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While it is recognized that many macroeconomic time series are highly persistent over certain
range, less persistent results are also found around very long horizons, indicating the existence of
local or temporary persistency. In this paper, we study locally persistent behavior in economic time
series. A test for stationarity against locally persistent alternative is proposed. Asymptotic analysis of
the test statistic are provided under both the null and the alternative hypothesis of local persistency.
Monte Carlo experiment is conducted to study the power and size of the test. An empirical applica-
tion reveals that many US economic variables may exhibit local persistency.
� 2006 Published by Elsevier Inc.
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1. Introduction

Since the influential article by Nelson and Plosser (1982), hundreds of economic time
series have been examined by unit root tests and empirical evidence has accumulated that
many economic and financial time series contain a unit root. However, as argued else-
where (see for example Kwiatkowski et al., 1992), many standard testing procedures
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consider the null hypothesis of a unit root which ensures that the null hypothesis is
accepted unless there is strong evidence against it. Indeed, different results have been
obtained from other approaches.

While it is recognized that many economic time series are persistent, less persistent
results are also found around very long horizons (see, e.g., Beaudry and Koop, 1993; Hess
and Iwata, 1997; Koenker and Xiao, 2003), indicating the existence of ‘‘local persistency’’
in economic time series. For example, output fluctuations may be persistent over a long
range of time, but not forever and will eventually disappear (Cochrane, 1988).

In recent 10 years, a large amount of literature has emphasized that many economic
time series are better characterized by a process with root near unity rather than an exact
unit root. In effect, Cheung and Lai (1998) claim that most of real exchange rates of the G-
7 countries has root near unity. Lanne (2000) claims that the dynamic of interest rates is
better characterized by a process with a root near unity rather than a process with an exact
unit root. Dutkowsky and McCoskey (2001) show that near-unit root is also present in the
spread between Federal Funds rate and the discount rate during the post-1987 period and
they use this fact to show that structural restrictions are compatible with stationary bor-
rowing and a spread with root near unity.

The simplest local to unity model is a triangular array for a time series yi of the form

yi ¼ ayi�1 þ ui; a ¼ 1þ c
n
; i ¼ 1; . . . ; n ð1Þ

with i.i.d. (0,r2) innovations ui. While the autoregressive coefficient a! 1 as n!1, it is
apparent that for any given sample size n in (1), the model accommodates a wider range of
autoregressive coefficients as the localizing parameter c varies. This flexibility has helped to
make the model popular in studying economic time series for which roots near unity are
considered highly plausible but roots at unity are considered too restrictive. However, in
the traditional local to unit root model, shocks are still permanent and cannot capture the
feature of local persistency.

The current paper aims to provide a first step of study on locally persistent processes. In
this paper, we use a new time series model proposed by Phillips et al. (2001) to capture local
persistence. This new formulation of local to unity model offers more flexibility than the
traditional model (1). The new model leads to a class of different limit processes beyond
simple diffusions and also provides a more complete interface between I(0) and I(1) models
and between Oð ffiffiffinp Þ and O(n) asymptotics. We may call this model a block local to unity
model or a weak unit root model. The serial correlation in this model is stronger than that
in the conventional stationary ergodic process, but weaker than the unit root, or traditional
local-to-unit root time series, providing a model that displays local persistency.

This paper is organized as follows: Section 2 presents the econometric model with local
persistency, based on Phillips et al. (2001). The locally persistent process is compared with
the fractionally integrated process, which is a related but different process. In Section 3, we
introduce a test through which we test the null hypothesis of stationarity against local per-
sistency and derive its asymptotic distribution under the null and alternative hypothesis.
Section 4 presents some results of Monte Carlo experiments. An empirical illustration
on the presence of local persistency in some US time series is conducted in Section 5. Sec-
tion 6 concludes.

A word on notation. We will use the symbols ‘‘) ’’, ‘‘! ’’ and ‘‘:¼’’ to signify weak
convergence, convergence in probability and equality in distribution, respectively. Follow-
Please cite this article in press as: Lima, L.R., Xiao, Z., Do shocks last forever? Local persistency
..., Journal of Macroeconomics (2006), doi:10.1016/j.jmacro.2005.04.005
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ing the standard stochastic order of magnitude notation, we write Xn = Op(1) and
Xn = op(1) to signify that the sequence of random variable Xn is bounded and converges
to zero, respectively, as the sample size, n, goes to infinite.
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2. A model with local persistency

2.1. Locally persistent process without drift

Consider the time series (yi) generated as:

yi ¼ ayi�1 þ ui; i ¼ 1; . . . ; n ð2Þ

where {ui} is a general covariance stationary ARMA process which satisfies an invariance
principle. In the above model, the autoregression coefficient ‘‘a’’ measures the persistency
in time series yi. When jaj < 1, yi is covariance stationary and the innovations are not per-
sistent; when jaj > 1, yi is an explosive process; and when a = 1 (or close to 1), yi is called as
a (near) unit root process and the innovations are persistent.

Many macroeconomic time series display persistent behavior. For this reason, we are
particularly interested in the case where the coefficient ‘‘a’’ is close to unity (in the sense
that a is in a shrinking neighborhood of unity). For convenience to study the near-unit-
root property, we may reparameterize a so that

a ¼ 1þ d

where d! 0 as the sample size n!1. The new parameter d represents the deviation of a
from unity.

Since a is in a shrinking neighborhood of unity (d! 0 as the sample size n!1), there
are some advantages to directly write d as a function of the sample size n:

d ¼ dðnÞ ! 0; as n!1:

A general class of local deviation can be modelled in the following way:

d ¼ c
nd

ð3Þ

where c < 0, and d = d(n)! 0 at rate nd and d 2 D � (0,1], where D is an interval in the
range of (0, 1), see more discussion in the asymptotic analysis in Section 3. The above rep-
arameterization (3) provides a very general model with different types of persistency. How-
ever, the generality of such a representation also brings an identification issue in practice
when we estimate the autoregression coefficient based on (2): in the original autoregression
model (2), there is only one unknown parameter characterizing persistency, a; the re-
parameterization (3) introduces two unknown parameters c and d. One way to solve this
problem is to fix the value of one of the two parameters c and d, so that an one-to-one
relationship can be maintained between the original model (2) and the reparameterized
model (3) over certain range of parameter values.

