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Abstract
We introduce a test for strict stationarity based on the fluctuations of

the quantiles of the data, and we show that this test has power against
the alternative hypothesis of unconditional heteroskedasticity while other
tests for first order (level) stationarity as the KPSS test (Kwiatkowski
et al., 1992) and, its robust version, the IKPSS test (de Jong et al.,
2007) have low power against this alternative of time-varying variance.
Moreover, our test has power against the alternative hypothesis of time-
varying kurtosis, while the test for second order (covariance) stationarity
introduced by Xiao and Lima (2007) has power close to size against this
alternative.

keywords: strict stationarity testing, time-varying volatility, time-verying
kurtosis.

JEL Classification: C12, C22.

1 Introduction
Several techniques employed in time-series econometrics rely on stationarity.
So, the development of tests for stationarity is an active field of research.
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In 1992, Kwiatkowski, Phillips, Schmidt and Shim (KPSS) proposed a test
for for first order (level) stationarity based on the following standardized em-
pirical process:

ST (r) := 1
ω̂
√
T

bTrc∑
t=1

(yt − yT ),

where r ∈ [0, 1], yT is the sample mean of {yt}Tt=1 and ω̂2 is a nonparametric
consistent estimator of the long-run variance

ω2 = lim
T→∞

E

( 1√
T

T∑
t=1

(yt − yT )
)2 .

In order to measure the fluctuation of ST (r), they consider the functional
h (ST (r)), where h(·) is the Cramér-von Mises metric. The KPSS test statistic
is then given by

KPSS = 1
(ω̂T )2

T∑
k=1

(
k∑
t=1

(yt − yT )
)2

,

and, under the null hypothesis of level stationarity,

KPSS
d=⇒
∫ 1

0
κ(α)2dα,

where κ(α) := W (α) − αW (1) is the standard Brownian bridge. The critical
values can be found in KPSS (1992).

In a recent paper, de Jong et al. (2007) proposed a robust version of the
KPSS test based on the following empirical process:

IT (r) := 1
σ̂
√
T

bTrc∑
t=1

sign (yt −mT ) ,

where mT is the sample median of {yt}Tt=1, σ̂2 is a nonparametric consistent
estimator of the long-run variance

σ2 = lim
T→∞

E

( 1√
T

T∑
t=1

sign (yt −mT )
)2 ,

and

sign (x) :=


1 if x > 0,
0 if x = 0,
−1 if x < 0.
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And they applied the Cramér-von Mises metric to measure the fluctuation of
the empirical process IT (r). This gives rise to the IKPSS test statistic

IKPSS = 1
(σ̂T )2

T∑
k=1

(
k∑
t=1

sign (yt −mT )
)2

.

Under the null hypothesis of level stationarity, de Jong et al. (2007) show
that IKPSS d=⇒

∫ 1
0 κ(α)2dα, the same limiting distribution as the KPSS test

statistic. Unlike the KPSS test, the IKPSS has correct size under the presence
of fat-tailed errors. When the alternative hypothesis is unit root, the indicator
test has lower power than the KPSS when tails are thin, but higher power when
tails are fat.

However, when the aforementioned traditional stationarity tests are applied
to test stationarity, it is difficult to detect alternatives with unconditional volatil-
ity (distribution scale) that changes over time.

In the same year, 2007, Xiao and Lima proposed a test for second order
(covariance) stationarity based on the following standardized bivariate empirical
process:

ZT (r) := 1√
T

Ω̂− 1
2

bTrc∑
t=1

(
ỹt
vt

)
,

where ỹt := yt− 1
T

∑T
j−1 yj is the demeaned data, vt := ỹ2

t−σ2
y, σ2

y := 1
T

∑T
t=1 ỹ

2
t

and Ω̂− 1
2 is the inverse of the Choleski decomposition of Ω̂2, a nonparametric

consistent estimator of the long-run variance

Ω = lim
T→∞

E

( 1√
T

T∑
t=1

(
ỹt
vt

))(
1√
T

T∑
t=1

(
ỹt
vt

))′ .
Then, they applied the Kolmogorov metric to measure the fluctuation of the
empirical process ZT (r). Their test statistic is then

XL = max
1≤k≤T

∥∥∥∥∥ 1√
T

Ω̂− 1
2

k∑
t=1

(
ỹt
vt

)∥∥∥∥∥
1

.

