y∗it > Cit) to indicate uncensored observations. Let uit := y∗it−αi0−x>itβ0,

whose τ -th conditional quantile given (xit, αi, Cit) equals zero. Because π0(αi,xit, Cit) :=
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P(δit = 1|xit, αi, Cit) = P(uit > −αi0−x>itβ0+Cit|xit, αi, Cit) and P(uit > 0|xit, αi, Cit) = 1−
τ , and noticing that the restriction set selects those observations (i, t) where the conditional

quantile line is above the censoring point Cit, the objective function (2.4) is equivalent to

Q3,N(α,β) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit − αi − x>itβ)1(π0(αi,xit, Cit) > 1− τ). (2.5)

This development suggests that to obtain a censored QR estimator, one can simply apply

fixed effects QR to the subset {(i, t) : π0(αi,xit, Cit) > 1− τ}, including all the observations,

even censored ones, for which the true τ -th conditional quantile is above the censoring point

Cit. However, in applications the true propensity score function π0(·) is unknown. Thus,

a (feasible) estimator would first estimate π0(·), only using the values of δit and regressors.

From this step, the fitted function would be used to determine the observations to be included

in a panel data QR.

2.2 The proposed methods

This section describes the proposed estimator for censored QR panel data. The estimator

can be obtained in two steps. In what follows, we extend the results in Tang, Wang, He,

and Zhu (2012) for the problem considered in this paper.

Step 1. Estimate π0(αi,xit, Cit) by using either a parametric or nonparametric regression

method for binary data, and denote the estimated conditional probability as π̂(αi,xit, Cit).

Determine the informative subset JT = {(i, t) : π̂(αi,xit, Cit) > 1− τ + cN}, where cN is a

pre-specified small positive value with cN → 0 as N →∞.

Step 2. Then θ0 = (α>0 ,β
>
0 )> can be estimated by applying fixed effects QR to the

subset JT , i.e., θ̂ = (α̂>, β̂>)> is the minimizer of

QN(α,β, π̂) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit − z>itα− x>itβ)1 (π̂(αi,xit, Cit) > 1− τ + cN) , (2.6)

where zit is an N -dimensional indicator variable for the individual effect αi.

Here cN is added to exclude boundary cases from the subset used in (2.6). The rate of

cN required for establishing asymptotic properties is given and discussed in assumption B3

below. The practical choice of cN is discussed in the simulation section. If the parametric

form of π0(αi,xit, Cit) is known, a consistent estimator of π̂(αi,xit, Cit) can be obtained by

5



applying parametric methods to data. For instance, standard probability methods can be

applied under the assumption that the censoring probability follows a parametric classifi-

cation fixed effects model, P(δit = 1|Xit, Cit) = p(X>itγ), where δit = 1(y∗it > Cit), p(·)
is a known link function, Xit = (z>it ,x

>
it)
>, and γ = (α>,β>)> is a (N + p)-dimensional

vector. When the parametric form of the true propensity score is unknown, then one can

obtain a consistent estimator of π0(·) by applying nonparametric or semiparametric methods

(e.g., generalized linear regression with spline approximation, generalized additive models,

or maximum score with series function approximation). We refer the reader to Li and Racine

(2007) for estimation of binary dependent variable panel models. In the next section, the

asymptotic properties of the 2-step estimator are derived assuming that the estimated cen-

soring probability, π̂(·), satisfies some smoothness conditions and converges to π0(·) at the

uniform rate of T−1/4. Thus, we allow both parametric and nonparametric estimation of

π0(·).

Although the suggested nonparametric methods for the first stage are attractive, they are

practical only in low dimensions, have slow convergence rates, might not allow for categorical

data, and rely on additive separability on the fixed effects or nonlinear difference techniques

(see e.g. Chernozhukov, Fernández-Val, Hahn, and Newey (2013) for nonseparable panel

models). Local kernel smoothers apply to (sufficiently) continuous variables only, whereas

many practical applications have many (sufficiently) discrete covariates. To overcome these

shortcomings, in a cross-sectional context, Chernozhukov and Hong (2002) use parametric

regression to estimate the conditional censoring probability, which may give inconsistent esti-

mation of π0(·). They assume an envelope restriction on the censoring probability, requiring

that the misspecification of the parametric model is not severe, use a fixed constant d to

avoid bias, and seek a further step to achieve efficiency. Thus, for the mentioned reasons,

we also consider a 3-step estimator for censored QR model.

The 3-step estimator has the advantage that it allows for some misspecification in the

propensity score, can be used in models that are nonseparable in αi and xit, and is simple

to be implemented in practice, demanding shorter T relative to the 2-step estimator. The

estimator is computed using the following steps. The first step selects the sample J0 ={
(i, t) : p(X>it γ̂) > 1− τ + d

}
, where d is strictly between 0 and τ and p(·) is a parametric

link function, for instance a logit function. The goal of the first step is to select some, and

not necessarily the largest, subset of observations where π0(αi,xit, Cit) > 1 − τ , that is,

where the quantile line αi0 +x>itβ0 is above the censoring point Cit. The second step applies
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fixed effects QR to the subset J0, selecting the subset J1 =
{

(i, t) : α̂0
i + x>itβ̂

0 > δNT + Cit

}
,

where δNT is a small positive number such that δNT ↓ 0 and
√
NT × δNT is bounded, and

θ̂0 = (α̂0>, β̂0>)> is the second stage estimator of θ0 = (α>0 ,β
>
0 )>. Lastly, we seek a third

step by solving a fixed effects QR problem on the subset J1 if J0 ⊂ J1. We denote this

estimator as the 3-step estimator, θ̂1 = (α̂1>, β̂1>)>.

Naturally, the 2-step and 3-step procedures have advantages and disadvantages when

applied to panel data. On the one hand, in practice, the parametric form of the propensity

score is unknown and estimation might be subject to misspecification. On the other hand, the

nonparametric 2-step estimator requires relatively larger T and additional assumptions that

control the degree of smoothness, and the 3-step estimator requires additional assumptions

and parametric estimation in the first step. We investigate the finite sample properties of

the estimators in the simulation section.

2.3 Large sample properties

This section investigates the asymptotic properties of the proposed 2-step estimator. The

asymptotic results together with the required assumptions for the 3-step estimator are pro-

vided in the Supplemental Appendix. While the 2-step framework is similar to the one

proposed by Tang, Wang, He, and Zhu (2012), which has been developed for cross-sectional

models, the existence of the individual fixed effects parameter, α, in equation (2.6), whose

dimension N tends to infinity, raises some new issues for the asymptotic analysis of the

quantile regression (QR) estimators. As first noted by Neyman and Scott (1948), leaving

the individual heterogeneity unrestricted in a nonlinear or dynamic panel model generally

results in inconsistent estimators of the common parameters due to the incidental parameters

problem; that is, noise in the estimation of the individual specific effects leads to inconsis-

tent estimates of the common parameters due to the nonlinearity of the problem. In this

respect, QR panel data suffers from this problem. To overcome this drawback, it has become

standard in the panel QR literature, to employ a large N and T asymptotics, as for example

in Koenker (2004) and Kato, Galvao, and Montes-Rojas (2012). The latter work derives the

asymptotic properties of the panel QR estimator under joint limits. We employ the same

joint asymptotics in this paper. Following Chernozhukov and Hong (2002) and Tang, Wang,

He, and Zhu (2012), we set in this section Cit = 0 since any model with known censoring Cit

can be reduced to a model with a fixed censoring at 0.
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Let ‖π−π0‖∞ = supw |π(w)−π0(w)| for a given π(·) and a generic vectorw. We consider

the following regularity conditions for consistency of (α̂, β̂).

A1: {(xit, y∗it)} are independent across subjects and independently and identically dis-

tributed (i.i.d.) for each i and all t ≥ 1.

A2: supi≥1 E[||xi1||2s] <∞ and some real s ≥ 1.

Let uit := y∗it−αi0−x>itβ0, and πi0(xit) := π0(αi,xit). Fi(u|x) is defined as the conditional

distribution function of uit given xit := x. Assume that Fi(u|x) has density fi(u|x). Let

fi(u) denote the marginal density of uit.

A3: For each δ > 0,

εδ := inf
i≥1

inf
|α|+||β||1=δ

E

[∫ α+x>i1β

0

{Fi(s|xi1)− τ} ds1{πi0(xi1) > 1− τ}

]
> 0.

A4: For any εN → 0, sup||π−π0||∞≤εN
1
N

∑N
i=1 E[1{|πi(xit)− (1− τ + cN)| < εN}] = O(εN).

A5: limN→∞ cN = 0.

