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Abstract

Decision makers often observe point forecasts of the same variable

computed, for instance, by commercial banks, IMF, World Bank, but

the econometric models used by such institutions are frequently un-

known. This paper shows how to use the information available on point

forecasts to compute optimal density forecasts. Our idea builds upon

the combination of point forecasts under general loss functions and un-

known forecast error distributions. We use real-time data to forecast

the density of U.S. inflation. The results indicate that the proposed

method materially improves the real-time accuracy of density forecasts

vis-à-vis the ones from the (unknown) individual econometric models.
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1 Introduction

Forecast combinations can be justified when the data generating process is

much more complex than any possible specification of individual models.

In this case, each model is potentially misspecified and will certainly yield

biased forecasts. Another important motivation for combining different fore-

casts arises when the information set of the individual models are private

and therefore unknown to the decision maker. When this happens, the in-

formation set of the decision maker will only comprise individual forecasts,

which suggests that an optimal forecast can be achieved by combining mul-

tiple predictions from different models. The success of forecast combination

is widespread in such diverse areas as economics, finance, meteorology, and

political science, among others. Indeed, Clemen (1989, p. 559) points out

that "the results have been virtually unanimous: combining multiple fore-

casts leads to increased forecast accuracy." More recently, Stock and Watson

(2001, 2004), Marcellino (2004) and Issler and Lima (2009) confirm Clemen’s

conclusion.

In a seminal paper, Granger and Ramanathan (1984) set out the foun-

dations of optimal forecast combinations under symmetric and quadratic

loss functions. They showed that under mean-squared-error (MSE) loss, the

optimal weights can be estimated through an ordinary least squares (OLS)

regression of the target variable on a vector of forecasts plus an intercept to

account for model bias. If the loss function differs from MSE, then the com-

putation of optimal weights may require methods other than a simple OLS

regression. In this paper, we derive optimal weights under general loss func-

tions and unknown forecast error distributions. In this general framework,

we are able to show that optimal weights can be easily identified through

quantile regressions of the target variable on an intercept and a vector of
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individual point forecasts. This characterization of the optimal forecast

combination as a quantile function is a generalization of the Granger and

Ramanathan (1984) method and can be used to construct optimal density

forecasts.

Our research is related to the literature on combination of density fore-

casts initiated by Hall and Mitchell (2007), who derive optimal density fore-

casts based on the assumption of full knowledge of individual models and

a fixed loss function. If the individual models are unknown, then one can-

not estimate the individual densities, and therefore the approach suggested

by Hall and Mitchell (2007) will not be feasible. This is exactly the case

when an economic institution reports a point forecast but does not disclose

the econometric model used to estimate it. This paper shows that we can

use the information available on point forecasts to construct optimal den-

sity forecasts without requiring any knowledge of the (unknown) individual

econometric models.

We applied the proposed forecast combination method to forecast the

density of future U.S. inflation. Such a forecast is affected by the fact that in-

flation volatility is not constant over time. As documented by Clark (2011),

the volatility of inflation in the U.S. remained extremely low during the 1988-

2008 period due to the "Great Moderation", but it has recently increased

due to the increased volatility of energy prices. Thus, if the econometric

model used to forecast inflation densities assumes constant variance, then

such shifts in volatility will probably bias the density forecasts, making it

too wide or too narrow. Another concern is that the distribution function

of the data is probably unknown to the econometrician, but the current lit-

erature still places a parametric structure on the shape of the conditional

distribution. If this parametric representation is misspecified, then density

3



forecasts will probably be misleading. In this paper, we use the proposed

approach to address these two issues jointly.

The evidence presented in this paper shows that the proposed method

materially improves the real-time accuracy of density forecasts. More im-

portantly, our empirical results indicate that the density forecast computed

using our proposed method is outperformed neither by the ones constructed

from the (unknown) individual econometric models nor by the ones ob-

tained using combinations of densities or quantiles as suggested by Hall

and Mitchell (2007) and Granger (1969,1989), respectively. This empirical

evidence is based on interval forecasts (coverage rates), and log predictive

density scores.

This paper is organized as follows: Section 2 presents the forecast combi-

nation problem, discusses the econometric model and assumptions, presents

our results on optimal forecast combination. Section 3 discusses the estima-

tion of optimal weights by using quantile regressions and shows how to use

the proposed method to construct density forecasts. Section 4 presents our

empirical illustration and describes our real time data. Section 5 presents

the main results and section 6 concludes.
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2 The Forecast Combination Problem

The decision maker (forecast user) is interested in forecasting at time t the

future value of some stationary univariate time series {yt+h}∞h=1 on the basis

of a k-vector of point forecasts of this variable ŷt+h,t =
(
ŷ0t+h,t, ŷ

1
t+h,t, ..., ŷ

k−1
t+h,t

)
,

which may include a constant. Notice that each element of ŷt+h,t is deter-

mined ex-ante (at time t) and is adapted to an expanding sequence of in-

formation sets Ft. Hence, ŷt+h,t (also denoted by ŷt+h|t) is adapted to Ft

whereas yt+h is not, which rules out the uninteresting case where yt+h is

perfectly predictable. Thus, the information set Ft comprises the k-vector

of forecasts used to predict yt+h. She seeks an aggregator that reduces the

information in ŷt+h,t ∈ Rk to a summary measure C (ŷt+h,t, ωi) ∈ R. This

aggregator depends on the vector of weights ωi ∈ Rk whose identification,

in turn, depends on both the loss function and the unknown forecast error

distribution. We denote the conditional distribution of yt+h given Ft as

Ft+h,t, and the conditional density as ft+h,t. Note that the parametric form

of this conditional distribution (density) is unknown. A density forecast is

therefore an estimate of ft+h,t.

Our premise is that, perhaps due to presence of private information, the

information set underlying individual forecasts is often unobserved to the

decision maker. In this situation it is not feasible to pool the underlying

information sets and construct a super model that nests each of the under-

lying forecasting models. Following Timmermann (2006), suppose that we

are interested in forecasting the density of some variable, yt+h, and that two

point forecasts, ŷ1t+h,t and ŷ
2
t+h,t are available. Let the first point forecast be

based on the variables x1t and x
2
t , i.e., ŷ

1
t+h,t = g1

(
x1t , x

2
t

)
whereas the second

forecast is based on the variables x3t and x
4
t , i.e., ŷ

2
t+h,t = g2

(
x3t , x

4
t

)
. If{

x1t , x
2
t , x

3
t , x

4
t

}
were available, it would be natural to estimate the quantile
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function of yt+h based on all four variables, Qy (τ) = g3
(
x1t , x

2
t , x

3
t , x

4
t

)
. The

problem is that only the point forecasts ŷ1t+h,t and ŷ
2
t+h,t are observed by

the decision maker (while the underlying variables are unobserved). Then,

the only option is to estimate the quantiles by using only these forecasts,

i.e., to elicit a quantile function of the type qy (τ) = gc

(
ŷ1t+h,t, ŷ

2
t+h,t

)
. In

other words, our premise is that the decision maker’s information set, Ft

comprises individual forecasts, Ft =
{
ŷ1t+h,t, ŷ

2
t+h,t

}
where Ft is often not

the union of the information sets underlying the individual forecasts.

The conditional model with mean and variance dynamics is defined as

yt+h = ŷ′t+h|tβ+
(
ŷ′t+h|tγ

)
ηt+h (1)

ηt+h|Ft ∼ Fη,h (0, 1)

where Fη,h (0, 1) is some distribution with mean zero and unit variance,

which depends on h but does not depend on Ft. ŷt+h,t ∈ Ft is a k×1 vector of

forecasts, β and γ are k×1 vectors of parameters which include the intercepts

β0 and γ0. This class of DGPs is very broad and includes most common

volatility processes such as ARCH and stochastic volatility. This location-

scale model states that point forecasts ŷt+h,t affect both location and scale

of the conditional distribution of yt+h, which means that both conditional

mean and conditional quantile functions will be affected by ŷt+h,t.1 An

important thing to notice is that no parametric structure is placed on Fη,h.2

Following the literature (i.e. Granger (1969), Granger and Newbold

(1986), Christoffersen and Diebold (1997), Patton and Timmermann (2007),

1For a location model, only the conditional mean function will be affected by ŷt+h,t
2 Elliott and Timmermann (2004) derived optimal weights based on the joint distri-

bution F
(
yt+h, ŷ

′
t+h,t

)
. They showed that it is the combination of asymmetry in both

loss and data that is required for optimal weights to differ from the MSE weights. In this
paper we show that some of the results in Elliott and Timmermann (2004) can also be
obtained by only modelling the conditional distribution Ft+h,t.
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and Gaglianone and Lima (2012)), an optimal forecast combination ŷit+h,t

is obtained by minimizing the expected value of a general loss function Li.