If we fix the value of d by setting d = 1, we obtain exactly the traditional local to unit
root model:

d ¼ c
n
;

Please cite this article in press as: Lima, L.R., Xiao, Z., Do shocks last forever? Local persistency
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117
118
119
120
121
122
123
124
125
126
127
129129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
159159

160
161
162

4 L.R. Lima, Z. Xiao / Journal of Macroeconomics xxx (2006) xxx–xxx

JMACRO 2098 No. of Pages 20, Model 1+

23 November 2006 Disk Used ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

where d = d(n)! 0 at rate n. In this model, the effect of innovation is permanent and never
disappears. However, as mentioned above, this traditional setting does not provide a
model that display local persistency. The reason is that d (=c/n) converge to 0 too fast
and thus a is too close to 1. Consequently, the effect of persistency in such a time series
is similar to an exact unit root model. Intuitively, the convergence rate of d(n) reflects
the level of persistency in yi.

In order to capture the property of local persistency, we need to consider a time series
model with the local deviation parameter d = d(n)! 0 at rate o(n). For this reason,
instead of fixing d = 1, we consider in this paper the alternative standardization by fixing
c and set the localizing parameter c = �1. Thus

d ¼ �1=nd ; ð4Þ

where d takes values between 0 and 1. The process provides a new form of persistent
behavior. It has autoregressive coefficient near unity, but it is not the conventional station-
ary or unit root process. In particular, under appropriate regularity conditions,
y[nr] = O(nd/2), implying that the process will ultimately diverge at rate nd/2 as n!1.

The above device provides a statistical model for what may be described as ‘‘locally
persistent behavior’’ for macroeconomic time series. Many macroeconomic time series
are now well known to display a form of persistence whereby economic shocks have
long-run effects. However, it is possible that shocks may affect an economy for a long per-
iod of time but not forever. In other words, the effects of a shock may be highly persistent
over a certain range (the range of persistent behavior), but then may begin to disappear
outside this range. In the above model, the largest autoregressive root of time series yi is
close to unity, and thus persistency can be found in yi. On the other hand, the series
evolves over time in such a way that there is persistency over a range of time (of order
O(nd), compared to the full sample range n), but the effect of shocks will eventually dis-
appear over time horizon longer than order O(nd). The region of persistent behavior
may constitute a ‘little infinity’ relative to the full sample, since there is persistent memory
within a time horizon of order O(nd), but there is only short memory over longer periods.
For this reason, we call the above process a locally persistent process with persistent
parameter d.

Locally persistent processes are not covariance-stationary and, as we will see soon, they
may be used to model the dynamics of economic time series that display persistence as well
as transitory shocks.

2.2. Locally persistent process with a deterministic component

The locally persistent process can be extended to include an intercept term or a deter-
ministic component. Such an extension is important because many economic time series
display tendency of growth. We may consider a locally persistent process ys

i with determin-
istic component

ys
i ¼ si þ yi; i ¼ 1; . . . ; n ð5Þ

where stochastic part yi is a locally persistent process as described in the previous section,
and si is a deterministic component. The leading cases being (i) a constant term where
si = uo, and (ii) a linear time trend where si ¼ uo þ ut ¼ u0y� i.
Please cite this article in press as: Lima, L.R., Xiao, Z., Do shocks last forever? Local persistency
..., Journal of Macroeconomics (2006), doi:10.1016/j.jmacro.2005.04.005
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Note that the trend coefficients are unknown and thus, in practice, appropriate detrend-
ing is needed. We may estimate yi from the residuals of the following detrending (or
demeaning, if there is only an intercept term) regression

ys
i ¼ û0y� i þ ŷi ð6Þ

where ûy is the least squares estimator of uy. The detrended time series ŷi has properties
similar to the process with no drift yi (see Phillips et al. (2001) for more discussion).
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A related but different model is the long-memory, or fractional integrated process with
order of integration equal to dl, that is, FI(dl) with dl 2 (0,1). Both the locally persistent
process that we consider in this paper and the conventional fractional integrated process
are between the conventional covariance stationary process and unit root process. How-
ever, these two processes have important differences. We next illustrate the differences
between the two models in terms of impulse response function.

An impulse response function traces the effect of a shock in the innovation ui on current
and future values of the endogenous variable yi. If the process is stationary, then its
impulse response will converge to zero as the response horizon k increases and we say that
the shocks are transitory. On the other hand, when the process yi has a unit root the
impulse response never converges to zero. Thus, when the process is a random walk we
say that the shocks are permanent implying that an initial shock never dies out. As an
illustration, consider the following models (In all these models we assume that ui is an
i.i.d sequence of innovations):

Model 1: Stationary process: yi = ayi�1 + ui, jaj < 1.
Model 2: Fractionally integrated process: (1 � L)d(yi � l) = ui

Model 3: Locally persistent process: yi = ayi�1 + ui, a ¼ ð1� 1
ndÞ.

In Model 1, yi is stationary when jaj < 1. One can show that the k period impulse
response IRk ¼ oyk

ou1
¼ ak�1 ! 0 as k!1. Therefore, if yi is stationary, then the shock will

be totally absorbed as k increases. Also notice that, according to Model 1, the total impact
of a shock is finite, that is,

P1
k¼0IRk <1. Now, for comparison purpose, we re-consider

Model 1 with a = 1. In this random walk specification, it is well known that IRk = 1 for
any k. (If ui is not an i.i.d. sequence, then the impulse response function may move up
and down but with no convergence towards zero.) The shocks never vanish when there
is a unit root and, more importantly, the total impact goes to infinity, that is,P1

k¼0IRk ¼ 1.
Model 2 represents a fractional white noise process. This process can be expressed as an

infinite order moving average representation,

yi ¼
X1
j¼0

Wjui�j:

Therefore, IRk ¼ oyk
ou1
¼ Wk � 1=ðk1�dlÞ for 0 < dl < 1. Because of this hyperbolic decaying,

the impact of a innovation vanishes in the long run, but vanishes slowly. Also notice that
Please cite this article in press as: Lima, L.R., Xiao, Z., Do shocks last forever? Local persistency
..., Journal of Macroeconomics (2006), doi:10.1016/j.jmacro.2005.04.005
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since 0 < 1 � dl < 1, we have
P1

k¼0IRk ¼ 1 so that the total impact of a shock is infinite,
yielding a result similar to the one obtained in the unit root case.