Conditions A1 and A2 are standard in the QR panel literature, and are the same as

the ones used in Kato, Galvao, and Montes-Rojas (2012). In condition A1, we exclude

the temporal dependence to focus on the simplest case first and to highlight the difficulties

arising from panel data models with fixed effects and censored observations. The temporal

independence is also assumed in Hahn and Newey (2004), Fernández-Val (2005), and Canay

(2011). Nevertheless, the results are extended in Section 4 to the dependent case under

suitable mixing conditions as in Hahn and Kuersteiner (2011). Condition A3 represents

an identification condition, and corresponds to condition A3 of Kato, Galvao, and Montes-

Rojas (2012). Condition A4 is the same as assumption A5.3 in Tang, Wang, He, and Zhu

(2012) and requires that π0(·) is nonflat around 1− τ . This is standard in the literature with

two step estimators. Finally, A5 is required for establishing consistency and is a restriction

on cN which serves to avoid boundary situations. This condition is largely employed in

the literature on censored QR (e.g. Buchinsky and Hahn (1998), Khan and Powell (2001),

Chernozhukov and Hong (2002), Tang, Wang, He, and Zhu (2012)). Now we state the result

for consistency.

Theorem 1. Assume supi ||π̂i − πi0||∞ = op(1). Under Assumptions A1–A5, as N/T s → 0,

(α̂, β̂) is consistent.
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The result in Theorem 1 shows that the 2-step estimator is consistent. The condition on T

in Theorem 1 is the same as that in Theorems 1-2 of Fernández-Val (2005) and Theorem 3.1

in Kato, Galvao, and Montes-Rojas (2012).

For the estimator (α̂, β̂) to converge weakly in distribution, we make the following as-

sumptions.

B1: The covariates xit has a bounded, convex support Rx and a density function

fxi , which is bounded away from zero and infinity uniformly over x and i. In addition,

infi λmin(E[xi1x
>
i1]) > 0, where λmin is the smallest eigenvalue.

B2: For any nonnegative sequence εN → 0 and N large enough, λmin,εN , the smallest

eigenvalue of the matrix infi λmin(E[xi1x
>
i1]fi(0|xi1)1{αi0 + x>i1β0 > εN}) > λ0 > 0. There

exists a constant ζ > 0 such that for any εN → 0, sup|αi−αi0|+||β−β0||≤ζ E[1{|αi + x>β| <
εN}] = O(εN).

B3: cN → 0 and T 1/4cN is greater than some positive constant c∗.

B4: For any positive sequence εN → 0 with εN/cN → 1 and any xi1, πi0(xi1) > 1−τ+εN

implies αi0 + x>i1β0 > ε∗N for some ε∗N such that εN = O(ε∗N).

B5: P (π0(x), π̂(x) ∈ Cp+α
c (Rx)) → 1 for some positive α ∈ (0, 1] and finite c, where

Cp+α
c (Rx) is the set of all continuous functions h : Rx → R with ‖h‖∞,p+α ≤ c.

B6: For any positive εN → 0 with max{max1≤i≤N |αi − αi0|, ||β − β0||} ≤ εN ,

E[1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}] = −D∗N1(αi − αi0)−D∗N2(β − β0)

E[xi11{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}] = −D∗N3(αi − αi0)−D∗N4(β − β0)

whereD∗N1,D∗N2,D∗N3 , andD∗N4 are positive semi-definite matrices satisfying 0 ≤ min{λmin(D∗Nj)}
≤ maxj{λmaxj(D

∗
Nj)} < ∞. The limiting forms of the following matrices are positive defi-

nite:

V = τ(1− τ) lim
N→∞

1

N

N∑
i=1

E{(xit −Aia
−1
i )(xit −Aia

−1
i )>1(πi0(xit) > 1− τ)},

Λ = lim
N→∞

1

N

N∑
i=1

[Bi −Aia
−1
i A

>
i ]1(πi0(xit) > 1− τ),

where, ai := E[fi(0|xit)1(πi0(xit) > 1 − τ)], Ai := E[fi(0|xit)xit1(πi0(xit) > 1 − τ)], Bi :=

E[fi(0|xit)xitx>it1(πi0(xit) > 1− τ)].
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These conditions are similar to those in Tang, Wang, He, and Zhu (2012). B1 assumes a

bounded support for convenience and is similar to A1 in Tang, Wang, He, and Zhu (2012).

It can be relaxed under additional conditions on the smoothness of the propensity score

function. B2 is parallel to A3 and assumption R.2 of Powell (1986) and is a standard

condition in censored QR. B3 is similar to assumption A4 in Tang, Wang, He, and Zhu

(2012) and is used to avoid boundary conditions. Assumption B4 is similar to A5.1 in Tang,

Wang, He, and Zhu (2012) which basically requires that the derivative of πi(xi1) is bounded

and the true quantile line is not flat. B5 is analogous to A5.2 in Tang, Wang, He, and Zhu

(2012). Finally, B6 is similar to A6 in Tang, Wang, He, and Zhu (2012). The following result

states convergence in distribution.

Theorem 2. Assume supi ||π̂i − πi0||∞ = op(T
−1/4). Under conditions of Theorem 1 and

B1–B6, as N2(logN)3/T → 0,
√
NT (β̂ − β0)

d→ N(0,Λ−1V Λ−1).

The restriction that T grows at most polynomially in N is the same as in Kato, Galvao,

and Montes-Rojas (2012). This condition is used only to “kill” the remainder term in the

derivation of the asymptotic results. It serves as a warning device to practitioners on the

type of situations where the asymptotics are likely to provide a good approximation in

practice. Nevertheless, the large T requirement is unusual in several panel data sets in

economics and finance. In this respect, the Monte Carlo simulations presented below assess

the finite sample performance of the estimators and provide evidence of good small-sample

performance. The simulation results confirm the asymptotic theory prediction that the bias

decreases as T increases. In addition, even if the asymptotic theory requires relatively large

T , the simulations show evidence that the bias is small for moderate T .

The components of the asymptotic covariance matrices in Theorem 2 that need to be

estimated include ai,Ai and Bi. Following Powell (1986), the matrices can be estimated by

their sample counterpart. For instance, ai can be estimated as

âi =
1

2TgN

T∑
t=1

1(|û(τ)| ≤ gN)1(π̂(αi,xit) > 1− τ + cN), (2.7)

where û(τ) has the τ -th conditional quantile at zero, the constant cN → 0, and gN is an

appropriately chosen bandwidth, with gN → 0 and NTg2
N →∞. Note also that Ai and Bi

can be estimated similarly. The consistency of these asymptotic covariance matrix estimators

is standard and will not be discussed further in this paper.

10



Remark 1. In the theorems above, we provide results based on joint asymptotics for the

nonparametric 2-step estimator, and derive the requirements on the sample growth for the

asymptotic properties. The large sample results for the 3-step estimator are similar and

are given in the Supplemental Appendix. We show that the 2-step and 3-step estimators

are asymptotically equivalent. In addition, all the asymptotic results hold for fixed N and

T →∞.

3 Monte Carlo

In this section, we use Monte Carlo simulations to assess the finite sample performance

of the estimators. We report results for empirical bias, root mean squared error (RMSE),

and coverage probability for confidence interval with nominal level 0.95. We define the

latent variable as, y∗it = αi + β1x1,it + β2x2,it +
[
1 +

(
x1,it + x2,it + x2

1,it + x2
2,it

)
· ζ
]
· uit,

where β = (β1, β2)> = (10,−2)> is the parameter of interest, ζ modulates the amount of

heteroscedasticity and uit ∼ iidN (0, 1). We performed simulations with ζ ∈ {0, 0.5} and

uit ∼ t3, but we only report the case of Normal heteroscedastic errors to save space. In this

case, we consider a parameter of interest β(τ) = β + ζF−1
u (τ). We draw xit ∈ X ⊂ R2 from

independent standard normal distributions, truncated as {xit : ‖xit‖∞ < 2}. The fixed effect,

αi, is generated as αi = vi + ϕ
∑

t(x1,it + x2,it), with vi ∼ N (0, 1). The censored variable

is defined as yit = max(y∗it, Cit), with Cit taking the value −0.95 or −1.45. These choices

yield roughly 50% and 45% of censoring, respectively. Since we are considering left-censored

observations, we estimate the model for τ ∈ {0.25, 0.5}. Finally, we consider different sample

sizes, setting the number of replications to 1000.