In this paper we assume that such loss functions are defined according to

Assumption 1 below.

Assumption 1 (Loss Function) The loss function Li, where i ∈ (0, 1),

is a homogeneous function solely of the forecast error et+h,t, that is,

Li = Li(et+h,t), and L(ae) = g(a)L(e) for some positive function g.

Assumption 1 is exactly the same assumption L2 of Patton and Timmer-

mann (2007). Although it rules out certain loss functions (e.g., those which

also depend on the level of the predicted variable), it does include many

common loss functions, such as MSE, MAE, lin-lin, and many asymmetric

quadratic losses. Index i is used to indicate that there exists a continuum

amount of loss functions satisfying the above assumption and therefore a

density forecast can be seen as a solution to the above decision maker’s

problem under various loss functions Li, i ∈ (0, 1) .3

3This is not a strong restriction since we can always create many asymmetric losses by
just adjusting the penalty received by negative and positive forecast errors.
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Proposition 1 Under DGP(1) and a homogeneous loss function (Assump-

tion 1), the optimal forecast combination will be

ŷit+h,t = ŷ′t+h|tβ+
(
ŷ′t+h|tγ

)
γih

= ωi,0 + ωi,1ŷ
1
t+h,t + ...+ ωi,k−1ŷ

k−1
t+h,t (2)

where ωi,0 =
(
β0 + γ0γ

i
h

)
; ωi,1 = (β1+γ1γ

i
h); ωi,k−1 = (βk−1+γk−1γ

i
h) and

γih is a constant that depends only on the forecast horizon h, distribution

Fη,h (0, 1) and the loss function Li.

Proof. See Appendix .

Proposition 1 also nests some important special cases as shown in the

following corollaries:

Corollary 1 Under DGP(1) and the mean-squared-error (MSE) loss func-

tion, the optimal forecast combination is

ŷit+h,t = E [yt+h|Ft] = β0 + β1ŷ
1
t+h,t + ...+ βk−1ŷ

k−1
t+h,t

where E [yt+h|Ft] is the conditional mean of yt+h. In this special case

γih will correspond to E
[
ηt+h|Ft

]
which is zero by assumption. There-

fore γih = 0 and optimal weights are fixed at ωi,j =
(
βj + γj .0

)
= βj ,

j = 0, ..., k − 1.

Proof. See Appendix .

In the absence of scale effects in the conditional model (1), i.e., γ1 =

γ2 = ... = γk−1 = 0, the optimal forecast combination weights are identical

to the MSE weights, and the intercept ωi,0 will still depend on the unknown

distribution Fη,h (0, 1) and general loss function Li. This latter result can

be summarized in the following corollary:
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Corollary 2 In the absence of scale effects, i.e., γ1 = γ2 = ... = γk−1 = 0,

the optimal forecast combination, under DGP(1), will be

ŷit+h,t = E [yt+h|Ft] + khi = ωi,0 + β1ŷ
1
t+h,t + ...+ βk−1ŷ

k−1
t+h,t (3)

where ωi,0 =
(
β0 + γ0γ

i
h

)
, and khi = γ0γ

i
h

Proof. See Appendix.

The above corollary shows that only the intercept depends on the shape

of both the loss and distribution functions, while the forecast combination

weights are equal to the ones obtained under MSE loss. This same result

was also obtained by Elliott and Timmermann (2004) using a joint distri-

bution approach, but assuming a fixed forecast horizon and an elliptically

symmetric distribution function. Our conditional model (1) delivers essen-

tially the same result without assuming any functional form for Fη,h (0, 1)

and without imposing a fixed forecast horizon.

3 Estimation

Corollary 1 shows that, under MSE loss, the optimal combination corre-

sponds to the conditional mean of yt+h. The sample analog of the weights

is of course the usual least squares estimator for the regression of yt+h on a

constant and the vector of forecasts, which was first proposed by Granger

and Ramanathan (1984). Under general loss our Proposition 1 yields new

results in the sense that the optimal weights will now differ from the ones ob-

tained under MSE loss and conditional model (1) offers a natural approach

to estimating these optimal weights. Indeed, given the optimal forecast com-

bination (2) and recalling that Ft+h,t is the conditional distribution of yt+h
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we have the following result

Ft+h,t
(
ŷit+h,t

)
= Pr

(
yt+h < ŷit+h,t|Ft

)
(4)

= Pr

 ŷ′t+h|tβ+
(
ŷ′t+h|tγ

)
ηt+h <

< ŷ′t+h|tβ+
(
ŷ′t+h|tγ

)
γih|Ft


= Pr

(
ηt+h < γih|Ft

)
= Fη,h

(
γih
)

= τ i ∈ (0, 1) .

Thus, it follows that ŷit+h,t = F−1t+h,t (τ i) which means that the optimal

forecast combination ŷit+h,t coincides with the conditional quantile function

of yt+h at level τ i, i.e.:

ŷit+h,t = Qyt+h (τ i | Ft) = ωi,0 + ωi,1ŷ
1
t+h,t + ...+ ωi,k−1ŷ

k−1
t+h,t (5)

for some τ i ∈ (0, 1)

where Qyt+h (τ i | Ft) is the conditional quantile of yt+h at level τ i and the

weights are estimated as in (2) with γih equal to F
−1
η,h (τ i).4 Thus, the optimal

weights under general loss Li and unknown distribution function Fη,h (0, 1)

can be obtained through a quantile regression of yt+h on a constant and the

vector of forecasts.5

Remark 1 Equation (5) generalizes the idea of Granger and Ramanathan

(1984) who employed OLS to estimate MSE weights. Under gen-

eral loss Li and unknown distribution function Fη,h (0, 1), the opti-

mal weights can be estimated using the quantile regression method

proposed by Koenker and Basset (1978).

4From third line in equation (4) one can see that Fη,h
(
γih
)
= τ i which implies that

γih=F
−1
η,h (τ i).

5The higher the degree of overlap in the information sets used to produce the underlying
point forecasts, the less useful a combination of forecasts is likely to be.
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As an example, if τ i = 0.5 then ŷit+h,t = Qyt+h (0.5 | Ft) is the con-

ditional median of yt+h which is an optimal forecast under the mean ab-

solute error (MAE) loss function. In this case, the optimal weights will

be given by ωi,j =
(
βj + γjF

−1
η,h (0.5)

)
j = 0, ..., k − 1 where F−1η,h (0.5) is

the median of ηt+h. If a loss function penalizes positive errors more than

negative ones, then the optimal forecast combination will correspond to

Qyt+h (τ i | Ft) with τ i > 0.5. The more one penalizes the positive errors,

the bigger τ i will be and, in this case, the optimal weights will be given

by ωi,j =
(
βj + γjF

−1
η,h (τ i)

)
, τ i > 0.5. On the other hand, if the decision

maker’s loss function penalizes negative forecast errors more than positive

ones, then the optimal forecast combination will be given by Qyt+h (τ i | Ft)

with τ i < 0.5 and optimal weights would be computed accordingly. Con-

sidering all possible loss functions (i.e., all possible quantiles τ i ∈ (0, 1)) we

obtain the following density forecast (gray area) shown in the figure below.6

Figure 1 - Inflation rate density forecast example
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The main idea is that, following Elliott and Timmermann (2008), two

forecast users with different loss functions will want different quantiles of

the distribution, so a single number could never give them both the optimal

6The red lines represent the out-of-sample empirical quantiles τ = {0.25; 0.50; 0.75}.
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forecasts. However it would be suffi cient to provide the entire distribution

(density forecast) because this has all the quantile information they are

looking for. Of course, under MSE loss, all forecast users agree that the

mean of the predictive density is the most important information. A nice

aspect of this methodology is that since we are using quantile regressions to

estimate optimal weights, the functional form of Fη,h is left unspecified.