Now, we analyze the behavior of the impulse response function of a locally persistent
process. Consider the standardized locally persistent process given in Model 3 with
0 < d < 1. The k period impulse response is given by IRk ¼ ak�1 ¼ ð1� 1

ndÞk�1 and we can
see that IRk! 0 if k = Op(nd+�) for any � > 0 (IRk 9 0 if k = Op(nd) or op(nd)). For exam-
ple, if we set n = no + k where no is the fixed sample size when the shock occurs, then
k = Op(n) satisfies the condition above. At the local persistence model, the autoregressive
coefficient gets closer to unity as new k observations become available. Therefore, if the
process is locally persistent, its impulse response eventually converges to zero and the
shocks are globally transitory. Moreover, one can see that

P1
k¼0IRk <1 as k!1 mean-

ing that, unlike what happens to fractional and unit root processes, the total impact of a
shock is finite. Notice that the degree of persistency is determined by the parameter d: the
larger d, the more persistent the shocks are. Therefore, we can affirm that shocks take
much more time to die out when the process is locally persistent than when it is stationary.
In the degenerate case of Model 3 where d = 1, the k-period impulse response function
oyk
ou1
¼ ak�1. In this case, k = Op(nd) with d = 1: the autoregressive coefficient converges to

one at rate n which is the same rate by which the exponent k � 1 goes to infinity. Thus,
the coefficient is close enough to unity to avoid the impulse response function converging
to zero, and therefore

P1
k¼0IRk !1 as k!1. This happens because a traditional nearly

integrated process display the same type of persistency as a unit root process, that is, the
shocks are not transitory.

Overall, we may say that a locally persistent process and a fractionally integrated pro-
cess are similar in the sense that they are sitting in between the stationary and unit root
extremes and their impulse responses converge to zero. However, it is important to stress
that the total impact of a innovation will never be less than infinite if the process is frac-
tionally integrated and this represents an important difference between local persistence
and long memory. In practice, it may be more appropriate to think at a mean-reverting
economic variable as a process in which the total impact of a unit innovation is finite.
For example, technological innovations (shocks) might trigger a persistent economic
growth, but it would be hard to believe that the impact of such innovations on the
GDP is going to persist forever.

We have seen so far that the persistency parameter d is important to determine the
extension of region of persistency of a locally persistent process. Hence, it turns out to
be important to discuss estimation of d as well as testing related hypothesis. In the next
two sections, we discuss estimation of d and propose a test for stationarity (d = 0) against
the alternative hypothesis of local persistency.

3. Estimation of the local-persistence parameter

The most convenient approach to obtain some basic asymptotic properties of this
model that are useful for our empirical analysis is to use the sequential asymptotic analysis
of Phillips et al. (2001). It can be verified that by a re-parameterization (# of observations
in each block = m = nd, # of blocks = M) we may re-write the locally persistent time series
in the format of a block local to unit root model which was first introduced by Phillips
et al. (2001). The sequential asymptotic result can be obtained by taking m!1 first, fol-
lowed by M!1. Following the proofs of Phillips et al. (2001), we can show that the pro-
Please cite this article in press as: Lima, L.R., Xiao, Z., Do shocks last forever? Local persistency
..., Journal of Macroeconomics (2006), doi:10.1016/j.jmacro.2005.04.005
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cess yi yields the standard law of large numbers and central limit theorem type results. In
particular, under the assumptions of Phillips et al. (2001), given the model (2) and stan-
dardization (4), we obtain the following normal asymptotics:

n
1
2þ

d
2ðâ� aÞ ) n ¼ Nð0; 2Þ; ð7Þ

where

â ¼ âOLS �
nk̂P
y2

i�1

:

âOLS is the ordinary least squares estimator of a in the model (2), and k̂ is the consistent
estimator of the one sided long run covariance parameter.1 Therefore, â is made up of
two components: the first one corresponds to the usual least-square estimator of a, and
the second component is a nonparametric correction that uses the consistent estimator
of the one sided long run covariance parameter. The nonparametric correction is needed
whenever we have a non i.i.d. innovation sequence. When the innovation sequence {ui} is
independent and identically distributed, we have k = 0. The result of Phillips et al. (2001)
uses an sequential asymptotic analysis which does not impose restriction on 0 < d < 1, and
thus no additional assumptions on the relative magnitude of number of blocks and sample
size within each block. As discussed in their paper (p. 36), under somewhat stronger con-
ditions, the same result (normal asymptotic theory) holds for joint limits. Recently, Phil-
lips and Magdalinos (2004) developed an general asymptotic theory for this model with
i.i.d. innovations and 0 < d < 1.