Under the null hypothesis of covariance stationarity,

XL
d=⇒ sup

0≤r≤1

∥∥∥∥(W1(r)− rW1(1)
W2(r)− rW2(1)

)∥∥∥∥
1
,

where
(
W1(r)− rW1(1) W2(r)− rW2(1)

)′ is the 2-dimensional standardized
Brownian bridge. The critical values can be found in Xiao and Lima (2007).

Unlike the KPSS or the IKPSS, the XL test has power not only against the
alternative hypothesis of distribution location varying on time but also against
the alternative hypothesis of distribution scale (unconditional volatility) varying
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on time. However, all of the aforementioned tests have power close to size against
the alternative hypothesis of time-varying kurtosis.

As Busetti and Harvey (2007) discuss, the distribution of a random variable
may presents changes over time that does not impact the level or the variance.
For instance, maybe the asymmetry or fatness of the tail is time-varying. This
is particularly important in analyzing financial time-series. To exemplify this
point, consider how changes in lower tail quantiles may impact decisions of a
risk manager or a regulatory agency.1

In this paper, we propose a new test for the null hypothesis of strict station-
arity as a useful complement to the previous procedures. This new test uses
the sign of the data minus the sample quantiles. In this way, this new test can
be seen as a generalization of the IKPSS test, since the latter uses the sign of
the data minus the sample median only. Comparing to the KPSS, IKPSS and
XL tests, the proposed test has power not only against unit root alternative,
alternatives with structural changes in the mean and alternatives with uncondi-
tional heteroskedasticity, but also has good power in detecting changes in higher
moments of the unconditional distribution.

This paper is organized as follows: Section 2 describes our testing procedure;
Section 3 brings the Monte Carlo; an empirical exercise is done in Section 4;
and Section 5 concludes.

2 A Test for Strict Stationarity
Let {yt}Tt=1 be the data and, for τ ∈ [0, 1], define

b(τ) := arg max
b∈R

T∑
t=1

ρτ (yt − b) ,

where
ρτ (u) = (1u<0 − τ)u.

Therefore, b(τ) is simply the τ th sample unconditional quantile of {yt}Tt=1.
Notice that ρτ is not everywhere differentiable but, since it is convex, we

can still compute the subgradient. The subgradient plays the same role in
quantile estimation as the score function in maximum likelihood estimation.
The subgradient of ρτ is given by2

ψτ (u) = 1u<0 − τ.

We now define the empirical process

ST (r, τ) := 1
π̂(τ)
√
T

bTrc∑
t=1

ψτ (yt − b(τ)) ,

1Value-at-Risk (VaR), a measure of risk based on a lower tail quantile, is of considerable
importance in financial regulation (Lima and Neri, 2007).

2In fact, the subgradient of ρτ at zero is not unique; it can be any element of the closed
interval [−τ, 1− τ ].
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where r ∈ [0, 1] and π̂(τ)2 is a nonparametric consistent estimator of

π(τ)2 := lim
T→∞

E

( 1√
T

T∑
t=1

ψτ (yt − b0(τ))
)2 ,

where b0(τ) is the population τ th unconditional quantile of the {yt}Tt=1.
This paper proposes to test for strict stationarity by using the Kolmogorv-

Smirnoff metric to measure the fluctuation of ST (r, τ) across various quantiles
τ ∈ Γw = [w, 1− w], for some w ∈

(
0, 1

2
)
, which gives rise to the following test

statistic:

SS = max
τ∈Γw

max
1≤k≤T

1
π̂(τ)
√
T

∣∣∣∣∣
k∑
t=1

ψτ (yt − b(τ))− k

T

T∑
t=1

ψτ (yt − b(τ))

∣∣∣∣∣ .
π̂(τ)2 can be computed as the HAC estimator,

π̂(τ)2 := 1
T

T∑
i=1

T∑
j=1

K

(
i− j
qT

)
ψτ (yi − b(τ))ψτ (yj − b(τ)) ,

where K is a kernel function.