The forecasting literature has also suggested approaches that combine

probability density forecasts.7 Stone (1961) considered the following linear

combination

f ct+h,t (yt+h) =
k∑
j=1

ωt+h,t,jft+h,t,j (yt+h) (6)

where ft+h,t,j is the conditional density from the jth model and ωt+h,t,j are

weights. Hall and Mitchell (2007) proposed combining predictive probability

densities by finding weights ωt+h,t,j that maximize the average log predictive

score function as follows

w∗ =
arg max

w

1

T

T∑
t=1

ln
(
f ct+h,t (yt+h)

)
. (7)

They show that when weights are chosen as in (7) then the combined

density is optimal, in the sense that it minimizes the following loss function

KLIC =
1

T

T∑
t=1

[
ln ft+h,t (yt+h)− ln f ct+h,t (yt+h)

]
. (8)

Thus, the above method finds a set of weights on the n-dimensional

simplex maximizing the log score of the linear combination, or equivalently,

minimizing the KLIC distance of the linear combination to the unknown

7We do not discuss here the methods proposed by Granger (1969, 1989) and Andrade,
Ghysels and Idier (2012) because they are also implementable only when individual den-
sities are available.
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data generation process.8

Another related approach was suggested by Granger (1969, 1989). In

other words, if we let qτt+h,t,1, ..., q
τ
t+h,t,k be a set of τth quantile forecasts

from k models, then a common practice in the forecasting literature is to

consider the following quantile forecast combination

Cτt+h,t =
k∑
j=1

ωj (τ) qτt+h,t,j (9)

where ωj are weights that can be estimated using the method suggested

by Granger (1969, 1989). While (9) may work in practice, it seems a little

hard to justify it from a distributional point of view. Suppose we have two

models and each one generates two different densities. If we consider the

mixture of those densities, the τth percentile of the combined distribution

will not in general correspond to the weighted average of the τth percentiles

of the individual distributions. In short, the quantile of the sum is not equal

to the sum of the quantiles.

Finally, the feasibility of the above method depends on full knowledge of

econometric models used to generate the individual densities (or quantiles).

Our approach, on the other hand, relies only on individual point forecasts,

which is particularly important in situations where the decision maker wants

to construct optimal density forecasts without making assumptions on the

parametric specification of the individual (unknown) models.

8What may be problematic in this method is that, due to the insuffi cient capacity of
the pool of combined models to provide different relative forecasting properties at different
times, the optimal weights might be poorly identified in many applications. We sincerely
thank an anonymous referee for pointing this out.
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4 Forecasting Inflation Densities

The main purpose of this section is to provide an empirical evidence for the

theoretical results previously derived. To this end, we will consider the fore-

cast of inflation densities because it is crucial to economic decision making as

a measure of inflation uncertainty. Nominal interest rates tend to be higher

when uncertainty about future inflation is higher and, therefore, investment

decisions in both money and capital markets are obviously affected. Jud-

son and Orphanides (1999) analyze the effects of the volatility of inflation

on economic growth and document evidence in favor of the hypothesis that

uncertainty on future inflation hurts economic growth. Uncertainty about

inflation can also affect fiscal-policy-planning in the sense that it increases

the unpredictability of future fiscal revenue. As conjectured by Milton Fried-

man (1977), an increase in inflation uncertainty reduces economic effi ciency

and possibly output growth. In order to avoid the negative effects of infla-

tion uncertainty, many central banks, such as the Bank of Canada, Bank of

England, Norges Bank, Central Bank of Brazil, and Sveriges Riksbank, are

now publishing fan charts that provide entire forecast distributions for in-

flation. These fan charts can be used to forecast the probability that future

inflation will fall within an interval pre-specified by the central bank.

Forecasts of inflation density in the United States are affected by two ma-

jor problems. First, as documented by Clark (2011), the volatility of inflation

in the U.S. decreased during the 1988-2008 period due to the event known

as the "Great Moderation". However, more recently, increased volatility of

energy prices has caused the volatility of total inflation to rise sharply. If

the econometric model used to forecast inflation densities assumes constant

variance, then such shifts in volatility will probably bias the density forecasts

making it too wide or too narrow. Recent research, i.e., Carriero, Clark and
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Marcellino (2012a,b), Clark (2011), and Jore, Mitchell and Vahey (2010),

has shown that density forecasts are improved when one allows for the pres-

ence of time-varying variance. A second concern is that the distribution

function of the future inflation is probably unknown to the econometrician.

The current literature, although allowing for a time-varying variance, still

places a parametric structure on it. If this parametric representation is

misspecified, then density forecasts will probably be misleading.

In this section we address these two concerns by using the optimal fore-

cast combination method proposed previously. Recall that the proposed

method is based on the location-scale model (1) which allows for the covari-

ates to affect both the location and the scale of the distribution function

and, therefore, addresses the first concern. Estimation of the model uses

quantile regression methods which do not require knowledge of Fη,h and,

therefore, address the second concern. Moreover, the combination device

used in our approach contributes to minimizing the uncertainty about the

correct specification of the conditional quantile function in the same way

that the forecast combination method of Granger and Ramanathan (1984)

was used to minimize the uncertainty about the correct specification of the

conditional mean function. Indeed, as stressed by Stock and Watson (2001,

2004), individual forecasting models may be subject to misspecification bias

of unknown form. Thus, combining forecasts across different models can be

viewed as a way to make the forecast more robust against such a misspeci-

fication bias (Timmermann, 2006).

4.1 The Econometric Models

In this section, we will assume that there are fictitious economic institutions

that use different econometric models to make forecasts. We will pretend
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that the decision maker only observes the point forecasts from each insti-

tution, here represented by the conditional mean of each model. Next, we

will assume that there is another agent that has full information about all

individual models and, therefore, he or she will be able to combine indi-

vidual density forecasts. Thus, the contribution of each individual model

introduced in this section will be twofold.9 First, they will be employed to

forecast the conditional mean, which is used as covariate in (5). Second, the

models will be used to forecast the densities of inflation that will be further

combined by using the approach suggested by Hall and Mitchell (2007).

Following Faust and Wright (2012) all models considered in this paper

are focused on inflation "gaps" (instead of directly modeling inflation rates)

defined here as gt = πt − τ t, where gt is the inflation gap (treated as sta-

tionary), πt is the inflation rate and τ t is the respective inflation trend.

According to the referred authors, the idea is to forecast the inflation gap

around some slow-varying local mean (i.e., low frequency component), which

has found to be quite a successful approach (see Faust and Wright, 2012,

p.10, for further details).10 The inflation trend, which is often interpreted

as representing agent’s perceptions of the Fed’s long-run inflation target, is

here proxied by a moving average process based on the previous four years

of the observed real-time inflation rate.11 Along the out-of-sample forecast

horizon h the inflation trend τ t is assumed to follow a random walk (i.e.,

E [τT+h|FT ] = τT for all h).

Thus, we first estimate conditional models to the inflation gap and then

use them to make direct forecasts for several forecast horizons h (see Mar-

cellino, Stock and Watson, 2006) which are further added to the respective

9The term "model" is here used in a broad sense that includes forecasting methods.
10We sincerely thank an anonymous referee for this suggestion.
11Alternative trends could also be constructed from survey-based long-run expectations

(e.g., SPF or Blue Chip), although exhibiting short sample sizes in many cases.
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inflation trend forecast in order to obtain the inflation forecasts. The condi-

tional models for the inflation gap can be cast in the following first general

setup:

yt+h = gt+h = πt+h − τ t+h = X
′
t+h,tα+ ηt+h (10)

ηt+h ∼ Normal
(
0, σ2t+h

)
where πt+h is the inflation rate at some future time t+ h, τ t+h is respective

inflation trend, and Xt+h,t is a vector of economic indicators that are known

at time t. Notice that this approach allows for heteroskedastic dynamics,

in which the conditional variance is assumed to follow a standard Gaussian

GARCH (1,1) process.12 Model (10) admits a great variety of specifications

and hence we will consider the following ones:13

Model 1. AR(1) with fixed ρ = 0.46: The first model is a simple AR(1) with

fixed autoregressive coeffi cient ρ. We assume that the inflation gap

follows an AR(1) with a fixed slope coeffi cient set to 0.46 (this follows

model 7 of Faust and Wright, 2012). This is the model (10) with

X ′t+h,t = gt and α = 0.46.

Model 2. AR(2): This is the model (10) with X ′t+h,t = (1, gt, gt−1) and α =

(α0, α1, α2)
′.

Model 3. RW-AO: This is the variant of the pure random walk (RW) model

considered by Atkeson and Ohanian (2001), which is model (10) with

X ′t+h,t = 1
4

∑4
j=1 gt−j+1 and α = 1.