In the experiments, we consider six estimators. The first one is the Omniscient estimator

which assumes knowledge of y∗it. The second one is the parametric 3-step estimator, labeled

3-step, in which (x1,it, x2,it) and (x2
1,it, x

2
2,it) are used in the parametric (logit) estimation

of the propensity score in the first step. Following Chernozhukov and Hong (2002), the

cutoff value d is equal to the 0.1-th quantile of all p(X>it γ̂)’s such that p(X>it γ̂) > 1 −
τ . In the second step, the parameter δNT is selected as the 1/3(NT )−1/3-th quantile of

the estimated quantile function α̂0
i (τ) + x′itβ̂

0(τ). We consider two versions of the 2-step

estimator. The parametric 2-step (p2-step) estimates the propensity score in the first step

using parametric logit regression. The nonparametric 2-step estimator (labeled n2-step) uses

generalized additive methods for a logistic regression in the first step with c = (NT )−1/5τ , as
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Sample Size Censor Quantile Estimators
N T point Omniscient 3-step p2-step n2-step Powell Naive

100 15 –0.95 0.5 0.000 0.034 –0.059 –0.054 0.529 –1.650
( 0.100 ) ( 0.198 ) ( 0.302 ) ( 0.297 ) ( 1.006 ) ( 4.730 )
[ 0.950 ] [ 0.938 ] [ 0.804 ] [ 0.819 ] [ 0.612 ] [ 0.000 ]

100 50 –0.95 0.5 –0.001 0.009 –0.031 –0.023 0.496 –1.733
( 0.053 ) ( 0.099 ) ( 0.138 ) ( 0.126 ) ( 0.891 ) ( 4.810 )
[ 0.953 ] [ 0.945 ] [ 0.844 ] [ 0.889 ] [ 0.517 ] [ 0.000 ]

100 15 –1.45 0.5 0.000 0.030 –0.057 –0.050 0.529 –1.561
( 0.100 ) ( 0.191 ) ( 0.289 ) ( 0.281 ) ( 0.965 ) ( 4.492 )
[ 0.950 ] [ 0.942 ] [ 0.876 ] [ 0.820 ] [ 0.604 ] [ 0.000 ]

100 50 –1.45 0.5 –0.001 0.007 –0.029 –0.022 0.486 –1.653
( 0.053 ) ( 0.096 ) ( 0.133 ) ( 0.121 ) ( 0.851 ) ( 4.582 )
[ 0.953 ] [ 0.942 ] [ 0.854 ] [ 0.883 ] [ 0.513 ] [ 0.000 ]

100 15 –0.95 0.25 0.021 0.096 –0.113 –0.102 0.764 –1.641
( 0.115 ) ( 0.407 ) ( 0.577 ) ( 0.568 ) ( 1.478 ) ( 5.035 )
[ 0.948 ] [ 0.921 ] [ 0.790 ] [ 0.806 ] [ 0.000 ] [ 0.000 ]

100 50 –0.95 0.25 0.003 0.022 –0.026 –0.020 0.818 –1.673
( 0.059 ) ( 0.148 ) ( 0.210 ) ( 0.198 ) ( 1.566 ) ( 5.091 )
[ 0.953 ] [ 0.937 ] [ 0.824 ] [ 0.861 ] [ 0.000 ] [ 0.000 ]

100 15 –1.45 0.25 0.021 0.094 –0.102 –0.090 0.768 –1.540
( 0.115 ) ( 0.382 ) ( 0.532 ) ( 0.518 ) ( 1.414 ) ( 4.780 )
[ 0.948 ] [ 0.919 ] [ 0.796 ] [ 0.809 ] [ 0.000 ] [ 0.000 ]

100 50 –1.45 0.25 0.003 0.021 –0.024 –0.017 0.808 –1.568
( 0.059 ) ( 0.139 ) ( 0.198 ) ( 0.186 ) ( 1.479 ) ( 4.797 )
[ 0.953 ] [ 0.938 ] [ 0.824 ] [ 0.861 ] [ 0.000 ] [ 0.000 ]

Table 3.1: Monte Carlo simulation results for τ = {0.5, 0.25} quantile and ϕ = 0.5 in the
case of Normal heteroscedastic errors. The table shows the bias, RMSE (in parentheses),
and coverage [in brackets].
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Figure 3.1: Small sample performance of the estimators when T or ϕ increases. The case of
ϕ = 0 represents the random effects case.

in Tang, Wang, He, and Zhu (2012). The fifth estimator is a version of the Powell estimator

without fixed effects, and lastly, a “naive” estimator that assumes that the observations are

uncensored were also considered.

Table 3.1 shows, as expected, that the Omniscient estimator performs better than any

other estimator. At the 0.5 quantile, the 3-step and p2-step estimators are slightly biased

for small T , but their biases decrease substantially when T increases. The results for n2-

step also show small biases, which tend to disappear as T increases. In terms of empirical

coverage, the 3-step estimator performs well and produces empirical coverage close to the

nominal 0.95. The bottom block of Table 3.1 presents results for the model estimated at

τ = 0.25. The results are somewhat analogous to the ones presented at the upper part of

Table 3.1. When compared with the case for τ = 0.50, we find that, in general, the bias of the

estimators are slightly larger, but as in the previous case, the biases decrease substantially

when T increases.

In order to shed light on the performance of the n2-step vis-à-vis the 3-step, Figure 3.1

offers the RMSE of the estimators from short-N simulations when varying the time series

T (left panel) and ϕ (right panel). In these simulations, we only considered C = −0.95.
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Non-linear Link Function Linear Probability Model
N T C 3-step p2-step 3-step p2-step

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1000 15 –0.95 0.023 0.068 –0.057 0.243 0.012 0.061 –0.105 0.374
1000 50 –0.95 0.007 0.032 –0.028 0.104 0.002 0.032 –0.056 0.213

Table 3.2: Monte Carlo results for τ = ϕ = 0.5 in the case of Normal heteroscedastic errors.

The left panel shows that although the 3-step outperforms the n2-step for small T , the

equivalence between them is achieved as T increases. The right panel shows the RMSE of

the proposed estimators when the correlation between αi and xit is changed. When ϕ = 0,

the Powell estimator performs relatively well, similarly to the estimators proposed in the

paper. The converse is not true since the performance of the Powell estimator deteriorates

quickly as ϕ differs from zero, which corresponds to the case where it is important to account

for individual heterogeneity. In contrast, the performance of the proposed estimators remains

unaffected for different values of ϕ.

To investigate how sensitive are the parametric estimators to the choice of a logit model

in the first stage, we conduct simulations where we use a Linear Probability Model (LPM)

to estimate propensity scores. Table 3.2 presents results for N = 1000 which is similar to the

number of subjects considered in the empirical section. The results suggest that the LPM

performs well in panel data models with large N and moderate T .

4 Extension: dependence case

We extend the results in Theorems 1 and 2 to the case where we allow for dependence

across time while maintaining independence across individuals. The following assumptions

are needed for this case.

E1: {(xit, y∗it), t ≥ 1} is stationary and β-mixing for each fixed i, and independent

across i. Let βi(j) denote the β -mixing coefficients of {(xit, y∗it), t ≥ 1}. Then, there exists

constants a ∈ (0, 1) and B > 0 such that supi≥1 βi(j) ≤ Baj for all j ≥ 1.

E2: Let fi,j(u1, u1+j|x1,x1+j) denote the conditional density of (u1, u1+j) given (xi1,xi,1+j) =

(x1,x1+j). There exists a constant C ′f > 0 such that fi,j(u1, u1+j|x1,x1+j) ≤ C ′f uniformly

over (u1, u1+j,x1,x1+j) for all i ≥ 1 and j ≥ 1.
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E3: Let ṼNi denote the covariance matrix of the term T−1/2
∑T

t=1{τ − I(uit ≤ 0)}(xit−
Aia

−1
i )1(πi0(xit) > 1 − τ + cN), then the limit Ṽ := limN→∞N

−1
∑N

i=1 ṼNi exists and is

nonsingular.

Condition E1 is similar to condition 1 of Hahn and Kuersteiner (2011) and Kato, Gal-

vao, and Montes-Rojas (2012). Condition E2 imposes a new restriction on the conditional

densities, but it is also standard as in Kato, Galvao, and Montes-Rojas (2012). Finally, E3

defines the long-run variance-covariance matrix.

Theorem 3. Under Conditions E1-E3, A3 and B1-B6, (α̂, β̂) is consistent provided that

(logN)2/T → 0 and supi ||π̂i−πi0||∞ = op(1). Moreover, if N2(logN)3/T → 0 and supi ||π̂i−
πi0||∞ = op(T

−1/4), then we have that
√
NT (β̂ − β0)

d→ N(0,Λ−1Ṽ Λ−1).

The proof for this result is given in the Supplemental Appendix.

5 An empirical application

Using data from Chay and Powell (2001), this section investigates relative earnings of black

workers in the southern states of the United States in the period between 1957 and 1971.

The black-white earnings differentials is an important research area in economics with a very

large literature on the subject [see e.g. Brown (1984), Altonji and Blank (1999), Heckman,

Lyons, and Todd (2000), Lang (2007)]. We apply our quantile method to a difference-in-

difference model of earnings in which the parameter of interest measures the black-white

earning gap after the introduction of the Title VII of the Civil Rights Act of 1964. This

policy prohibited discrimination by employers on the basis of race and gender.

This paper employs data from the Current Population Survey. In a joint project of the

Census Bureau and the Social Security Administration (SSA), respondents to the 1973 and

1978 March Current Population Surveys were matched by their Social Security numbers to

their Social Security earnings histories. The data contains information on earnings of 1314

workers over 15 years, of which over 50% are censored at the maximum taxable earnings

level for Social Security. Following Levine and Mitchell (1988), we consider two labor groups:

young workers (ages 22-30 in 1957) and mature workers (ages 31-43 in 1957). This allows us

to investigate whether the policy has a differential effect on the age structure of the workers.
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Variable OLS1 OLS2 QR1 QR2 PH POR CLAD

Young Workers

Black-white gap –0.303 –0.155 –0.436 –0.202 –0.476 –0.471 –0.450
(0.025) (0.036) (0.013) (0.024) (0.025) (0.029) (0.025)

Black-white gap after 0.056 0.027 0.126 0.046 0.125 0.120 0.128
1964 Civil Rights Act (0.039) (0.058) (0.021) (0.038) (0.036) (0.045) (0.035)
Number of observations 10170 4886 10170 4886 10170 10170 10170

Mature Workers

Black-white gap –0.203 –0.160 –0.209 –0.121 –0.252 –0.251 –0.185
(0.020) (0.033) (0.011) (0.020) (0.027) (0.022) (0.020)

Black-white gap after 0.093 0.108 0.023 0.019 0.082 0.084 0.058
1964 Civil Rights Act (0.031) (0.052) (0.018) (0.030) (0.032) (0.025) (0.030)

Number of observations 14490 6153 14490 6153 14490 14490 14490

Table 5.1: Black-white earnings differentials. All quantile models are estimated at the median.
Standard errors are presented in parentheses.