According to a local persistence process, the extension of region of persistency is given
by the magnitude of the parameter d. The greater the value of d, the longer the persistent
range and the longer the persistent effect will last. Therefore, it turns out to be important
to estimate the parameter d in order to identify the degree of local persistence of the sto-
chastic process. Notice that 1 � a = n�d, and after taking the logarithm, one obtains

d ¼ � lnð1� aÞ
lnðnÞ : ð8Þ

From (7), we have that:

n
1
2�

d
2½ndðâ� 1Þ þ 1� ) n: ð9Þ

The above result implies that

ndð1� âÞ!P 1 or ln½ndð1� âÞ�!P 0: ð10Þ

Hence, one can propose the following consistent estimator for d:

d̂ ¼ � lnð1� âÞ
lnðnÞ ¼ � ln½ndð1� âÞ� � d lnðnÞ

lnðnÞ ¼ d � ln½ndð1� âÞ�
lnðnÞ ! d: ð11Þ
U

1 k̂ ¼ 1
2ðx̂2

y � r̂2
y Þ, where r̂2

y is a consistent estimator of the variance of yi and x̂2
y is a consistent estimator of the

long-run variance of yi. In this paper, we consistently estimate x2
y by using nonparametric kernel smoothing.
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4. Testing the null hypothesis of stationarity against local persistency

In this section, we consider hypothesis testing for locally persistent process. We focus our
attention on two classes of models: (H0) under the null hypothesis, the time series is covari-
ance stationary (or trend stationary); (H1) under the alternative hypothesis, the time series
is locally persistent as described by models (4) and (2). We construct a test for the null
hypothesis (H0) of covariance stationarity, against the alternative of local persistency.
Notice that under the null, the order of magnitude of the partial sum process

Pt
i¼1yi should

be proportional to (t1/2) (although yi may have high variance, it is not large in order of mag-
nitude and can be normalized). Under mild conditions n�1=2

P½nr�
i¼1yi (0 < r < 1) satisfies an

invariance principle, i.e., n�1=2
P½nr�

i¼1yi ) BðrÞ ¼ wyW ðrÞ, where B(r) is a Brownian motion
with variance x2

y ¼ long-run variance of yi ¼ limn!1Eð 1ffiffi
n
p
Pn

i¼1yiÞ
2 and W(r) is the standard-

ized Brownian motion.2 On the other hand, if the time series is locally persistent as
described by (4), then the cumulated sum process

Pt
i¼1yi diverges to1 more rapidly than

rate t1/2. This observation suggests that it is possible to design a test by looking at the order
of magnitude of the partial sum process.

We consider the following quantity as a measurement of the magnitude of the cumu-
lated sum

Max
16t6n

1ffiffiffi
n
p

Xt

i¼1

yi �
t
n

Xn

i¼1

yi

�����
�����:

Under H0 and regularity conditions, the above quantity converges weakly to
sup06r61jeBðrÞj, where eBðrÞ ¼ BðrÞ � rBð1Þ is a Brownian bridge which is tied down to
the origin at the end of the [0, 1] interval, with variance x2

y . Under the alternative hypoth-
esis, yi is a locally persistent, it is easy to verify that the corresponding statistic has much
larger order of magnitude, diverging to 1 as n!1.

Notice that in practical analysis the limiting distribution depends on the long-run var-
iance parameter x2

y which is unknown and thus the above quantity can not be used
directly. However, x2

y can be consistently estimated using nonparametric kernel smooth-
ing. In this paper, we consider the following nonparametric kernel estimator for x2

y given
by x̂2

y ¼ 2pf̂ yyð0Þ, where

f̂ yyð0Þ ¼
1

2p

Xq

h¼�q

k
h
q

� �
ĉðhÞ ð12Þ

is the conventional spectral density estimator. In (12), ĉðhÞ is the sample variance defined
as n�1

P0ŷiŷiþh, where
P0 signifies summation over 1 6 i, i + h 6 n, k(.) is the lag window

defined on [�1,1] with k(0) = 1, and q is the bandwidth parameter satisfying the property
that q!1 and q/nd! 0 (say q = op(nd)) as the sample size n!1. Then, x̂2

y is a consis-
tent estimator of x2

y under H0. Candidate kernel functions can be found in standard texts
(e.g. Hannan, 1970; Priestley, 1981). For example, when we use k(x) = 1 � jxj, we get the
Bartlet estimator, that is
U2 Definition 1. A standard Brownian motion W(Æ) is a continuous-time stochastic process satisfies the following
properties: (1) For any given t, W(t) is normal with mean zero and variance t. (2) For any partition {r1, . . . , rk} of
[0,1], the increments W(r1) �W(0),W(r2) �W(r1), . . . ,W(rk) �W(rk�1) are independent Gaussian. (3) For any
given realization, W(r) is continuous with probability one.
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x̂2
y ¼

Xq

h¼�q

1� jhj
q

� �
ĉðhÞ:

We denote the estimator for x2
y as x̂2

y . We propose the following two statistic for testing
the null hypothesis of stationarity or trend stationarity against local persistent
nonstationarity

Qn ¼Max
16t6n

1ffiffiffi
n
p 1

x̂y

Xt

i¼1

yi �
t
n

Xn

i¼1

yi

�����
����� ð13Þ

bQn ¼Max
16t6n

1ffiffiffi
n
p 1

x̂y

Xt

i¼1

ŷi �
t
n

Xn

i¼1

ŷi

�����
����� ð14Þ

where Qn is the test statistic evaluated at the observable time series, yi, and bQn is the test
statistic evaluated at the detrended time series ŷi.

The next three theorems present the behavior of the test statistics Qn and bQn under the
null hypothesis of stationarity and the alternative of local persistence. Proofs are found in
Appendix.

Theorem 1 (Asymptotic behavior of the test statistic Qn under the null). Let yi be a process

without a time trend (t) as defined in (2). Under H0 of covariance stationarity and the

assumption of Phillips et al. (2001),

Qn ¼Max
16t6n

1ffiffiffi
n
p 1

x̂y

Xt

i¼1

yi �
t
n

Xn

i¼1

yi

�����
�����) sup

06r61
jW ðrÞ � rW ð1Þj ð15Þ

where W(.) is a standard Brownian motion.
C
O

R
R

E
CRemark 1. In the case yi corresponds to the demeaned value of the observed time series,

Theorem 1 still holds.

Table 1 reproduces the critical values for the test statistic Qn.