12For the estimation of the GARCH (1,1) models based on real-time data, we use the
variance targeting technique in order to increase estimation stability. This approach re-
stricts the constant term of the conditional variance equation to a function of the GARCH
parameters and the unconditional variance of the residuals.
13Section 4.2 presents a complete description of the data used to estimate each individual

model.
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Model 4. PC (backward looking): This model is the Phillips curve (PC), which

has a long tradition in forecasting inflation. The Phillips curve has

been exhaustively used to make point forecasts of future inflation (for

a comprehensive survey, see Stock and Watson, 2008) This is model

(10) but with X ′t+h,t = (1, gt, ut) and α = (α0, α1, α2)
′, where ut is the

unemployment rate.

Model 5. PC (backward looking, extended): Same as model 4, but withX ′t+h,t =

(1, gt, gt−1, ut, ut−1) and α = (α0, α1, α2, α3, α4)
′.

In models 4 and 5 only "adaptive expectations" for the inflation gap and

the unemployment rate matter to forecasting the future values of inflation

gaps. We also consider three additional models taking into account inflation

expectations:

Model 6. PC-hybrid (backward and forward looking): This is the model (10) but

with X ′t+h,t = (1, gt+h,t, gt, ut) and α = (α0, α1, α2, α3)
′, where gt+h,t

is the market expectation of the inflation rate (i.e., πt+h,t defined as

the mean forecast from the Survey of Professional Forecasters (SPF),

published by the FED of Philadelphia) subtracted by the respective

forecast of the inflation trend (τ t+h,t), i.e., gt+h,t = πt+h,t − τ t+h,t.

Model 7. PC-hybrid (backward and forward looking, extended): This is the

model (10) but withX ′t+h,t = (1, gt+h,t, gt, ut,∆ut) and α = (α0, α1, α2, α3, α4)
′.

Model 8. Survey-based expectations (SPF): This is the model (10) but with

X ′t+h,t = gt+h,t and α = 1.

As mentioned, models 1 to 8 are estimated by using a Gaussian-GARCH

(1,1) approach. Nonetheless, in order to also allow for asymmetric dynam-

ics in the inflation gap, we re-estimate these previous models by using the
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so-called two-piece-normal-distribution approach employed by the Bank of

England. According to Britton et al. (1998), the pdf for the so-called two-

piece-normal-distribution is given by AS, in which A = 2

((1/
√
1−γ)+(1/

√
1+γ))

and S = 1√
2πσ2

e

[
−1
2σ2

{
(x−µ)2+γ

(
x−µ
|x−µ|

)
(x−µ)2

}]
.

In this paper, we construct conditional density forecasts based on Bank

of England’s approach (models 9 to 16) by assuming that: (i) the conditional

mean µ is given by those of models 1 to 8 (respectively); (ii) the conditional

variance σ2 is determined by GARCH(1,1) estimates of models 1 to 8 and;

(iii) the conditional skew (γ), which measures the degree of asymmetry of

the conditional density, is given by the sample skew (skw) which is based on

the (real time) GDP-price index inflation rate of the previous ten years. It is

also normalized as γ= skw
1+|skw| , which guarantees that γ ∈ [−1; 1]. Note that

if the conditional skew is set to zero, then models 9-16 simplify to models

1-8.

Thus, given the empirical evidence that the volatility of inflation is not

constant over time, models 1-8 exhibit a time-varying volatility with sym-

metric distribution, whereas models 9-16 have a time-varying volatility with

an asymmetric distribution. Furthermore, all models assume a parametric

form for the error distribution, which may differ from the true one, and this

also affects the accuracy of density forecasts. We also estimate each model

by using quantile regression,14 which is a semi-parametric approach since it

assumes that the parametric form of the error distribution is unknown.

We are not claiming that the above suite of models is the best one and

we admit that more models could be added to it. For example, we could

specify the Phillips-curve models using economic leading indicators other

than the unemployment rate. Although we think that this extension would

14 In order to construct the density forecast combination scheme proposed by Granger
(1969, 1989).
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be valuable, the above list also seems to be a reasonable approximation

to the spectrum of models used by commercial banks and other economic

institutions. In what follows, each of the previous models will be used to

estimate point forecasts ŷt+h,t, conditional quantiles, qτt+h,t, for τ ∈ (0, 1)

and densities ft+h,t.

Now, we turn to the forecast combination schemes. In this sense, we

consider the sets of densities, Sd1 = {ft+h,t,j}j=1,...,8, Sd2 = {ft+h,t,j}j=9,...,16,

Sd3 = {ft+h,t,j}j=1,...,16, a set of point forecasts Spf4 = {ŷjt+h,t}j=1,...,8, and a

set of quantiles Sq5 =
{
qτt+h,t,j

}
j=1,...,8

for τ ∈ (0, 1).

For the combination method (6), we follow Kascha and Ravazzolo (2010)

and consider three weighing schemes: equal weights, MSE weights and re-

cursive log score weights, all applied to the sets of densities Sd1 , S
d
2 and S

d
3 .

Thus, models 17, 18 and 19 are the combined densities obtained using equal

weights, based on sets Sd1 , S
d
2 and S

d
3 , respectively. In the same way, models

20, 21 and 22 are combined densities using MSE weights, and models 23, 24

and 25 are combined densities using recursive log score weights.

The combination method of Elliott and Timmermann (2004), equation

(3), is based on Spf4 and produces model 26. The optimal combination

approach (5) is based on the same set Spf4 and generates our model 27. The

quantile combination approach proposed by Granger (1969, 1989) is labeled

model 28. For models 26, 27 and 28, following Koenker (2005), given a

family of estimated conditional quantile functions, the conditional density

of yt+h can be estimated by the formula

f̂t+h,t =
(τ i − τ i−1)

Q̂yt+h (τ i | Ft)− Q̂yt+h (τ i−1 | Ft)
.

where Q̂yt+h (τ i | Ft) and Q̂yt+h (τ i−1 | Ft) are two adjacent estimated
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conditional quantiles of yt+h. The conditional density f̂t+h,t can also be

estimated (for instance) by the Epanechnikov kernel, which is a weighting

function that determines the shape of the bumps. We prefer the latter be-

cause it generates smooth densities, especially when the time series sample

size is short, which is the case in this empirical application of inflation fore-

casting. Tables 1-2 summarize the individual forecasting models as well as

the combination approaches. In the next section, we describe the database

as well as the forecasting schemes employed in the empirical exercise.

Table 1 - Conditional models with Gaussian GARCH (1,1) estimation

Model Label Covariate vector X ′t+h,t

1 AR(1) with fixed ρ = α = 0.46 gt

2 AR(2) (1, gt, gt−1)

3 RW-AO, α = 1 1
4

∑4
j=1 gt−j+1

4 PC (backward looking) (1, gt, ut)

5 PC (backward looking, extended) (1, gt, gt−1, ut, ut−1)

6 PC-hybrid (back-forward looking) (1, gt+h,t, gt, ut)

7 PC-hybrid (back-forward looking, extended) (1, gt+h,t, gt, ut,∆ut)

8 Survey-based expectations (SPF), α = 1 gt+h,t

Note: Each model i = 9 to 16 has the same (respective) covariate vector of model i− 8

but is estimated using Britton et al. (1998)’s approach and, thus, allows for

time-varying conditional variance with asymmetric dynamics.
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Table 2 - Conditional models from combination approaches

Model Weights Set of base-models: density f , point forecast ŷ or quantile q

17 Equal Sd1 = {ft+h,t,j}j=1,...,8

18 Equal Sd2 = {ft+h,t,j}j=9,...,16

19 Equal Sd3 = {ft+h,t,j}j=1,...,16

20 MSE Sd1 = {ft+h,t,j}j=1,...,8

21 MSE Sd2 = {ft+h,t,j}j=9,...,16

22 MSE Sd3 = {ft+h,t,j}j=1,...,16

23 Log score Sd1 = {ft+h,t,j}j=1,...,8

24 Log score Sd2 = {ft+h,t,j}j=9,...,16

25 Log score Sd3 = {ft+h,t,j}j=1,...,16

26 E&T (2004) Spf4 = {ŷjt+h,t}j=1,...,8

27 Optimal QR Spf4 = {ŷjt+h,t}j=1,...,8

28 Granger Sq5 = {qt+h,t,j}j=1,...,8

4.2 Data

Inflation is measured with GDP or GNP deflator, depending on data vin-

tage, and the inflation rate is defined as the annualized quarterly rate, de-

fined as 400 ∗ log(P (t + h)/P (t + h − 1)), h = 1, 2, 3, 4, 8 and 12, in which

Pt is the (real-time) GDP (or GNP) price index. All other variables are

also log-transformed. We collect our data from the Federal Reserve Bank

of Philadelphia’s Real Time Data Set for Macroeconomists (RTDSM). In

Figure 2 we display the realized inflation πt, the inflation trend τ t, and

the inflation gap gt. Figure 2 suggests that inflation gap is very volatile

from 1971 to 1988, pretty stable during the great moderation (1988-2008),

and presents an increase in volatility more recently with the mortgage cri-

sis. These facts point out that the volatity of gt is not constant over time
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and therefore models that fail to account for time-varying volatility will not

present a good forecasting performance.