We estimate the following censored quantile regression model with fixed effects,

Qyit(τ |xit, αi, Cit) = min(Cit, αi(τ) + x>itβ(τ)), (5.1)

where Qy is the conditional quantile of the natural logarithm of earnings and x includes

race (1 = black, 0 = white), an indicator for the period after the policy (1 = after 1964,

0 = before 1964), and an interaction term for race in the period after the policy (1 =

black after 1964, 0 otherwise). The model includes other control variables as described in

the Supplemental Appendix. The effect of interest is the black-white gap after the 1964

Civil Rights Act. For comparison, we estimate models without individual specific intercepts,

Qyit(τ |xit, Cit) = min(Cit,x
>
itβ(τ)), and without modeling the censored data in a quantile

regression model for earnings, Qyit(τ |xit) = x>itβ(τ).

Table 5.1 presents results for the parameter of interest. The first column (labeled OLS1)

shows standard least squares estimates, while the second column (OLS2) present least squares

estimates obtained from a sample that drops the top-censored observations. The third and

fourth columns present quantile regression estimates of the parameter of interest at the con-

ditional median. QR1 is the standard quantile regression estimator and QR2 is the quantile

regression estimator used on a sample that does not include top-censored observations. The

next two columns (labeled PH and POR) present results obtained from Peng and Huang’s

(2008) method and Portnoy’s (2003) censored quantile regression estimator. The last col-

umn, labeled CLAD, presents results from a version of Powell’s semi-parametric estimator.
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The OLS1 and QR1 estimators in Table 5.1 are suspected to deliver biased results due to

the presence of censoring and unobserved individual heterogeneity. The estimates obtained

by using OLS2 and QR2 are also biased because they only consider uncensored observations.

PH, POR and CLAD address censoring but ignore individual heterogeneity possibly corre-

lated with the covariates. The analysis of the results reported in Table 5.1 indicates that the

median effects of the 1964 Civil Rights Act are small among mature workers but significant

for young workers.

However, a complete analysis can only be obtained if we investigate the effect of the

1964 Civil Act on other quantiles of the conditional earnings distribution. This is presented

in Figure 5.1, which shows three types of estimators: the first one does not account either

for the presence of censoring or for fixed effects (QR1, QR2); the second type accounts for

censoring but not for fixed effects (PH, PO, CLAD). In particular, recall that CLAD is

exactly the estimator proposed by Wang and Fygenson (2009) which has the advantage of

allowing identification of time-invariant effects. The last estimator, the 3-step, is the only

one that accounts for both censoring and fixed effects and can be employed to estimate model

(5.1) with dichotomous independent variables.

Due to the top coded observations, the estimates of upper quantiles obtained from QR1

would be biased towards zero. This is exactly what we see in Figure 5.1 where the graph

showing the coefficient estimates obtained from QR1 are approaching zero as we go across

quantiles. It is interesting to see that censoring does not seem to be the only issue at

the upper quantiles, because the curves associated with PH, POR and CLAD tend to be

concave. In order to avoid the potential bias caused by endogenous individual effects and

censoring, we employ the 3-step estimator. Unlike the conclusion obtained using QR1 or

CLAD for instance, we notice that the effect of the 1964 Civil Rights Act is increasing and

significant at the upper quantiles of the conditional earnings distribution of young workers.

Indeed, our simulations showed that under random effects, the n2-step estimator, the 3-step

estimator, and the Powell estimator have similar performance because they take care of the

censoring, but under fixed effects, only the methods proposed in this paper have satisfactory

performance. Therefore, any empirical difference between the 3-step and Powell estimators

may reflect the presence of endogeneity. Competing quantile regression methods fail to

uncover the large effect in the upper tail of the conditional earnings distribution.

Chay and Powell (2001) use a semiparametric censored regression model to investigate
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Figure 5.1: Quantile effects of the black-white gap after the Civil Rights Act of 1964. The
areas represent 90 percent pointwise confidence intervals.
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the black-white wage gap, and find significant earnings convergence among black and white

man after the passage of the 1964 Civil Rights Act. We shed more light on the debate

by revisiting this question and applying the quantile regression estimator. The proposed

method offers a flexible approach to the analysis of censored panel data since one is able to

control for individual specific intercepts while exploring heterogeneous covariate effects on

the response variable. Our analysis contributes to the black-white earnings gap debate with

two new conclusions: (i) the 1964 Civil Rights Act had no effect on the earnings distribution

of mature workers, only affecting young workers; (ii) among the young workers to whom

the policy had a significant effect, the ones at the upper quantiles of the distribution were

more benefited. Thus, as a policy to reduce income inequality, we interpret this evidence as

suggesting that the 1964 Civil Rights Act was beneficial to the group of black workers who

need it less.

6 Conclusions

In this paper, we have introduced quantile regression methods to estimate censored panel

models with individual specific fixed effects. We proposed methods that are obtained by

applying fixed effects quantile regression to subsets of observations selected either paramet-

rically or nonparametrically. We used the new estimator to reassess the effect of the 1964

Civil Rights Act on the black-white earnings gap. This policy prohibited discrimination

against black and female workers and aimed to reduce the race income gap in the United

States. Possible topics for future research include the case where Cit is a latent variable

potentially dependent on covariates, inference in the presence of dependence and bootstrap

methods for the proposed estimators.
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A Appendix: Proofs

For notational purposes, let πi0(xit) ≡ π0(αi,xit). We usually supress arguments of the

functions ψ(yit,xit;αi,β) = τ −1(yit < αi +x
>
itβ) and ρτ (yit,xit;αi,β) = ρτ (yit−αi−x>itβ)

for notational simplicity. Therefore, ψ(yit,xit;αi,β) ≡ ψ(·;αi,β) and ρτ (yit,xit;αi,β) ≡
ρτ (·;αi,β). Following Chernozhukov and Hong (2002) and Tang, Wang, He, and Zhu (2012),

we assume Cit = C = 0 throughout the proofs.
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Proof of Theorem 1. The proof of consistency is an application of three auxiliary lemmas

and is divided in two steps. First, we show that (α̂, β̂) − (α̃, β̃)
p→ 0, where (α̂, β̂) =

argminQN(α,β, π̂) and (α̃, β̃) = argminQ3,N(α,β). Second, we demonstrate that (α̃, β̃)
p→

(α0,β0). Therefore, we conclude that (α̂, β̂)
p→ (α0,β0).

Step 1: The asymptotic equivalence of (α̂, β̂) and (α̃, β̃). This step is an application of

two lemmas. To this end, in Lemma 1, we first show that the objection functions QN(α,β, π̂)

and Q3,N(α,β) are asymptotically equivalent uniformly in (α,β). Then, we apply Lemma

2, which shows that the uniform asymptotic equivalence of the objective functions implies

the asymptotic equivalence of the minimizers of the objective functions. Therefore, (α̂, β̂)−
(α̃, β̃)

p→ 0.

Step 2: The consistency of (α̃, β̃) is shown in Lemma 3.

Lemma 1. Under the assumptions of Theorem 1, supα,β |QN(α,β, π̂)−Q3,N(α,β)| = op(1).

Proof. To see this notice that,

(QN (α,β, π̂)−Q3,N (α,β))2

=
( 1

NT

N∑
i=1

T∑
t=1

(ρτ (·;αi,β)− ρτ (·;αi0,β0))(1{π̂i(xit) > 1− τ + cN} − 1{πi0(xit) > 1− τ})
)2

≤ 1

NT

N∑
i=1

T∑
t=1

(ρτ (·;αi,β)− ρτ (·;αi0,β0))
2 × 1

NT

N∑
i=1

T∑
t=1

(1{π̂i(xit) > 1− τ + cN} − 1{πi0(xit) > 1− τ})2

≤ 1

NT

N∑
i=1

T∑
t=1

9
(
(αi − αi0) + x>it(β − β0)

)2 × 1

NT

N∑
i=1

T∑
t=1

|1{π̂i(xit) > 1− τ + cN} − 1{πi0(xit) > 1− τ}|

=

(
9 lim
N→∞

1

N

N∑
i=1

E
(
(αi − αi0) + x>it(β − β0)

)2
+ op(1)

)
× op(1) = 0.