Theorem 2 (Asymptotic behavior of the test statistic bQn under the null). Let yi be a

process with a time trend (t) as defined in (5). Under H0 and assumptions of Phillips et al.
(2001),

bQn ¼Max
16t6n

1ffiffiffi
n
p 1

x̂y

Xt

i¼1

ŷi �
t
n

Xn

i¼1

ŷi

�����
�����

) sup
06r61

W ðrÞ � rW ð1Þ þ 6ð1� rÞ 1

2
W ð1Þ �

Z 1

0

W ðsÞ ds
� ����� ���� ð16Þ

where ŷi is the detrended value of yi.
U
N

Table 1
Upper tail critical values for Qn

Level of significance 0.1 0.05 0.01
Critical value 1.22 1.36 1.63
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Table 2
Upper tail critical values for bQn

Level of significance 0.1 0.05 0.01
Critical value 0.827 0.901 1.041
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In Theorem 1, the test statistic converges to a functional of Brownian bridge. Theorem
2, on the other hand, states that the test statistic bQn converges to the sup of the Brownian
bridge plus a second term brought of a time trend t. Xiao (2001) calculated, via simulation,
the critical values for the test statistic bQn which is reproduced in Table 2.

It is critical that a statistical test be able to discriminate between the null and the alter-
native in large sample. The following theorem gives properties of the tests under the
alternative.

Theorem 3 (Consistency). Under the alternative hypothesis of local persistency,

(i) 1
ŵy

1ffiffi
n
p
P½nr�

i¼1yi ¼ Op

ffiffiffiffi
nd

q

q� 	
,

(ii) 1
ŵy

1ffiffi
n
p
P½nr�

i¼1ŷi ¼ Op

ffiffiffiffi
nd

q

q� 	
,

(iii) Assuming that the bandwidth parameter q = op(nd), then Qn (and bQn)!1, indicating

that under the alternative hypothesis, the test statistic will reject the null with probabil-

ity one.

Theorem 3 shows that if we choose q = op(nd), say, q = k* [ln (n)], where k is a constant
and [.] an integer number, the statistical test proposed in this section is consistent since Qn

and bQn diverge under the alternative hypothesis as n!1.

5. Monte Carlo results

A Monte Carlo experiment was conducted to examine the finite performance of the test
statistic Qn under H0 and H1.3 From the construction of Qn we know that such statistics
depends on the sample size n, the parameter of persistency d, and the bandwidth parameter
q that is used to calculate ŵ2

y . Consequently, we paid special attention to the effects of n, d,
and, q on the performance of this test. We considered the following sample sizes: n = 200,
500, 1000, and 2000. These sample sizes represent the most relevant range of sample sizes
in many empirical analyses involving financial and economic data. Three bandwidth
choices were considered, q1 = [ln(n)], q2 = 3* [ln(n)], and q3 = 6* [ln(n)], where [Æ] indicates
the integer part. All experiments contain 5000 replications. For the Kernel function, fol-
lowing Kwiatkowski et al. (1992), we used the Bartlett window k(x) = 1 � jxj, so that
the nonnegativity of ŵ2

y was guaranteed.

5.1. Power of test

Under H1, the data are generated from ys
i ¼ uo þ ut þ yi, with uo = u = 0,

yi ¼ ð1� 1
ndÞyi�1 þ ui, with ui � i.i.d.N(0,1). We considered three values of the persistency
3 Results for bQn are available under request. They are qualitatively similar to the results obtained using Qn.
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Table 3
Power of test, 5% level

Local persistence parameter Sample size (n)

n = 200 n = 500 n = 1000 n = 2000

Bandwidth parameter = q1 = [ln(n)]
d = 0.5 0.531 0.753 0.862 0.936
d = 0.8 0.817 0.966 0.994 0.999
d = 1 0.864 0.980 0.996 1.000
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Oparameter: d = 0.5, 0.8, and 1.0. The first and second value represent processes with local

persistence. The degenerate case, d = 1, represents near integration and this process is sup-
posed to diverge to infinity at the same rate as a process with unit root, i.e., O(n1/2). In
each replication, we computed the statistic Qn and compared it with the 5% critical value
from Table 1. Theorem 2 tells us that the null hypothesis will be rejected with probability
one when the sample size goes to infinity and H1 is true. For the three values of the local-
persistence parameter d, the tables below confirm what is predicted by the theory. In par-
ticular, the test exhibits low power when d = 0.5, n = 200 and q = q3. However, the power
increases substantially for larger samples. For example, even if d = 0.5 and q = q3, the
power rises from 0.071 to 0.369 as sample size increases from 200 to 2000. One can also
see that the power is reduced as the bandwidth parameter q increases because, as showed
by Theorem 3, the power of our test depends upon nd/q. In other words, a large q will
reduce power, whereas a large n and a large d will increase power. All this is confirmed
by the Monte Carlo results, see Table 3.
U
N

C
O

R
R

E
C

T5.2. Size of test

We next examined the properties of Qn under the null hypothesis. Note that under H0

yi = ui, a general covariance stationary time series that satisfies an invariance principle.
The data were generated from ui = bui�1 + �i, with �i � i.i.d.N(0,1). Note that similarly
to other testing procedures in the unit root literature, size distortion in finite sample exists.
One way to improve the performance of the tests is to use appropriate bandwidth selec-
tion. Thus, if we choose an appropriate bandwidth parameter q, we could expect that
the size of test would converge to the nominal size as the sample size increases. The band-
width parameter q corresponds to the number of lags used to calculate x̂2

y . Intuitively, for
b > 0, the larger b is, the longer lags we need. In the case that b = 0, yi is an independent
sequence and the long-run variance of yi equals the variance of yi. Thus, we expect that for
small b a small bandwidth parameter would be more appropriate than a large one. On the
other hand, if b is large then we need to increase q in order to account for the existence of
serial correlation in yi. Table 4 presents the empirical size of 5% tests for the same band-
width parameters considered in Table 5 and b = 0.0,0.4,0.9 and 0.95.