Figure 2 - Inflation rate (% p.a.), inflation trend and inflation gap

Note: Vintage 2012Q2 is used to compute the inflation rate, trend and gap.

We also use data on quarterly market forecasts of annualized inflation

rates, measured as the respective mean forecasts from the Survey of Profes-

sional Forecasters (SPF), published by the Federal Reserve Bank of Philadel-

phia. Since the SPF dataset begins in 1968Q4, for model estimation pur-

poses we extended the time series of GDP price index expectations from

1968.Q3 back to 1960.Q1 by using exponential smoothing.15 Since the SPF

does not provide expectations for h = 8 and 12 quarters ahead, we first

set the inflation expectation for h = 12 equal to the CPI5year, and use

an exponential smoothing to backcast past missing values. Then, we use

a “term-structure” linear interpolation to generate expectations for h = 8

based on observed figures for h = 4 and h = 12.

The starting point of the estimating sample is always 1961.Q1. In order

to use the sample 1961.Q1-1984.Q4, we adopt vintage 1985Q1 (with infor-

mation until 1984.Q4). The only exception is vintage 1996.Q1, due to data
15Following Clark (2011), the exponentially smoothed series for the expected inflation

rate π∗t+1,t is constructed as follows: (i) Initialize the filter with the average inflation rate
(πt) of 1953Q1-1959Q3. The average becomes the exponentially smoothed estimate for
period 1959Q4; (ii) Use exponential smoothing formula π∗t+1,t= απt + (1− α)π∗t,t−1 with
a (calibrated) smoothing parameter α = 0.30 to estimate the trend inflation expectation
for 1960Q1 based on t − 1; (iii) Define the remaining values for next period t as the
exponentially smoothed trend estimated with data through t − 1. For longer forecast
horizons (h > 1), we assume that π∗t+h,t= απ∗t+h−1,t+(1− α)π∗t+h−1,t−1.
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unavailability, in which information for GDP price index in 1995Q4 is ob-

tained from next vintage. We conduct a "pseudo out-of-sample" exercise in

which forecasts are generated both by a recursive scheme (i.e., expanding

sample size) as well as by a rolling (20 years) sample scheme. In the for-

mer, the individual models are initially estimated by using a sample that

starts at 1961.Q1 and ends at 1984.Q4, but it is expanded as we go into the

out-of-sample period. In the latter, we keep the estimating sample size con-

stant at 80 observations (20 years) and, then, we discard and add the oldest

and newest observations, respectively, as we go into the out-of-sample pe-

riod. The full forecast evaluation runs from 1985.Q1 through 2012.Q1. For

each forecast starting at the origin t =1985.Q1, we use the real-time data

vintage t, which usually contains information up to t − 1, to estimate the

models and construct forecasts for periods t and beyond. Finally, in order

to estimate the weights for the forecast combinations in the models 17-28,

a training sample of TS = 60 observations is considered. This way, for

any h, the training sample of the dependent variable yt+h will range from

1985.Q1-TS+1 to 1985.Q1 and from 1985.Q1-TS+1-h to 1985.Q1-h for the

individual model forecasts.

5 Results

The out-of-sample forecasting exercise is made by using both a recursive

and rolling scheme. We conduct forecast evaluations based on the entire

density, which includes: (i) coverage rates; (ii) log predictive density score,

which allows one to rank the models; and (iii) the Amisano and Giacomini

(2007) test, which compares the log score distance between two models. Our

forecast evaluation is conducted using real time data. According to Clark

(2011): "...evaluating the accuracy of real-time forecasts requires a diffi cult
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decision on what to take as the actual data in calculating forecast errors".

Thus, we adopt the second available estimates of GDP/GNP deflator as

actuals in evaluating forecast accuracy. For instance, for the case in which

h—step ahead forecasts are made for period t+h with vintage t data ending

at period t− 1, the second available estimate will be taken from the vintage

t+ h+ 2 data set.

A natural starting point for forecast density evaluation is interval fore-

casts - that is, coverage rates. Recent studies such as Giordani and Villani

(2010) and Clark (2011) have used interval forecasts as a measure of the cal-

ibration of macroeconomic density forecasts (see also Mitchell and Wallis,

2010). Table 3 reports the frequency with which actual real-time outcomes

for inflation falls inside the 90 percent interval. Accurate intervals should

result in frequencies of about 90 percent, respectively. A frequency of more

(less) than 90 percent means that, on average over a given sample, the den-

sity is too wide (narrow). The table includes p-values for the null of correct

coverage of 90 percent based on t-statistics.

Table 3 shows the forecast coverage rate at all horizons in both estimat-

ing schemes. In the recursive scheme, the performance of individual models

(models 1-16) is mixing, i.e., most of the models with asymmetric GARCH

each have a correct coverage (the exceptions are models 11 and 12), whereas

the 5 models with symmetric GARCH (models 1,3,4,5,8) each have an incor-

rect coverage. This result seems to suggest that the inclusion of asymmetric

GARCH in the models improves density forecast accuracy. The combina-

tion of densities proposed by Hall and Mitchell (2007) works well when one

combines densities only from asymmetric GARCH models (models 18,21 and

24), although its performance at h = 2 is unsatisfactory. Now we turn to the

quantile methods proposed in this paper recalling that they are combining
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point forecasts rather than density forecasts. Model 26 is the location model

in which only the intercept changes across quantiles, representing a special

case of model 27. Table 3 shows that model 26 has poor coverage whereas

model 27 has a correct one at all h, suggesting that allowing point forecasts

to affect both location and scale helps improve density forecasts.16

The results for the rolling window scheme are somewhat similar, showing

a mixed performance of individual models but superior performance of sym-

metric GARCH models over the asymmetric ones.17 The performance of the

quantile method (model 27) is not worse than the existing methods, although

it presents a conservative coverage at long horizons such as h = 12. The

quantile combination method proposed by Granger (model 28) also works

very well, presenting a performance as good as model 27. However, since

model 27 is based on a more restrictive set of information (point forecasts)

its good coverage rate suggests that the approach proposed in this paper

can be seen as a good complement to the existing methods when individual

models (and therefore densities and quantiles) are unknown and only point

forecasts (limited information) are available.

In what follows we report results obtained by using log scores, which are

a broader measure of density calibration.

16The null hypothesis of location model was rejected against a location-scale model at
1% by the Koenker and Machado (1999) test.
17This result may suggest that the small sample used in the rolling window is affecting

the performance of asymmetric GARCH models.
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Table 3 - Real-Time Forecast Coverage Rates

(frequencies of actual outcomes falling inside 90% interval band)

Recursive estimation
Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
h=1 0.92 0.88 0.90 0.85 0.88 0.85 0.83 0.92 0.89 0.86 0.89 0.86 0.90 0.86 0.87 0.90 0.91 0.92 0.92 0.91 0.92 0.92 0.91 0.92 0.92 0.99 0.89 0.89