The first inequality uses Cauchy-Schwarz inequality and the second inequality uses the
identity of Knight (1989). The first term of the last line uses the Weak Law of Large
Numbers for independent data and condition A2. To see that the second term is op(1), we
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first do the following calculation:

1

NT

N∑
i=1

T∑
t=1

|1{π̂i(xit) > 1− τ + cN} − 1{πi0(xit) > 1− τ}|

=
1

NT

N∑
i=1

T∑
t=1

1{π̂i(xit)− cN ≤ 1− τ < πi0(xit) or πi0(xit) ≤ 1− τ < π̂i(xit)− cN}

= lim
N→∞

1

N

N∑
i=1

E[1{πi(xit)− cN ≤ 1− τ < πi0(xit) or πi0(xit) ≤ 1− τ < πi(xit)− cN}]πi=π̂i + op(1)

≤ lim
N→∞

sup
||π−π0||<εN

1

N

N∑
i=1

E[1{πi(xit)− cN ≤ 1− τ < πi0(xit) or πi0(xit) ≤ 1− τ < πi(xit)− cN}] + op(1)

≤ lim
N→∞

sup
||π−π0||<εN

1

N

N∑
i=1

E[1{πi(xit)− (1− τ + cN ) ≤ εN}] + op(1) = op(1).

Condition A4 says that if π is very close to π0, then it is very unlikely that π is close to

1 − τ + cN . However, from the previous expression, the only way for π̂ to be close to π0 is

to get close to 1− τ + cN .

Lemma 2. Let SN(θ, π) be a convex function in θ. Suppose supθ |SN(θ, π̂) − SN(θ, π0)| =
op(1). For any δ > 0, SN(θ̂1, π̂) < inf ||θ−θ̂1||>δ SN(θ, π̂), and SN(θ̂2, π0) < inf ||θ−θ̂2||>δ SN(θ, π0),

then ||θ̂1 − θ̂2|| = op(1).

Proof. For a fixed δ, we note that if ||θ̂1−θ̂2|| > δ, then SN(θ̂1, π̂) < SN(θ̂2, π̂) = SN(θ̂2, π0)+

op(1). The inequality is due to the definition of θ̂1, while the equality is due to the uniform

asymptotic equivalence condition supθ |SN(θ, π̂)− SN(θ, π0)| = op(1).

Note that the event relation {||θ̂1 − θ̂2|| > δ} ⊂ {SN(θ̂1, π0) > SN(θ̂2, π0) + ε(δ)},
with ε(δ) > 0. Therefore, P{||θ̂1 − θ̂2|| > δ} ≤ P{SN(θ̂1, π0) > SN(θ̂2, π0) + ε(δ)}. But

SN(θ̂1, π0) − SN(θ̂2, π0) < SN(θ̂1, π0) − SN(θ̂1, π̂) + op(1) ≤ supθ |SN(θ, π̂) − SN(θ, π0)| +
op(1) = op(1).

Lemma 3. Under the assumptions of Theorem 1, as N/T s → 0 for some real s ≥ 1, the

minimizer of Q3,N(α,β), (α̃, β̃), is a consistent estimator of (α0,β0).

Proof. Denote MNi(αi,β) = 1
T

∑T
t=1 ρτ (yit−αi−x>itβ)1{πi0(xit) > 1− τ} and ∆Ni(αi,β) =

MNi(αi,β)−MNi(αi0,β0). For each δ > 0, define Bi(δ) := {(α,β) : |αi−αi0|+ ||β−β0||1 ≤
δ} and ∂Bi(δ) := {(α,β) : |αi − αi0|+ ||β − β0||1 = δ}.

Step 1. The consistency of β̃ Fix any δ > 0. For each (αi,β) /∈ Bi(δ), define ᾱi =

riαi + (1− ri)αi0, β̄i = riβ+ (1− ri)β0, where ri = δ
|αi−αi0|+||β−β0||1 . Note that the objective
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function is convex. Therefore, we follow the steps in Kato, Galvao, and Montes-Rojas (2012).

ri[MNi(αi,β)−MNi(αi0,β0)] ≥MNi(ᾱi, β̄i)−MNi(αi0,β0)

=E[∆Ni(ᾱi, β̄i)] + (∆Ni(ᾱi, β̄i)− E[∆Ni(ᾱi, β̄i)]). (A.1)

Using Knight’s identity,

E[∆Ni(αi,βi)] = E

[∫ (αi−αi0)+x>i1(β−β0)

0

[Fi(s|xi1)− τ ] ds1{πi0(xi1) > 1− τ}

]
.

By condition A3, the first term of (A.1) is greater or equal to εδ for all 1 ≤ i ≤ N . Therefore,

we have

{||β̃ − β0||1 > δ} ⊂ {MNi(αi,β) ≤MNi(αi0,β0), for some i and (αi,β)}

⊂

{
max

1≤i≤N
sup

αi,β∈Bi(δ)
|∆Ni(αi,β)− E[∆Ni(αi,β)]| ≥ εδ

}
.

Therefore, it suffices to show that for every ε > 0,

lim
N→∞

P

{
max

1≤i≤N
sup

αi,β∈Bi(δ)
|∆Ni(αi,β)− E[∆Ni(αi,β)]| ≥ ε

}
= 0,

whose sufficient condition is

max
1≤i≤N

P

{
sup

αi,β∈Bi(δ)
|∆Ni(αi,β)− E[∆Ni(αi,β)]| ≥ ε

}
= o(N−1).

Without loss of generality, assume αi0 = 0 and β = 0. Then all the balls Bi(δ) are
the same and therefore are denoted by B(δ). Let gα,β(u,x) denote (ρτ (u − α − x>β) −
ρτ (u))1{πi0(xi1) > 1− τ}. We have that |gα,β(u,x)− gα̌,β̌(u,x)| ≤ C(1 + ||x||1)(|α− α̌|+
||β − β̌||1) for some constant C > 0. Let L(x) := C(1 + ||x||1) and κ := supi≥1 E[L(x)].

Since B(δ) is a compact subset, there exist K `1-balls with centers (α(j),β(j)), j = 1, ..., K
and radius ε

7κ
such that the collection of these balls covers B(δ). Note that K is independent

of i and can be chosen such that K = K(ε) = O(ε−p−1) as ε → 0. For each (α,β) ∈ B(δ),
there is j ∈ {1, ..., K} such that |gα,β(u,x)− gα(j),β(j)(u,x)| ≤ L(x)ε/(7κ), which leads to

|∆Ni(αi,β)− E[∆Ni(αi,β)]| ≤ |∆Ni(α
(j)
i ,β(j))− E[∆Ni(α

(j)
i ,β(j))]|+ ε

7κ

∣∣∣∣∣ 1

T

T∑
t=1

{L(xit)− E[L(xit)]}

∣∣∣∣∣+
2ε

7

and therefore

P

{
sup

(α,β)∈B(δ)

|∆Ni(αi,β)− E[∆Ni(αi,β)]| > ε

}

≤
K∑
j=1

P
{
|∆Ni(α

(j)
i ,β(j))− E[∆Ni(α

(j)
i ,β(j))]| > ε

3

}
+ P

{
1

T

∣∣∣∣∣
T∑
t=1

{L(xit)− E[L(xi1)]}

∣∣∣∣∣ > 7κ

3

}
.

25



Since supi≥1 E[L2s(xi1)] < ∞ by condition A2, application of the Marcinkiewicz-Zygmund

inequality implies that both terms on the right side of the previous inequality are O(T s)

uniformly over 1 ≤ i ≤ N , and therefore o(N−1).

Step 2. The consistency of α̃. For each i, α̃i = argminαMNi(α, β̃). Fix δ > 0. For

each αi with |αi − αi0| > δ, define ᾱi = riαi + (1 − ri)αi0, where ri = δ
|αi−αi0| . Due to the

convexity of the objective function, we have

ri(MNi(αi, β̃)−MNi(αi0, β̃)) ≥MNi(ᾱi, β̃)−MNi(αi0, β̃)

=MNi(ᾱi, β̃)−MNi(αi0,β0)− [MNi(αi0, β̃)−MNi(αi0,β0)]

={∆Ni(ᾱi, β̃)− E[∆Ni(ᾱi,β)]|β=β̃} − {∆Ni(αi0, β̃)− E[∆Ni(αi0,β)]|β=β̃}
+ E[∆Ni(ᾱi,β0)] + E[∆Ni(ᾱi,β)]|β=β̃ − E[∆Ni(ᾱi,β0)] + E[∆Ni(αi0,β)]|β=β̃.

From condition A3 the third term on the right side is greater than εδ. Thus, we obtain the

inclusion relation

{|α̃i − αi0| > δ for some i} ⊂ {MNi(αi, β̃) ≤MNi(αi0, β̃) for some i and αi such that |αi − αi0| > δ|}

⊆{ max
1≤i≤N

sup
|α−αi0|≤δ

|∆Ni(α, β̃)− E[∆Ni(α,β)]|β=β̃| ≥
εδ
4
}

∪ { max
1≤i≤N

sup
|α−αi0|≤δ

|E[∆Ni(α,β)]|β=β̃ − E[∆Ni(α,β0)]| ≥ εδ
4
} := A1N ∪ A2N .