Results in Table 6 suggest that when b = 0 and b = 0.4, the size distortion is very small
no matter the bandwidth parameter employed.4 On the other hand, if b = 0.90 or b = 0.95
and one uses q1 or q2, then the test will be oversized. However, Table 6 shows that, unlike
what happens to the power of test, the size distortion does not converge to one as sample
4 Note, however, that the test becomes very conservative when q3 is used and b = 0.0 or b = 0.4.
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Table 4
Power of test, 5% level

Local persistence parameter Sample size (n)

n = 200 n = 500 n = 1000 n = 2000

Bandwidth parameter = q2 = 3* [ln(n)]
d = 0.5 0.152 0.272 0.420 0.568
d = 0.8 0.346 0.689 0.891 0.974
d = 1 0.459 0.774 0.938 0.987

Table 5
Power of test, 5% level

Local persistence parameter Sample size (n)

n = 200 n = 500 n = 1000 n = 2000

Bandwidth parameter = q3 = 6* [ln(n)]
d = 0.5 0.071 0.125 0.234 0.369
d = 0.8 0.093 0.415 0.650 0.843
d = 1 0.118 0.503 0.798 0.914

Table 6
Size of test, 5% level

b n q1 q2 q3

0.0 200 0.032 0.017 0.00
500 0.042 0.034 0.025

1000 0.042 0.039 0.033
2000 0.045 0.042 0.039

0.4 200 0.051 0.018 0.00
500 0.063 0.036 0.024

1000 0.064 0.042 0.033
2000 0.063 0.046 0.040

0.90 200 0.416 0.066 0.00
500 0.454 0.115 0.037

1000 0.44 0.135 0.050
2000 0.423 0.135 0.065

0.95 200 0.639 0.154 0.01
500 0.72 0.242 0.071

1000 0.719 0.283 0.110
2000 0.718 0.276 0.113
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U
Nsize increases. This happens because under the null, even in the extreme case in which b is

large and close to 1 (say b = 0.9, 0.95), the standardized cumulated sums of the time series
still satisfy an invariance principle. We can use this fact to reduce dramatically the size dis-
tortion by choosing a wider range of bandwidth selection. For example, if b = 0.95 and q3

is used, then the test may still be oversized but the size distortion will be much smaller than
when one uses q1 or q2.
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In sum, if we combine the results in Table 5 with the results in Table 6, we can conclude
that the proposed test is an asymptotic test which discriminate between the null and the
alternative in large samples. In the next section, we illustrate the applicability of this test
using samples with 934, 2,501 10,619 observations. For this range of sample sizes, the
trade-off between size and power may be very small even when q3 is used.

6. Local persistency in economic time series

In this section, we illustrate the applicability of the proposed test using macroeconomic
time series. In order to avoid the trade-off between size and power, we only consider time
series with large samples. In particular, we considered four US time series: (i) 1-year trea-
sury constant maturity rate (NIR-12m) with daily observations ranging from 1962-02-01
to 2004-08-20, totalizing 10,619 observations; (ii) nominal exchange rate for Canadian dol-
lar–US dollar (NER (Can–US)) with daily observations from 1992-07-24 to 2002-06-28,
corresponding to 2501 observations; (iii) nominal exchange rate for United Kingdom
pound–US dollar (NER (UK–US)) with daily observations from 1992-07-24 to 2002-06-
28, corresponding to 2501 observations and; (iv) inflation rate (INF) measured by the con-
sumer index price with monthly observations from 1926-01-30 to 2003-10-31, totalizing
934 observations. All aforementioned data were collected from the Board of Governors
of the Federal Reserve System.

Figs. 1–3 show graphs of NIR-12m, NER (UK–US) and INF centered with respect to
their sample mean. Fig. 4 shows graphs of NER (Can–US) with centered and detrended
values. One can see that all the variables display wide fluctuations about mean (trend),
but there seems to be a mean (trend) reversion in all cases. Therefore, we could expect unit
root test to reject the null hypothesis of a unit root for these cases.

However, as suggested by past studies, this visual impression of mean reversion (or
trend reversion) has been hard to establish statistically using traditional unit root tests.
Table 7 shows the results for the ADF test.5 Unlike the visual evidence, we reject the unit
root hypothesis at 5% level of significance only for the time series INF.

Another interesting aspect displayed in Table 7 is that most of the series has roots near
unity6 and, as documented by Campbell and Perron (1991) and Dejong et al. (1992), near
unity roots may explain the failure to reject the unit root null in the ADF test. Since pro-
cesses with local persistence have roots too close to unity, we should employ a more pow-
erful test to reject the null hypothesis of unit root. Elliott et al. (1996) introduced a
modified unit root test (DF-GLS) that has better power when the AR coefficient is close
to unity. Table 7 shows the results from the DF-GLS test with the notation ‘*’, ‘**’, and
‘***’ indicating that the null of unit root is rejected at 10%, 5% and 1% level of significance.
By using the DF-GLS test, we reject the null hypothesis of unit root for all variables of our
sample.

Nonetheless, it is important to mention that the rejection of the null hypothesis of unit
root does not necessarily imply that the process is ergodic stationary, for instance, it can
also be locally persistent.
U
N

5 We used the same lag choice for the ADF and DF-GLS tests, that is, the choice based on the Modified
Information Criteria (MIC) suggested by Perron and Serena (2001). The main advantage of this criteria is that it
imposes the null hypothesis of unit root into the objective function used to calculate the optimal lag.