(0.51) (0.54) (0.97) (0.17) (0.54) (0.17) (0.07) (0.51) (0.74) (0.26) (0.74) (0.26) (0.97) (0.26) (0.38) (0.97) (0.77) (0.51) (0.51) (0.77) (0.51) (0.51) (0.77) (0.51) (0.51) (0) (0.74) (0.74)

h=2 0.94 0.91 0.94 0.93 0.94 0.88 0.87 0.89 0.94 0.90 0.94 0.94 0.93 0.91 0.91 0.87 0.95 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.95 1.00 0.93 0.93
(0.04) (0.77) (0.14) (0.3) (0.14) (0.56) (0.4) (0.76) (0.11) (0.98) (0.03) (0.06) (0.34) (0.77) (0.78) (0.37) (0.01) (0.01) (0) (0.01) (0.01) (0) (0.01) (0.01) (0.01) (0) (0.27) (0.54)

h=3 0.94 0.91 0.96 0.96 0.95 0.93 0.92 0.96 0.93 0.90 0.97 0.94 0.92 0.93 0.92 0.93 0.95 0.93 0.95 0.95 0.93 0.94 0.95 0.93 0.94 0.96 0.87 0.96
(0.16) (0.76) (0) (0) (0.01) (0.34) (0.54) (0) (0.35) (0.97) (0) (0.04) (0.55) (0.26) (0.47) (0.31) (0.01) (0.26) (0.01) (0.01) (0.26) (0.04) (0.01) (0.26) (0.12) (0) (0.42) (0.05)

h=4 0.92 0.93 0.96 0.91 0.89 0.87 0.88 0.93 0.90 0.90 0.97 0.89 0.89 0.89 0.90 0.90 0.93 0.92 0.93 0.93 0.92 0.93 0.93 0.90 0.93 0.92 0.82 0.94
(0.59) (0.38) (0) (0.8) (0.78) (0.46) (0.59) (0.41) (0.98) (0.98) (0) (0.78) (0.78) (0.78) (0.98) (0.98) (0.41) (0.61) (0.38) (0.41) (0.61) (0.38) (0.41) (0.98) (0.38) (0.79) (0.06) (0.98)

h=8 0.96 0.94 0.97 0.94 0.86 0.90 0.82 0.94 0.94 0.92 0.94 0.90 0.84 0.84 0.79 0.91 0.94 0.90 0.93 0.94 0.91 0.92 0.94 0.90 0.92 0.94 0.93 0.87
(0.02) (0.28) (0) (0.23) (0.54) (0.98) (0.23) (0.31) (0.35) (0.62) (0.07) (0.98) (0.32) (0.25) (0.06) (0.85) (0.29) (0.99) (0.51) (0.29) (0.85) (0.71) (0.29) (0.99) (0.71) (0.38) (0.56) (0.35)

h=12 0.92 0.84 0.99 0.83 0.83 0.83 0.83 0.89 0.91 0.82 0.98 0.82 0.82 0.82 0.84 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.87 0.90
(0.69) (0.5) (0) (0.45) (0.47) (0.43) (0.43) (0.87) (0.85) (0.37) (0) (0.29) (0.34) (0.26) (0.48) (0.49) (0.87) (0.87) (0.87) (0.87) (0.87) (0.87) (0.87) (0.87) (0.87) (0.98) (0.23) (0.84)

Rolling window
Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
h=1 0.86 0.74 0.81 0.76 0.76 0.77 0.74 0.77 0.82 0.75 0.81 0.77 0.80 0.77 0.77 0.72 0.83 0.81 0.84 0.83 0.81 0.83 0.83 0.81 0.83 1.00 0.89 0.87

(0.26) (0) (0.02) (0) (0) (0) (0) (0) (0.03) (0) (0.02) (0) (0.01) (0) (0) (0) (0.07) (0.02) (0.11) (0.07) (0.02) (0.07) (0.07) (0.02) (0.07) (0) (0.74) (0.26)

h=2 0.89 0.83 0.88 0.79 0.76 0.73 0.73 0.83 0.86 0.80 0.84 0.75 0.74 0.78 0.74 0.81 0.84 0.79 0.82 0.84 0.81 0.81 0.83 0.80 0.80 1.00 0.88 0.92
(0.76) (0.07) (0.6) (0.01) (0) (0) (0) (0.09) (0.27) (0.01) (0.13) (0) (0) (0.01) (0) (0.03) (0.14) (0.01) (0.05) (0.14) (0.03) (0.03) (0.06) (0.01) (0.01) (0) (0.56) (0.75)

h=3 0.90 0.87 0.91 0.84 0.79 0.74 0.76 0.81 0.86 0.84 0.94 0.82 0.81 0.78 0.75 0.81 0.91 0.91 0.89 0.89 0.89 0.87 0.88 0.89 0.87 0.96 0.91 0.94
(0.98) (0.4) (0.81) (0.18) (0.02) (0.01) (0.01) (0.06) (0.38) (0.14) (0.14) (0.05) (0.04) (0.03) (0.01) (0.06) (0.78) (0.79) (0.76) (0.75) (0.76) (0.41) (0.57) (0.76) (0.41) (0.06) (0.68) (0.16)

h=4 0.89 0.84 0.92 0.80 0.75 0.71 0.72 0.84 0.84 0.85 0.92 0.79 0.75 0.71 0.70 0.81 0.83 0.84 0.84 0.83 0.84 0.84 0.83 0.83 0.84 0.94 0.83 0.91
(0.79) (0.23) (0.59) (0.04) (0.01) (0) (0) (0.26) (0.31) (0.33) (0.56) (0.03) (0) (0) (0) (0.09) (0.18) (0.19) (0.17) (0.12) (0.19) (0.17) (0.12) (0.13) (0.17) (0.63) (0.05) (0.98)

h=8 0.87 0.77 0.92 0.82 0.74 0.74 0.71 0.86 0.85 0.77 0.87 0.78 0.74 0.70 0.69 0.85 0.86 0.83 0.85 0.85 0.83 0.84 0.85 0.82 0.84 0.89 0.84 0.89
(0.62) (0.09) (0.65) (0.19) (0.08) (0.02) (0) (0.52) (0.51) (0.08) (0.58) (0.06) (0.07) (0) (0) (0.47) (0.49) (0.26) (0.44) (0.39) (0.26) (0.35) (0.39) (0.23) (0.35) (0.59) (0.14) (0.43)

h=12 0.84 0.72 0.95 0.75 0.66 0.72 0.72 0.83 0.83 0.66 0.94 0.71 0.65 0.69 0.68 0.80 0.83 0.80 0.81 0.83 0.81 0.82 0.83 0.81 0.81 0.81 0.79 0.83
(0.45) (0.07) (0.16) (0.11) (0.02) (0.02) (0.02) (0.34) (0.34) (0.01) (0.22) (0.04) (0.02) (0.01) (0.01) (0.24) (0.4) (0.25) (0.28) (0.4) (0.28) (0.32) (0.4) (0.28) (0.28) (0.15) (0.05) (0.09)

Note: The table includes in parentheses p-values for the null of correct coverage (empirical =

nominal rate of 90%), based on t-statistics using standard errors computed with the Newey-West

estimator, with a bandwidth of 0 at the 1-quarter horizon and 1.5×horizon for other horizons.
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Table 4 reports the values of the log predictive density scores (LPDS),

noticing that models with higher scores present the best performance. In

general, the method proposed by Hall Mitchell (2007) improves forecast ac-

curacy over some but not all individual models. As suggested by Kascha

and Ravazzolo (2010), this result can be interpreted as an insurance against

bad models provided by the linear combination (6). Such a performance,

however, is still affected by the fact that all individual models assume a

parametric form for the distribution function, which can be different from

the true one. Indeed, we also observe that no other model has a LPDS that

is higher than the one of model 27 at both estimating schemes and at all

forecasting horizons. The quantile combination method (model 28) outper-

forms the individual models and the combined densities, but does not seem

to outperform the proposed approach (model 27). To help provide a rough

gauge of the significance of score differences, we rely on the methodology

developed in Amisano and Giacomini (2007), and report p-values for differ-

ences between the LPDS of model 27 and the other models, under the null of

equal LPDS. Because the theoretical basis for the test provided by Amisano

and Giacomini requires forecasts estimates with rolling samples of data, we

only apply the test to the models estimated with the rolling scheme.
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Table 4 - Log predictive density score (LPDS)