Because β̃ is consistent and especially β̃ = Op(1), then P(A1N)→ 0. Also, since

|E[∆Ni(α,β)]− E[∆Ni(α,β0)]| ≤ 2E[||xi1||]||β − β0||,

and supi≥1 E[||xi1||] ≤ 1 + supi≥1 E[||xi1||2s] <∞ by condition A2, consistency of β̃ implies

that P(A2N)→ 0.

Proof of Theorem 2. Recall that ψ(yit,xit;αi,β) = τ − 1(yit < αi + x>itβ). Define,

H(1)
Ni(αi,β, πi) :=

1

T

T∑
t=1

ψ(yit,xit;αi,β)1{πi(xit) > 1− τ + cN}

H(2)
N (α,β,π) :=

1

NT

N∑
i=1

T∑
t=1

ψ(yit,xit;αi,β)xit1{πi(xit) > 1− τ + cN}

H
(1)
Ni (αi,β, πi) :=E[H(1)

Ni(αi,β, πi)], and H
(2)
N (α,β,π) := E[H(2)

N (α,β,π)].

We divide the proof into several steps.
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Step 1: Zeros of the estimating equations. By the computational property of the

QR estimator, we have max1≤i≤N |H(1)
Ni(α̂i, β̂, π̂i)| = Op(T

−1). To see this, note that

|H(1)
Ni(α̂i, β̂, π̂i)| =

∣∣∣∣∣ 1

T

T∑
t=1

ψ(yit,xit; α̂i, β̂)1{π̂i(xit) > 1− τ + cN}

∣∣∣∣∣
≤

∣∣∣∣∣
T∑
t=1

1{yit = α̂i + x>it β̂}

∣∣∣∣∣max
i,t

1{π̂i(xit) > 1− τ + cN}
T

= Op(T
−1).

|H(2)
N (α̂, β̂, π̂)| =

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

ψ(yit,xit; α̂i, β̂)xit1{π̂i(xit) > 1− τ + cN}

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

T∑
t=1

1{yit = α̂i + x>it β̂}

∣∣∣∣∣max
i,t

||xit||1{π̂i(xit) > 1− τ + cN}
NT

= Op(T
−1).

Step 2: Asymptotic equicontinuity. Take δN → 0 such that max1≤i≤N |α̂i − αi0| ∨
||β̂ − β0|| = Op(δN). We shall show that∣∣∣∣∣

∣∣∣∣∣ 1

N

N∑
i=1

mi{H(1)
Ni(α̂i, β̂, π̂i)−H

(1)
Ni (α̂i, β̂, π̂i)−H(1)

Ni(αi0,β0, πi0)}

∣∣∣∣∣
∣∣∣∣∣ = Op(dN)∣∣∣∣∣∣H(2)

N (α̂, β̂, π̂)−H(2)
N (α̂, β̂, π̂)−H(2)

N (α0,β0,π0)
∣∣∣∣∣∣ = Op(dN)

where mi is any sequence bounded over i, and dN = T−1| log(δN ∨ T−1/4)| ∨ T−1/2(δ
1/2
N ∨

T−1/8)| log(δN ∨ T−1/4)|.

We only prove the first equation since that of the second is analogous. Without loss of

generality, we assume αi0 = α0, β = β0, and πi0 = π0. Put gα,β,π = 1{y ≤ α+x>β}1{π(x) >

1−τ+cN}−1{y ≤ α0 +x>β0}1{π0(x) > 1−τ+cN}, Gδ = {gα,β,π : |α−α0| ≤ δ, ||β−β0|| ≤
δ, ||π − π0||∞ ≤ δ}, and ξit = (uit,xit). It suffices to show that

max
1≤i≤N

E

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

{g(ξit)− E[g(ξi1)]}

∣∣∣∣∣
∣∣∣∣∣
GδN

 = O(dNT ).

To this end, we apply Proposition B.1 of Kato, Galvao, Montes-Rojas (2012) to the class of
functions G̃i,δN := {g−E[g(ξi1)] : g ∈ GδN}. Note that G̃i,δN is pointwise measurable and each
of the element is bounded by 2. Because of Lemmas 2.6.15, 2.6.18, 2.6.7, and 2.7.1 of van der
Vaart and Wellner (1996) condition B5, an estimate of an upper bound N(G̃∞, L2(Q), 2ε) of
the class G̃∞ := {gα,β,π : α ∈ R,β ∈ Rp, π ∈ Π} is (A/ε)v for some constant A > 3e1/2 and

v > 1, every 0 < ε < 1 and probability measure Q. Therefore, N(G̃i,δN , L2(Q), 2ε) ≤ (A/ε)v
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independent of i and N . Combining the fact that

E[gα,β,π(ξi1)2] =E[|1{y ≤ α+ x>β}1{π(x) > 1− τ + cN} − 1{y ≤ α0 + x>β0}1{π0(x) > 1− τ + cN}|]
=E[|P{y∗ ≤ α+ x>β|x}1{α+ x>β > 0}1{π(x) > 1− τ + cN}
− P{y∗ ≤ α0 + x>β0|x}1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}|]
≤E[|P{y∗ ≤ α+ x>β|x}1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}
− P{y∗ ≤ α0 + x>β0|x}1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}|]
+ E[|P{y∗ ≤ α+ x>β|x}1{α+ x>β > 0}1{π(x) > 1− τ + cN}
− P{y∗ ≤ α+ x>β|x}1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}|].

The first term equals E[f(0|x)(α− α0) + f(0|x)x>(β − β0)] + o(δN). The second term

E[|P{y∗ ≤ α+ x>β|x}1{α+ x>β > 0}1{π(x) > 1− τ + cN}
− P{y∗ ≤ α+ x>β|x}1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}|]
≤E[|1{α+ x>β > 0}1{π(x) > 1− τ + cN} − 1{α0 + x>β0 > 0}1{π0(x) > 1− τ + cN}|]
≤E[|1{π(x) > 1− τ + cN} − 1{π0(x) > 1− τ + cN}|] + E[|1{α+ x>β > 0} − 1{α0 + x>β0 > 0}|]
=E[1{π(x) > 1− τ + cN ≥ π0(x)}+ 1{π0(x) > 1− τ + cN ≥ π(x)}]

+ E[1{α0 + x>β0 > 0 ≥ α+ x>β}+ 1{α+ x>β > 0 ≥ α0 + x>β0}] = o(T−1/4 ∨ δN ).

Now all the conditions of Proposition B.1 are satisfied and we obtain the conclusion.

Step 3: Expansion of H
(1)
Ni (αi,β, πi) and H

(2)
N (α,β,π). Rewrite H

(1)
Ni (αi,β, πi) as

H
(1)
Ni (αi,β, πi) = b1(αi,β) + b2(πi) + b3(αi,β, πi),

where

b1(αi,β) = E[ψ(·;αi,β)1{πi0(xi1) > 1− τ + cN}],
b2(πi) = E[ψ(·;αi0,β0)(1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})],
b3(αi,β, πi) = E[(ψ(·;αi,β)− ψ(·;αi0,β0))1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})],

and H
(2)
N (α,β,π) as

H
(2)
N (α,β,π) = d1(α,β) + d2(πi) + d3(α,β, π),

where

d1(α,β) =
1

N

N∑
i=1

E[ψ(·;αi,β)1{πi0(xi1) > 1− τ + cN}xi1]

d2(π) =
1

N

N∑
i=1

E[ψ(·;αi0,β0)(1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})xi1]

d3(α,β,π) =
1

N

N∑
i=1

E[(ψ(·;αi,β)− ψ(·;αi0,β0))(1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})xi1].
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We simplify each of the terms. For b1(αi,β),

b1(αi,β) =E[ψ(yi1,xi1;αi,β)1{πi0(xi1) > 1− τ + cN}]
=E[(τ − P{yi1 < αi + x>i1β|xi1})1{πi0(xi1) > 1− τ + cN}]
=E[(P{y∗i1 < αi + x>i1β|xi1} − P{yi1 < αi + x>i1β|xi1})1{πi0(xi1) > 1− τ + cN}]
=− E[fi(0|xi1)1{πi0(xi1) > 1− τ + cN}(αi − αi0)]

− E[fi(0|xi1)x>i11{πi0(xi1) > 1− τ + cN}(β − β0)] + o((αi − αi0) + ||β − β0||)
+ E[P{y∗i1 < αi + x>i1β}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}].

Let ai = E[fi(0|xi1)1{αi0 + x>i1β0 > 0}]. Note that by condition B1

(ai − E[fi(0|xi1)1{πi0(xi1) > 1− τ + cN})(αi − αi0)

=E[fi(0|xi1)(1{πi0(xi1) > 1− τ} − 1{πi0(xi1) > 1− τ + cN})(αi − αi0)]

=E[fi(0|xi1)1{1− τ < πi0(xi1) ≤ 1− τ + cN}(αi − αi0)] = O(cN |αi − αi0|) = o(|αi − αi0|).

Let Ai = E[fi(0|xi1)xi11{αi0 + x>i1β0 > 0}]. Note that, using B1

(Ai − E[fi(0|xi1)xi11{πi0(xi1) > 1− τ + cN})(β − β0)

=E[fi(0|xi1)xi1(1{πi0(xi1) > 1− τ} − 1{πi0(xi1) > 1− τ + cN})(β − β0)]

=E[fi(0|xi1)xi11{1− τ < πi0(xi1) ≤ 1− τ + cN}(β − β0)] = O(cN ||β − β0||) = o(||β − β0||).