6 Estimates of the autoregressive coefficients were computed according to Eq. (7), that is, â ¼ âOLS � nk̂P
y2

i�1

:
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Table 7
Unit root tests

Series Specification Sample size Lags ADF â DF-GLS

NER (Can–US) trend 2501 0 �3.11 0.990 �3.41**

NER (UK–US) Intercept 2501 0 �2.52 0.996 �2.51**

INF Intercept 934 3 �8.11*** 0.935 �6.96***

NIR-12m Intercept 10,619 12 �2.26 0.999 �1.62*
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Fig. 4.
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OTable 8 reports the results for test of the null against the alternative of local persistency,

as well as point estimates of the local persistence parameter, d. We used three sample
dependent bandwidth parameters q1 = [ln(n)], q2 = 3*[ln(n)] and q3 = 6*[ln(n)] where [.]
signifies an integer number. Again, we are considering time series with large samples,
and this is particularly important because as pointed out by the Monte Carlo experiments
in the previous section, the proposed test is an asymptotic test and, therefore, it needs large
samples to be able to discriminate between local persistence and stationarity. The notation
‘*’, ‘**’, and ‘**’ suggests that the null hypothesis is rejected at 10%, 5%, and 1% level of
significance, respectively. First, we notice that the results reported in Table 8 indicate that
the data uniformly reject the stationarity null hypothesis against the alternative. In addi-
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Table 8
Results from local persistency analysis

Series d̂ d̂L Model Qn

q1 = [ln(n)] q2 = 3* [ln(n)] q3 = 6* [ln(n)]

NER (Can–US) 0.68 0.90 Trend 1.90*** 1.19*** 0.87*

NER (UK–US) 0.70 0.92 Intercept 4.92*** 3.05*** 2.19***

INF 0.54 0.37 Intercept 2.16*** 1.50** 1.26*

NIR-12m 0.78 0.95 Intercept 7.23*** 4.26*** 3.05***
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Otion, all series have an estimated local persistence parameter, d̂, different from zero.

Combining this result with the previous evidence in Table 7, our empirical analysis indi-
cates that these time series are sitting between the conventional stationary and the unit
root processes, supporting the existence of local persistency in US data of inflation, inter-
est rate and exchange rate.

The existence of local persistence implies that shocks affecting NER (Can–US), NER
(UK–US), INF, and NIR-12m are long lasting, but the time series exhibits mean (trend)
reverting behavior in the sense that the impulse response converges to zero.

In order to illustrate the differences between a local persistence model and other models
largely used in the literature to capture persistence in macroeconomic time series, such as
fractional integration and linear autoregressive models with large autoregressive coeffi-
cient, we computed values for the k-period impulse response function (IRk). As mentioned
in Section 2.3, if the time series yi is integrated of order dl, I(dl), with 0 < dl < 1, its
IRk � 1=ðk1�d̂lÞ where d̂ l is an estimate of dl. Table 8 contains d̂ l obtained by applying
the non-linear least squares method available at Arfima package (Doornick and Ooms,
2001) for Ox programming language.7 The estimates of dl reported in Table 8 are all sig-
nificant at 5%. On the other hand, if we assume that the time series is a simple linear auto-
regressive model of order one, AR(1), then its IRk ¼ âk�1 where â is reported in Table 7.
Finally, if we assume that the time series is locally persistent, then its
IRk ¼ ð1� 1=nd̂Þk�1, where n = no + k and no is the sample size used to estimate â displayed
in Table 7.

Table 9 displays the k-period impulse response function computed using the estimates
of a, d, and dl reported in the above tables. One can see, for example, that if we model
exchange rates as a fractionally integrated process, then the impact of a unit innovation
vanishes in the long run, but vanishes very slowly: the shocks are not totally absorbed even
when k = 10,000, which corresponds to about 30 years!. 8 On the other hand, if exchange
rates are modeled as locally persistent processes, then the shocks are still long lasting, but
the persistence is much weaker than in a model with fractional integration: shocks are
almost totally absorbed in about 3 years, ten times less than predicted by a fractional
model. Finally, if we ignore the existence of local persistence and proceed modelling
exchange rate as a linear autoregressive process with root near unity, then we would be
led to believe that the shocks are rapidly absorbed. Note that the above discussion also
applies to the series of inflation and interest rate, with the latter being much more persis-
tent than the former. We argue that, using the numbers in Table 9, although fractional
U

7 In order to estimate dl, we considered a ARFIMA (0,dl, 0) specification for all time series appearing in Table 8.
8 We are using daily observations of exchange rates. So k = 10,000 corresponds to about 30 years.
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Table 9
The k-period impulse response function

Model NER (Can–US) NER (UK–US) INF NIR-12m

k = 5

Local persistence 0.98 0.98 0.77 0.99
Fractional integration 0.85 0.88 0.36 0.92
Linear 0.96 0.97 0.76 0.97

k = 30

Local persistence 0.86 0.88 0.15 0.98
Fractional integration 0.71 0.76 0.12 0.84
Linear 0.74 0.75 0.14 0.97

k = 300

Local persistence 0.26 0.31 0.00 0.81
Fractional integration 0.56 0.63 0.03 0.76
Linear 0.05 0.05 0.00 0.74

k = 1000

Local persistence 0.02 0.04 0.00 0.51
Fractional integration 0.50 0.57 0.02 0.70
Linear 0.00 0.00 0.00 0.367

k = 10000

Local persistence 0.00 0.00 0.00 0.00
Fractional integration 0.40 0.48 0.01 0.63
Linear 0.00 0.00 0.00 0.00
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models also imply mean (trend) reversion, the full reversion may take a very long time to
occur. Thus, for reasonable finite horizons, we might say that full reversion does not occur
if exchange rate, inflation and interest rate are fractionally integrated. On the other hand,
local persistency may rather lead to full reversion within reasonably long finite horizons.
In fact, while it is recognized that many economic time series are highly persistent over cer-
tain range, less persistent results are also found around very long horizons. In this sense,
we believe that the local persistence model provides a useful alternative to the traditional
unit root and stationary models, and it is a useful complement to the fractional integrated
model.
U
N

C
O

R7. Conclusion

We study local persistence of macroeconomic time series. We have proposed statistical
tests for the null hypothesis of stationarity (or trend stationarity) against local persistence.
The test statistics converge to nonstandard limiting distributions that are functions of
Brownian motions, involving higher order Brownian bridges. Tables of critical values
are provided based on the asymptotic null distributions and a Monte Carlo experiment
was conducted to examine the finite performance of these test, with special emphasis to
the study of the finite sample size and power. The test is applied to several important vari-
ables of the US economy: interest rate, inflation, and exchange rate. Our results suggest
that these macroeconomic time series may be locally persistent and, therefore, display a
pattern of temporal dependence that is different from the one generated by a traditional
unit root and fractionally integrated process.
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Appendix