Recursive estimation

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
h=1 ­3.32 ­3.31 ­3.32 ­3.28 ­3.29 ­3.27 ­3.26 ­3.27 ­3.32 ­3.31 ­3.31 ­3.28 ­3.29 ­3.26 ­3.26 ­3.27 ­3.29 ­3.29 ­3.28 ­3.29 ­3.29 ­3.28 ­3.29 ­3.29 ­3.28 ­3.34 ­3.03 ­3.15

h=2 ­3.36 ­3.33 ­3.36 ­3.35 ­3.34 ­3.32 ­3.32 ­3.31 ­3.36 ­3.33 ­3.35 ­3.34 ­3.33 ­3.31 ­3.31 ­3.31 ­3.34 ­3.33 ­3.33 ­3.34 ­3.33 ­3.33 ­3.34 ­3.33 ­3.33 ­3.30 ­3.04 ­3.25

h=3 ­3.39 ­3.35 ­3.41 ­3.37 ­3.36 ­3.36 ­3.36 ­3.38 ­3.38 ­3.35 ­3.41 ­3.36 ­3.35 ­3.35 ­3.34 ­3.37 ­3.37 ­3.37 ­3.36 ­3.37 ­3.36 ­3.36 ­3.37 ­3.36 ­3.36 ­3.25 ­2.98 ­3.24

h=4 ­3.41 ­3.41 ­3.46 ­3.39 ­3.38 ­3.39 ­3.38 ­3.42 ­3.41 ­3.40 ­3.46 ­3.38 ­3.38 ­3.39 ­3.38 ­3.42 ­3.41 ­3.41 ­3.40 ­3.40 ­3.40 ­3.40 ­3.40 ­3.40 ­3.39 ­3.43 ­2.98 ­3.05

h=8 ­3.48 ­3.49 ­3.58 ­3.47 ­3.44 ­3.47 ­3.44 ­3.48 ­3.47 ­3.48 ­3.57 ­3.47 ­3.43 ­3.47 ­3.43 ­3.47 ­3.48 ­3.48 ­3.48 ­3.48 ­3.47 ­3.48 ­3.48 ­3.47 ­3.47 ­3.53 ­3.07 ­3.29

h=12 ­3.51 ­3.52 ­3.70 ­3.51 ­3.51 ­3.53 ­3.53 ­3.50 ­3.51 ­3.51 ­3.70 ­3.51 ­3.51 ­3.52 ­3.52 ­3.50 ­3.53 ­3.53 ­3.53 ­3.53 ­3.54 ­3.53 ­3.53 ­3.53 ­3.53 ­3.52 ­3.08 ­3.39

Rolling window

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
h=1 ­3.26 ­3.22 ­3.27 ­3.19 ­3.21 ­3.15 ­3.13 ­3.20 ­3.25 ­3.21 ­3.26 ­3.17 ­3.20 ­3.14 ­3.14 ­3.19 ­3.21 ­3.20 ­3.19 ­3.21 ­3.20 ­3.20 ­3.21 ­3.19 ­3.19 ­3.31 ­3.04 ­3.14

h=2 ­3.31 ­3.27 ­3.34 ­3.24 ­3.22 ­3.23 ­3.21 ­3.27 ­3.31 ­3.26 ­3.33 ­3.23 ­3.21 ­3.20 ­3.19 ­3.26 ­3.26 ­3.25 ­3.25 ­3.26 ­3.26 ­3.25 ­3.26 ­3.25 ­3.24 ­3.26 ­2.96 ­3.22

h=3 ­3.35 ­3.33 ­3.38 ­3.28 ­3.21 ­3.24 ­3.24 ­3.30 ­3.36 ­3.32 ­3.38 ­3.27 ­3.20 ­3.25 ­3.23 ­3.30 ­3.29 ­3.28 ­3.28 ­3.28 ­3.28 ­3.27 ­3.28 ­3.28 ­3.27 ­3.32 ­3.09 ­3.20

h=4 ­3.38 ­3.33 ­3.44 ­3.28 ­3.24 ­3.28 ­3.22 ­3.36 ­3.37 ­3.33 ­3.43 ­3.28 ­3.24 ­3.27 ­3.22 ­3.36 ­3.33 ­3.32 ­3.32 ­3.32 ­3.32 ­3.31 ­3.32 ­3.31 ­3.31 ­3.48 ­3.07 ­3.05

h=8 ­3.42 ­3.43 ­3.56 ­3.41 ­3.35 ­3.41 ­3.40 ­3.43 ­3.43 ­3.42 ­3.55 ­3.41 ­3.34 ­3.40 ­3.40 ­3.43 ­3.43 ­3.43 ­3.43 ­3.43 ­3.43 ­3.42 ­3.42 ­3.42 ­3.42 ­3.51 ­3.07 ­3.28

h=12 ­3.45 ­3.38 ­3.68 ­3.40 ­3.37 ­3.38 ­3.36 ­3.44 ­3.44 ­3.37 ­3.68 ­3.39 ­3.37 ­3.36 ­3.34 ­3.43 ­3.46 ­3.45 ­3.46 ­3.46 ­3.46 ­3.46 ­3.45 ­3.44 ­3.45 ­3.57 ­3.07 ­3.30

Note: The table entries are average values of log predictive density scores

(see Adolfson, Linde, and Villani, 2005), under which a higher score implies a better model.

Table 5 shows the results of the Amisano-Giacomini test. A p-value

lower than 0.05 indicates that the null hypothesis of equal LPDS between

model 27 and model i (i 6= 27) is rejected at a 5% level. Based on the p-

values reported on table 5, we can conclude that almost no other model has

an LPDS that is statistically equal to the LPDS of model 27, reinforcing our

previews results about the good performance of the proposed approach. In

sum, our empirical exercise indicates that our combination method is rarely

outperformed by either any of the individual models or by combinations

of densities and quantiles obtained using (6) and (9), respectively. In this

sense, we believe that this research fills an important gap in this literature

by providing a simple but effi cient tool to construct optimal density fore-

casts without requiring complete information on the individual econometric

models. To the best of our knowledge, no other paper has fully explored

this possibility.
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Table 5 - Amisano-Giacomini (2007) test applied to average LPDS

Rolling window
Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

h=1 0.22 0.18 0.23 0.15 0.17 0.11 0.10 0.16 0.22 0.17 0.22 0.14 0.16 0.10 0.10 0.15 0.17 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.15 0.28 ­ 0.10
(0) (0) (0) (0.01) (0) (0.04) (0.07) (0) (0) (0) (0) (0.01) (0) (0.05) (0.06) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0.01)

h=2 0.35 0.31 0.37 0.28 0.26 0.27 0.25 0.31 0.34 0.30 0.37 0.27 0.25 0.24 0.23 0.29 0.30 0.29 0.28 0.30 0.29 0.28 0.30 0.29 0.28 0.30 ­ 0.26
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

h=3 0.26 0.23 0.29 0.19 0.12 0.15 0.14 0.21 0.26 0.23 0.28 0.18 0.11 0.15 0.14 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.19 0.18 0.18 0.23 ­ 0.11
(0) (0) (0) (0.01) (0.15) (0.04) (0.05) (0) (0) (0) (0) (0.01) (0.16) (0.04) (0.06) (0) (0) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0) (0.21)

h=4 0.30 0.26 0.36 0.20 0.16 0.21 0.15 0.29 0.30 0.26 0.36 0.20 0.16 0.20 0.15 0.29 0.25 0.25 0.24 0.25 0.25 0.24 0.25 0.24 0.23 0.41 ­ ­0.02
(0) (0) (0) (0) (0.01) (0) (0.03) (0) (0) (0) (0) (0) (0.01) (0) (0.03) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0.8)

h=8 0.35 0.36 0.48 0.34 0.28 0.34 0.33 0.36 0.36 0.35 0.48 0.34 0.27 0.33 0.33 0.36 0.36 0.36 0.35 0.36 0.36 0.35 0.35 0.35 0.35 0.44 ­ 0.21
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0.03)

h=12 0.39 0.31 0.61 0.33 0.30 0.31 0.29 0.37 0.38 0.30 0.61 0.32 0.30 0.29 0.27 0.37 0.39 0.38 0.39 0.40 0.39 0.39 0.38 0.37 0.38 0.50 ­ 0.24
(0.01) (0.06) (0) (0.04) (0.07) (0.03) (0.04) (0.01) (0.01) (0.07) (0) (0.05) (0.07) (0.04) (0.06) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0) (0.13)

Note: Null hypothesis of zero average difference in LPDS between model 27 (benchmark)

and model i 6= 27. Similar to Clark (2011), the p-values are computed by regressions of

differences in log scores (time series) on a constant, using the Newey-West estimator of

the variance of the regression constant (with a bandwidth of 0 at the

1-quarter horizon and 1.5×horizon for other horizons).

Finally it is important to show how the proposed method assigns dif-

ferent weights to the component forecasts. We recall that density forecasts

benefits from three important aspects that are taken into account by our

approach. First, our model allows for time-varying volatility, which is im-

portant especially for forecasting density of inflation since it is well known

that the variance of inflation was very low during the great moderation pe-

riod but increased recently due to the sub-prime economic crisis. Thus,

using models that do not account for time-varying volatilities will result

in inaccurate density forecasts. Second, most of the existing literature on

density forecasting take a stand on the functional form of the forecasting

error distribution. If such a specification is wrong, then density forecasts

will also be inaccurate. Our approach, on the other hand, relies on quantile

regression techniques which does not need to assume the functional form of
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the error distribution. Third, we minimize the risk of misspecification in

the quantile function through the combination of point forecasts. This same

technique was used by Granger and Ramanathan (1984) to minimize the

misspecification risk in the mean function. In this paper, using point fore-

casts to approximate the true quantile function has a natural interpretation

as a generalization of the result of Granger and Ramanathan (1984) from

point to density forecasting.