For the third term in b1(·) and B6,

E[P{y∗i1 < αi + x>i1β}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}]
=E[P{y∗i1 < αi0 + x>i1β0}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}]

+ E[(P{y∗i1 < αi + x>i1β} − P{y∗i1 < αi0 + x>i1β0})1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}]
=τE[1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}]

+ E[fi(0|xi1)(αi − αi0)1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}] + o(αi − αi0)

+ E[fi(0|xi1)xi1(β − β0)1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}] + o(||β − β0||)
=− τ (D∗N1(αi − αi0) +D∗N2(β − β0)) + o(||β − β0||) + o(αi − αi0).

Thus, b1(αi,β) = −(ai+τD∗N1)(αi−αi0)− (Ai+τD∗N2)(β−β0)+o(||β−β0||)+o(αi−αi0).

For b2(πi), because supi ||πi − πi0||∞ = op(T
−1/4), and T 1/4cN > c∗ > 0, then πi(x) >

1− τ + cN implies πi0(x) > 1− τ , and therefore αi0 + x>β0 > 0. It follows that

b2(πi) =E[ψ(yi1,xi1;αi0,β0)(1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]
=E[ψ(y∗i1,xi1;αi0,β0)(1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})] = 0.
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Regarding b3(αi,β, πi),

||b3(αi,β, πi)|| =E[(ψ(yi1,xi1;αi,β)− ψ(yi1,xi1;αi0,β0))

× (1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]
≤E[|P{yi1 < αi0 + x>i1β0|xi1} − P{yi1 < αi + x>i1β|xi1}|]
× (1{πi0(xi1) > 1− τ + cN ≥ π(xi1)}+ 1{πi(xi1) > 1− τ + cN ≥ π0(xi1)})]
≤E[(1{πi0(xi1) > 1− τ + cN ≥ π(xi1)}+ 1{πi(xi1) > 1− τ + cN ≥ π0(xi1)})].

It follows that sup|α−αi0|+||β−β0||≤εN ,||π−π0||∞=op(T−1/4) ||b3(αi,β, πi)|| = o(T−1/4).

Similarly to b1(αi,β), for d1(α,β),

d1(α,β) =
1

N

N∑
i=1

E[xi1ψ(yi1,xi1;αi,β)1{πi0(xi1) > 1− τ + cN}]

=
1

N

N∑
i=1

E[(τ − P{yi1 < αi + x>i1β|xi1})1{πi0(xi1) > 1− τ + cN}xi1]

=− 1

N

N∑
i=1

E[fi(0|xi1)1{πi0(xi1) > 1− τ + cN}(αi − αi0)xi1]

− 1

N

N∑
i=1

E[fi(0|xi1)xi1x
>
i11{πi0(xi1) > 1− τ + cN}(β − β0)] + o( max

1≤i≤N
{αi − αi0}) + ||β − β0||)

+
1

N

N∑
i=1

E[P{y∗i1 < αi + x>i1β}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1].

Using the same argument as before, note that

(Ai − E[fi(0|xi1)xi11{πi0(xi1) > 1− τ + cN})(αi − αi0) = O(cN ||αi − αi0||) = o(||αi − αi0||).

Let Bi = E[fi(0|xi1)xi1x
>
i11{αi0 +x>i1β0 > 0}]. By the same derivation, we have that by B1

(Bi − E[fi(0|xi1)xi1x
>
i11{πi0(xi1) > 1− τ + cN}](β − β0) = O(cN ||β − β0||) = o(||β − β0||).

For the third term in d1(·),

E[P{y∗i1 < αi + x>i1β}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1]

=E[P{y∗i1 < αi0 + x>i1β0}1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1]

+ E[(P{y∗i1 < αi + x>i1β} − P{y∗i1 < αi0 + x>i1β0})1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1]

=τE[1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1]

+ E[fi(0|xi1)(αi − αi0)1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}xi1] + o(αi − αi0)

+ E[fi(0|xi1)xi1x
>
i1(β − β0)1{πi0(xi1) > 1− τ + cN}1{αi + x>i1β ≤ 0}] + o(||β − β0||)

=− τ (D∗N3(αi − αi0) +D∗N4(β − β0)) + o(||β − β0||) + o(αi − αi0).
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Thus, d1(α,β) = − 1
N

∑N
i=1(Ai + τD∗N3)(αi − αi0)− 1

N

∑N
i=1(Bi + τD∗N4)(β−β0) + o(||β−

β0||) + o(max{αi − αi0}). Using the same arguments than for b2(πi) = 0, we have that

d2(π) = 0. For d3(α,β,π),

||d3(α,β,π)|| = 1

N

N∑
i=1

E[(ψ(yi1,xi1;αi,β)− ψ(yi1,xi1;αi0,β0))

× (1{πi(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]

≤ 1

N

N∑
i=1

E[|P{yi1 < αi0 + x>i1β0|xi1} − P{yi1 < αi + x>i1β|xi1}|]

× (1{πi0(xi1) > 1− τ + cN ≥ π(xi1)}+ 1{πi(xi1) > 1− τ + cN ≥ π0(xi1)})]

≤ 1

N

N∑
i=1

E[(1{πi0(xi1) > 1− τ + cN ≥ π(xi1)}+ 1{πi(xi1) > 1− τ + cN ≥ π0(xi1)})].

It follows that sup|α−αi0|+||β−β0||≤εN ,||π−π0||∞=op(T−1/4) ||d3(α,β,π)|| = o(T−1/4).

To summarize,

H
(1)
Ni (αi,β, πi) =− (ai + τD∗N1)(αi − αi0)− (Ai + τD∗N2)(β − β0)

+ o(||β − β0||) + o(αi − αi0) + o(T−1/4)

H
(2)
N (α,β, π) =− 1

N

N∑
i=1

(Ai + τD∗N3)(αi − αi0)− 1

N

N∑
i=1

(Bi + τD∗N4)(β − β0)

+ o(||β − β0||) + o( max
1≤i≤N

{αi − αi0}) + o(T−1/4).

Step 4: Representation of β̂ − β0. From Steps 1 and 2, we have that

1

N

N∑
i=1

mi{H(1)
Ni(α̂i, β̂, π̂i)−H

(1)
Ni (α̂i, β̂, π̂i)−H(1)

Ni(αi0,β0, πi0)} = Op(dN)

H
(2)
N (α̂, β̂, π̂) =H(2)

N (α̂, β̂, π̂)−H(2)
N (α0,β0, π0) +Op(dN) = Op(T

−1) + H(2)
N (α0,β0, π0) +Op(dN).

Hence,

H(2)
N (α0,β0, π0) +Op(dN) = − 1

N

N∑
i=1

(Ai + τD∗N3)(α̂i − αi0)− 1

N

N∑
i=1

(Bi + τD∗N4)(β̂ − β0)

+ op(||β̂ − β0||) + op( max
1≤i≤N

{α̂i − αi0}) + o(T−1/4).

Solving for α̂i − αi0 and β̂ − β0, we obtain

α̂i − αi0 =− (ai + τD∗N1)−1
[
H

(1)
Ni (α̂i, β̂, π̂i)− (Ai + τD∗N2)(β̂ − β0)

]
+ op(||β̂ − β0||) + op(α̂i − αi0) + op(T

−1/4)
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β̂ − β0 =−

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1 [
H

(2)
N (α̂, β̂, π̂)− 1

N

N∑
i=1

(Ai + τD∗N3)(α̂i − αi0)

]
+ op(||β̂ − β0||) + op( max

1≤i≤N
{α̂i − αi0}) + op(T

−1/4),

and plugging α̂i − αi0 into the second equation, we have

β̂ − β0 =−

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1

H
(2)
N (α̂, β̂, π̂)

+

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1
1

N

N∑
i=1

(Ai + τD∗N3)(ai + τD∗N1)−1H
(1)
Ni (α̂i, β̂, π̂i)

+

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1
1

N

N∑
i=1

(Ai + τD∗N3)(ai + τD∗N1)−1(Ai + τD∗N2)(β̂ − β0)

+ op(||β̂ − β0||) + op(max{α̂i − αi0}) + op(T
−1/4).

Solve for β̂ − β0, and using the results in Steps 1 and 2 we haveI −( 1

N

N∑
i=1

(Bi + τD∗N4)

)−1
1

N

N∑
i=1

(Ai + τD∗N3)(ai + τD∗N1)−1(Ai + τD∗N2)

 (β̂ − β0)

=

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1

H(2)
N (α0,β0, π0) +Op(T

−1) +Op(dN )

+

(
1

N

N∑
i=1

(Bi + τD∗N4)

)−1
1

N

N∑
i=1

(Ai + τD∗N3)(ai + τD∗N1)−1H(1)
Ni(αi0,β0, πi0)

+ op(||β̂ − β0||) +Op(max{(α̂i − αi0)2}) + op(T
−1/4).

Step 5: Rate of β̂ − β0. From above, we have

||β̂ − β0|| = Op(max{(αi − αi0)2}) + op(T
−1/4).