Proof of Theorem 1 and Theorem 2. By definition

bQn ¼ max
16t6n

t
x̂yn1=2

1

t

Xt

i¼1

ŷi �
1

n

Xn

i¼1

ŷi

�����
����� ¼ max

06r61

1

x̂y

1

n1=2

X½nr�

i¼1

ŷi �
½nr�
n

1

n1=2

Xn

i¼1

ŷi

 !�����
�����

where r 2 [0, 1] and ŷi is the (detrended) time series. Notice that

1

n1=2

X½nr�

i¼1

ŷi ¼
1

n1=2

X½nr�

i¼1

yi �
1

n1=2
ðûy � uyÞ

0X½nr�

i¼1

� i

where n�1=2
P½nr�

i¼1yi is a stochastic process in D[0, 1], the space of functions on r 2 [0,1] that
are right continuous with left-hand limits. We endow the space D[0, 1] with the Skorohod
topology (Billingsley, 1968). Under the null hypothesis of stationarity, Ho:d = 0, and the
assumption of Phillips et al. (2001), the partial sum process n�1=2

P½nr�
i¼1yi satisfies the invari-

ance principle, that is:

1

n1=2

X½nr�

i¼1

yi ) BðrÞ:

Assume that there is a standardizing matrix D such that D�1� [nr]! � (r) as n!1, uni-
formly in r 2 [0, 1]. For the case of a linear trend, D = diag[1, n] and � (r) = (1, r) 0. Thus, by
the continuous mapping theorem,

n1=2Dðûy � uyÞ ¼ n�1
X

D�1� i�
0
iD
�1

� 	�1

n�1=2
X

D�1� iyi

� 	
)

Z 1

0

� ðsÞ� ðsÞ0 ds
� ��1 Z 1

0

� ðsÞ dBðsÞ ds
� �

and

1

n1=2

X½nr�

i¼1

ŷi ¼
1

n1=2

X½nr�

i¼1

yi �
1

n1=2
ðûy � uyÞ

0X½nr�

i¼1

� i

¼ 1

n1=2

X½nr�

i¼1

yi � fn1=2ðûy � uyÞ
0Dg 1

n

X½nr�

i¼1

D�1� i

 !

) BðrÞ �
Z 1

0

dBðsÞ� ðsÞ0
� � Z 1

0

� ðsÞ� ðsÞ0 ds
� ��1 Z r

0

� ðsÞ ds
� �

¼ xy W ðrÞ �
Z 1

0

dW ðsÞ� ðsÞ0
� � Z 1

0

� ðsÞ� ðsÞ0 ds
� ��1 Z r

0

� ðsÞ ds
� �" #

¼ xy
eW ðrÞ
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where eW ðrÞ ¼ W ðrÞ � f
R 1

0
dW ðsÞ� ðsÞ0gf

R 1

0
� ðsÞ� ðsÞ0 dsg�1f

R r
0
� ðsÞ dsg. Thus, by the fact

that [nr]/n! r and the continuous mapping theorem,

max
06r61

1

n1=2

X½nr�

i¼1

ŷi �
½nr�
n

1

n1=2

Xn

i¼1

ŷi

 !�����
�����) sup

06r61

jxyf eW ðrÞ � r eW ð1Þgj
and

bQn ¼Max
16t6n

1ffiffiffi
n
p t

x̂y

1

t

Xt

i¼1

ŷi �
1

n

Xn

i¼1

ŷi

�����
�����) sup

06r61

jf eW ðrÞ � r eW ð1Þgj:
The limiting process xy

eW ðrÞ is a generalized Brownian bridge process. If the time series yi

is observed, then eW ðrÞ ¼ W ðrÞ, and therefore Qn) sup06r61j{W(r) � rW(1)}j. This
proves Theorem 1. h

When � i has a constant element, the process eW ðrÞ is tied down to the origin at the ends
of the [0, 1] interval, just like a Brownian bridge. Thus, eW ð1Þ ¼ 0, andbQn ) sup06r61j eW ðrÞj. In the case that � i is a constant, eW ðrÞ ¼ W ðrÞ � rW ð1Þ is a
standard Brownian bridge and bQn ) sup06r61jfW ðrÞ � rW ð1Þgj. This proves Remark 1.

If � i is a linear trend, i.e. � i = (1,t) 0, then

eW ðrÞ ¼ fW ðrÞ � rW ð1Þg þ 6rð1� rÞ 1

2
W ð1Þ �

Z 1

0

W ðsÞ ds
� �

which is a sum of a standard Brownian bridge plus another factor

6rð1� rÞ 1

2
W ð1Þ �

Z 1

0

W ðsÞ ds
� �

brought by the time trend t. This process is usually called a second-level Brownian bridge
(MacNeill, 1978). Thus,

bQn ) sup
06r61

j eW ðrÞj ¼ sup
06r61

fW ðrÞ � rW ð1Þg þ 6rð1� rÞ 1

2
W ð1Þ �

Z 1

0

W ðsÞ ds
� �

:

This proves Theorem 2. h
R
U
N

C
OProof of Theorem 3. For the estimation of w2

y , we consider the estimator

x̂2
y ¼

Xq

h¼�q

1� jhj
q

� �
ĉðhÞ

where ĉðhÞ ¼ 1
n

Pn�jhj
i¼1 ŷiŷiþh, Under H1, ĉðhÞ ¼ OpðndÞ and consequently x̂2

y ¼ OpðndqÞ.
Thus, it can verified that, under H1

1ffiffiffi
n
p

X½nr�

i¼1

ŷi ¼ OpðndÞ

and
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ndffiffiffiffiffiffiffi
ndq

p !
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ffiffiffiffiffi
nd

q

s !
:

Given that q = op(nd), we get a consistent test, that is, bQn !1 as n!1. This proves
Theorem 3. h
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