Figures 3 and 4 show the weights obtained from our quantile method,

which are nothing else but an intercept and slope coeffi cients from a quantile

regression of yt+h on a constant and 8 point forecasts. To save space we set

h = 3 and τ = 0.75, 0.5 and 0.25. The rolling window scheme is used. Figure

3 shows optimal QR weights for τ = 0.75, which is a relevant measure

of upside risk of inflation (i.e., inflation values above median). One can

see that from 1985 to 1988 (period of volatile inflation) the weights are

quite different, suggesting that forecast combination plays an important role

in forecasting the upside risk of inflation. During the great moderation

(1988-2008), inflation is low, less volatile, and therefore easier to forecast by

Phillips curve models with survey expectations. As a result, weights on some

models approach zero and forecast combination plays a less important role

to predict the upside risk. Finally, at the time the mortgage crises erupted

(2008-2012), the volatility of gt increases and the weights on some models

start to be different from zero again, making forecast combination important

to predict the upside risk of inflation. One explanation for this result is that

the coeffi cients of the QR (optimal weights) depends on F−1η,h (τ i), τ i = 0.75,

which is left unspecified, and therefore it is able to adapt quickly to changes

caused by economic events.
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Figure 3 - Point Forecast Combination τ = 0.75

Figure 4 shows the QR weights for τ = 0.5 and τ = 0.25 which are

less important to predict the upside risk of inflation but are important to

predict its central tendency and downside risk (i.e., values of inflation below

median). Recall that these weights depend on F−1η,h (τ i), τ i = 0.5 and 0.25,

respectively. One can observe that the weights are highly disperse during

the period of high inflation but more stable during the rest of the sample,

i.e., F−1η,h (τ i), τ i = 0.5 and 0.25 did not change much from 1988 to 2012.

Thus, the effect of the mortgage crisis seems not be captured at low quan-

tiles since the QR weights are very similar to the values observed during

the great moderation. This may be explained by the fact that the current

mortgage crisis had a deflationary impact on the US economy, making eas-

ier to forecast the central tendency and the downside risk of inflation, i.e.,

less dispersion in the left tail of the inflation distribution. Finally, based on

figures 3 and 4, models with survey expectations (i.e., models 6, 7 and 8)

seem to dominate other models throughout the time examined, indicating

that survey expectations plays an important role in the prediction of density

forecasts.
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Figure 4 - Point Forecast Combination τ = 0.25 and 0.50

6 Conclusion

Granger and Ramanathan (1984) advocated that the combination of point

forecasts should be used when there is uncertainty about the true specifi-

cation of the conditional mean function. In this paper, we show that the

same idea can be employed to mitigate the uncertainty about the true spec-

ification of the conditional quantile function. This result can be applied to

construct density forecasts when the decision maker has limited information,

that is, when he or she observes the point forecasts computed by economic

institutions but does not observe the econometric models used by them. Un-

der this situation, the combination devices proposed by Hall and Mitchell

(2007) and Granger (1969, 1989), which are based on the full knowledge of

the unknown econometric models, are no longer feasible.

The methodology developed in this paper provides a simple and effi cient

way to estimate the uncertainty behind an economic forecasting, and there-

fore can be useful in identifying the correct economic policy under different

circumstances. Perhaps most importantly, our approach is applicable un-

der a wide variety of structures, since it does not require full knowledge of

the unknown econometric models, including the specification of the fore-

cast error distribution function. Given this approach, we were able to make

h-step-ahead forecasts of any quantile of yt+h and, therefore, forecast the
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entire density.

We provide empirical evidence of our theoretical findings by forecasting

the density of future inflation in the USA. There has been intense research

on forecasting the behavior of inflation, but most of the papers focus on

modelling the conditional mean or the most likely outcome. If the decision

maker is interested in evaluating the upside or downside risks of inflation,

then a forecast of the density, ft+h,t, is necessary. In this paper, we use our

proposed approach to estimate ft+h,t and compare it to density forecasts

obtained from existing methods. The evidence presented in this paper shows

that the proposed optimal combination method materially improves the real-

time accuracy of density forecasts. The empirical evidence includes interval

forecasts (coverage rates) and log predictive density scores.

Although our empirical results are favorable, we are not claiming that

our method will always outperform the combination method suggested by

Hall and Mitchell (2007) and Granger (1969,1989). Our main contribution

is to show that accurate density forecasts can be obtained even when we

do not have full knowledge about the specification of individual models.

Under this limited information setting, our approach can be interpreted as

a complement to the existing ones, without ruling out the possibility that

other individual models could be included in Ft.
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Appendix

Proof of Proposition 1. The proof is similar to the one shown by Granger

(1969), Christoffersen and Diebold (1997) and Patton and Timmermann

(2007) in the first part of their proposition 2. Thus, by homogeneity of the

loss function and DGP (1) we have that:

ŷit+h,t =
arg min

ŷ

∫
Li(y − ŷ)dFt+h,t(y)

arg min

ŷ

∫ [
g

(
1

ŷ′t+h,tγ

)]−1
Li

(
1

ŷ′t+h,tγ
(y − ŷ)

)
dFt+h,t(y)

=
arg min

ŷ

∫ g
 1(

γ0 + γ1ŷ
1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
−1 ·

·Li
 1(

γ0 + γ1ŷ
1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

) (y − ŷ)

 dFt+h,t(y)

=
arg min

ŷ

∫
Li

 1(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

) (y − ŷ)

 dFt+h,t(y)

=
arg min

ŷ

∫
Li


1

(γ0+γ1ŷ1t+h,t+...+γk−1ŷ
k−1
t+h,t)

·

·

 ω0 + ω1ŷ
1
t+h,t + ...+ ωk−1ŷ

k−1
t+h,t + γ0ηt+h+

+γ1ŷ
1
t+h,tηt+h + ...+ γk−1ŷ

k−1
t+h,tηt+h − ŷ



 dFt+h,t(y).

Let us represent a forecast by ω0 + ω1ŷ
1
t+h,t + ...+ ωk−1ŷ

k−1
t+h,t+

+
(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
γ̂t+h,t. This way, it follows that:
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ŷit+h,t = ω0 + ω1ŷ
1
t+h,t + ...+ ωk−1ŷ

k−1
t+h,t +

(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
·

·arg min

γ̂

∫
Li

 1(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

) (ω0 + ω1ŷ
1
t+h,t + ...

+ωk−1ŷ
k−1
t+h,t +

(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
ηt+h − ω0 − ω1ŷ1t+h,t − ...

−ωk−1ŷk−1t+h,t −
(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
γ̂))dFη,h(η)

= ω0 + ω1ŷ
1
t+h,t + ...+ ωk−1ŷ

k−1
t+h,t +

+
(
γ0 + γ1ŷ

1
t+h,t + ...+ γk−1ŷ

k−1
t+h,t

)
· arg min

γ̂

∫
Li
(
ηt+h − γ̂

)
dFη,h(η)

= ω0 + γ0γ
i
h + ω1ŷ

1
t+h,t + γ1ŷ

1
t+h,tγ

i
h + ...+ ωk−1ŷ

k−1
t+h,t + γk−1ŷ

k−1
t+h,tγ

i
h

= ω0(τ i) + ω1(τ i)ŷ
1
t+h,t + ...+ ωk−1(τ i)ŷ

k−1
t+h,t

where ω0(τ i) =
(
ω0 + γ0γ

i
h

)
, ωj(τ i) = (ωj + γjγ

i
h), j = 1, . . . , k − 1

Proof of Corollaries 1 and 2. If we assume that there are no scale effects

then γ1 = ... = γk−1 = 0 therefore the optimal forecast will be ŷit+h,t =

ω0(τ i)+ω1ŷ
1
t+h,t+ ...+ωk−1ŷ

k−1
t+h,t, where ω0(τ i) =

(
ω0 + γ0γ

i
h

)
. This proves

corollary 2. To prove corollary 1 we remember that the expected value of the

MSE loss is ŷit+h,t = arg min
ŷ E (y − ŷ)2. Now, due to certainty equivalence

E (y − ŷ)2 is minimized at ŷ = E(y|ŷ) = ω0 + ω1ŷ
1
t+h,t + ... + ωk−1ŷ

k−1
t+h,t.

This proves corollary 1.
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