Therefore, max{|α̂i − αi0|} is bounded with probability approaching one by

k{ max
1≤i≤N

|H(1)
Ni(αi0,β0, πi0)|+ max

1≤i≤N
|H(1)

Ni(α̂i, β̂, π̂i)−H
(1)
Ni (α̂i, β̂, π̂i)−H(1)

Ni(αi0,β0, πi0)|}+ op(T
−1/4)

where k is a constant. First, observe that for any K > 0,

P{ max
1≤i≤N

|H(1)
Ni(αi0,β0, πi0)| > (T/ logN)−1/2K} ≤

N∑
i=1

P{|H(1)
Ni(αi0,β0, πi0)| > (T/ logN)−1/2K}
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and the right side is bounded by 2N1−K2/2 by Hoeffding’s inequality. This implies that

max1≤i≤N |H(1)
Ni(αi0,β0, πi0)| = Op((T/ logN)−1/2). We next show that

max
1≤i≤N

|H(1)
Ni(α̂i, β̂, π̂i)−H

(1)
Ni (α̂i, β̂, π̂i)−H(1)

Ni(αi0,β0, πi0)| = op((T/ logN)−1/2).

We assume αi0 = α0, β = β0, and πi0 = π0. Let Gδ and ξit be the same as before. Because of

the consistency of α̂, β̂, and π̂, it suffices to show that for every ε > 0, there is a sufficiently

small δ > 0 such that

max
1≤i≤N

P

{∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

{g(ξit)− E[g(ξit)]}

∣∣∣∣∣
∣∣∣∣∣
Gδ

> (T logN)1/2ε

}
= o(N−1).

To this end, we make use of Bousquet’s version of Talagrand’s inequality (see Bousquet

(2002)). Fix ε > 0. Put Zi := ||
∑T

t=1{g(ξit) − E[g(ξit)]}||Gδ . By Proposition B.2 of Kato,

Galvao, and Montes-Rojas (2012), for all s > 0, with probability at least 1− e−s2 , we have

Zi ≤ E[Zi] + s
√

2{T (δ + (NT )−1/4) + 4E[Zi]}+
2s2

3
.

Take s =
√

2 logN . Then, there exist a constant δ and N0 independent of i and N such that

the right side of the previous inequality is smaller than (T logN)1/2 for all N > N0. This

implies that max1≤i≤N P{Zi > (T logN)1/2ε} ≤ N−2. Therefore, we have max1≤i≤N |α̂i −
αi0| = Op((T/ logN)−1/2)+op(T

−1/4) = op(T
−1/4). For the second result, we have ||β̂−β0|| =

op((T/ logN)−1/2 ∨ T−1/4) = op(T
−1/4).

Step 6: Rates improvement. By Assumptions B3 and B4, πi0(x) > 1−τ+cN implies

αi0 + x>β0 > dN , where dNT
1/4 is greater than some constant. Now max{max1≤i≤N |α̂i −

αi0|, ||β̂ − β0||} = op(T
−1/4). Therefore,

D∗N1(α̂i − αi0) = op(α̂i − αi0), D∗N2(β̂ − β0) = op(β̂ − β0),

D∗N3(α̂i − αi0) = op(α̂i − αi0), D∗N4(β̂ − β0) = op(β̂ − β0).

Since T 1/4cN > c∗ > 0 and ||π̂ − π0|| = op(T
−1/4), we have both πi0(x) > 1 − τ + cN and

π̂i(x) > 1− τ + cN imply αi0 + x>β0 > 0 and α̂i + x>β̂ > 0. Therefore, evaluating b3(·) at

(α̂i, β̂, π̂i) we obtain

b3(α̂i, β̂, π̂i) =E[(ψ(yi1,xi1;αi,β)− ψ(yi1,xi1;αi0,β0))

× (1{π̂i(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]
=E[x>i1fi(0|xi1){β̂ − β0 + op(||β̂ − β0||)}+ fi(0|xi1){α̂i − αi0 + op(α̂i − αi0)}
× (1{π̂i(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]

=op(|α̂i − αi0| ∨ |β̂ − β0|).
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Similarly, evaluating d3(·) at (α̂, β̂, π̂)

d3(α̂, β̂, π̂) =
1

N

N∑
i=1

E[(ψ(yi1,xi1;αi,β)− ψ(yi1,xi1;αi0,β0))

× (1{π̂i(xi1) > 1− τ + cN} − 1{πi0(xi1) > 1− τ + cN})]
=op(max |α̂i − αi0| ∨ |β̂ − β0|).

To summarize,

H
(1)
Ni (α̂i, β̂, π̂i) =− (ai + τD∗N1)(α̂i − αi0)− (Ai + τD∗N2)(β̂ − β0) + op(||β̂ − β0||) + op(α̂i − αi0)

H
(2)
N (α̂, β̂, π̂) =− 1

N

N∑
i=1

(Ai + τD∗N3)(α̂i − αi0)− 1

N

N∑
i=1

(Bi + τD∗N4)(β̂ − β0)

+ op(||β̂ − β0||) + op( max
1≤i≤N

{α̂i − αi0}).

Therefore,I −( 1

N

N∑
i=1

Bi

)−1
1

N

N∑
i=1

Aia
−1
i Ai

 (β̂ − β0)

=−

(
1

N

N∑
i=1

Bi

)−1 [
H

(2)
N (α̂, β̂, π̂) +

1

N

N∑
i=1

Aia
−1
i H

(1)
Ni (α̂i, β̂, π̂i)

]
+ op(||β̂ − β0||) +Op(max{(α̂i − αi0)2})

=

(
1

N

N∑
i=1

Bi

)−1 [
H(2)
N (α0,β0, π0) +Op(T

−1) +Op(dN )− 1

N

N∑
i=1

Aia
−1
i H(1)

Ni(αi0,β0, πi0)

]
+ op(||β − β0||) +Op(max{(αi − αi0)2}).

After going over Steps 2–5 again without the term op(T
−1/4), we obtain max |α̂i − αi0| ∨

||β̂ − β0|| = Op((T/ logN)−1/2). Therefore, we can set dN = 1
T
| log δN | ∨

δ
1/2
N

T 1/2 | log δN |1/2.

Finally,I −( 1

N

N∑
i=1

Bi

)−1
1

N

N∑
i=1

Aia
−1
i Ai

 (β̂ − β0) =

(
1

N

N∑
i=1

Bi

)−1

H(2)
N (α0,β0, π0) +Op(dN )

−

(
1

N

N∑
i=1

Bi

)−1
1

N

N∑
i=1

Aia
−1
i H(1)

Ni(αi0,β0, πi0) + op(||β̂ − β0||) +Op(max{(α̂i − αi0)2}).
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Step 7: Weak convergence As N2(logN)3/T → 0,(
1

N

N∑
i=1

(Bi −Aia
−1
i Ai)

)
√
NT (β̂ − β0) =

√
NT (H(2)

N (α0,β0, π0)− 1

N

N∑
i=1

Aia
−1
i H(1)

Ni(αi0,β0, πi0)) + op(1)

=
√
NT

(
1

NT

N∑
i=1

T∑
t=1

ψ(yit,xit;αi0,β0)xit1{πi0(xit) > 1− τ + cN}

− 1

TN

N∑
i=1

T∑
t=1

Aia
−1
i ψ(yit,xit;αi0,β0)1{πi0(xit) > 1− τ + cN}

)
+ op(1)

=
1√
NT

N∑
i=1

T∑
t=1

(τ − 1{yit ≤ αi0 + x>itβ0})(xit −Aia
−1
i )1{πi0(xit) > 1− τ + cN}+ op(1).

Let V = τ(1− τ) limN→∞
1
N

∑N
i=1 E[(xi1 −Aia

−1
i )(xi1 −Aia

−1
i )>1{πi0(xi1) > 1− τ}] =

τ(1− τ) limN→∞
1
N

∑N
i=1 E[(xi1 −Aia

−1
i )(xi1 −Aia

−1
i )>1{αi0 + x>i1β0 > 0}]. Note that

Cov

{
1√
NT

N∑
i=1

T∑
t=1

(τ − 1{yit ≤ αi0 + x>itβ0})(xit −Aia
−1
i )1{πi0(xit) > 1− τ + cN}

}

=τ(1− τ)
1

NT

N∑
i=1

T∑
t=1

(xit −Aia
−1
i )(xit −Aia

−1
i )>1{πi0(xit) > 1− τ + cN}.

By A4, 1
T

∑T
t=1 1{1− τ < πi0(xit) ≤ 1− τ + cN} = Op(cN) = op(1), which implies

Cov

{
1√
NT

N∑
i=1

T∑
t=1

(τ − 1{yit ≤ αi0 + x>itβ0})(xit −Aia
−1
i )1{πi0(xit) > 1− τ + cN}

}
→ V .

By B6, Λ = limN→∞
1
N

∑N
i=1[Bi−Aia

−1
i A

>
i ]1(πi0(xit) > 1− τ), and CLT it follows that

√
NT (β̂ − β0)

d→ N(0,Λ−1V Λ−1).
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