Assumption 1. The kernel function K satisfies:

1.
∫∞
−∞ |ω(ξ)| dξ <∞, where

ω(ξ) := 1
2π

∫ ∞
−∞

K(x)e−ixξdx;

2. K is continuous at all but a finite number of points, K(x) = K(−x),
|K(x)| ≤ l(x), where l(x) is non-increasing and

∫∞
0 |l(x)| dx < ∞, and

K(0) = 1;

3. limT↑∞ qT =∞ and limT↑∞
qT
T = 0.

Assumption 1 is equal to Assumption 2 used in de Jong et al. (2007) and
although it excludes the use of the uniform kernel function, it allows choices
such as the Bartlett, Quadratic Spectral, and Parzen kernels.

Assumption 2. (Null Hypothesis H0)

1. {yt}∞t=1 is a strictly stationary stochastic process and b0(τ) is the unique
population τ th unconditional quantile of yt;

2. {yt}∞t=1 is strong (α−) mixing and, for some finite κ > 2, C > 0 and
η > 0, α(m) ≤ Cm−

κ
κ−2−η;

3. yt − b0(τ) have a continuous density f in a neighborhood [−η, η] of 0 for
some η > 0, and infy∈[−η,η] f(y) > 0;
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4. σ2 ∈ (0,∞).

Theorem 1. Under Assumption 1 and Assumption 2,

SS
d=⇒ sup

τ∈Γw
sup

0≤r≤1
|B(r, τ)| ,

where B(r, τ) is the Brownian Pillow (or the tucked Brownian Sheet).

A proof for Theorem 1 for the case in which the innovations are i.i.d. was
done by Qu (2005). The critical values of our test are computed through the
simulation of 105 time series with 1000 observations et ∼ i.i.d.U [0, 1].3 B(r, τ)
is then approximated by

1
γ̂(τ)
√
T

(
k∑
t=1

1et≤τ −
k

T

T∑
t=1

1et≤τ

)
,

where k = bTrc and γ̂(τ)2 is the sample variance (over k) of
∑k
t=1 1et≤τ −

k
T

∑T
t=1 1et≤τ . The supremum of the absolute value of this approximating pro-

cess is obtained by maximizing over k and τ . We considered τ ∈ [0.10, 0.90] with
increments of 0.01. Figure 1 displays (1) the histogram of the 105 realizations
of the maximum of the absolute value of the approximating process, (2) the
probability density estimated nonparametrically using a Gaussian kernel and
bandwidth given by Silverman’s rule-of-thumb (Silverman, 1986), and (3) the
quantiles 90%, 95% and 99%. So, the critical values for the significance levels
of 10%, 5% and 1% are 1.65, 1.77 and 2.01, respectively.

3 Monte Carlo Experiment
In this section we report the results of our Monte Carlo experiment that in-
vestigate the size and power of the KPSS, IKPSS, XL and our test for strict
stationarity (SS). Our experiment is coded in R and it is run in one of the
Linux HPCCs (High Performance Computation Clusters) at New York Uni-
versity (NYU). We follow de Jong et al. (2007) and vary tail thickness by
considering t distributions with different degrees of freedom. In particular, we
consider t∞ (normal), t5, t3, t2, and t1 (Cauchy). We consider sample sizes
T = 100, T = 500 and T = 1000. The significance level of the tests is 5%.
For the SS test, we set τ ∈ [0.10, 0.90] with increments of 0.01. Our results are
based on N = 105 replications.

3.1 Serially Independent Innovations
We begin our experiment with the case in which the errors εt are i.i.d. and
are distributed as t∞ (normal), t5, t3, t2 or t1 (Cauchy). In Subsection 3.2,

3All numerical procedures used in this paper are implemented in R, and can be downloaded
from http://homepages.nyu.edu/∼bpn207. R is a free computer programming language very
suited to statisticians and econometricians, and can be downloaded from http://www.r-
project.org.
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Figure 1: Histogram of 105 realizations of the maximum of the absolute value
of the approximating process, probability density estimated nonparametrically
using a Gaussian kernel and bandwidth given by Silverman’s rule-of-thumb (Sil-
verman, 1986); and the quantiles 90%, 95% and 99%, showing that the critical
values for the significance levels of 10%, 5% and 1% are 1.65, 1.77 and 2.01,
respectively.Empirical Probability Density of the Test Statistic
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we investigate the effect of short memory via a bootstrap experiment, with the
errors being εt = ρεt−1 + ξt, ε0 = 0 and ξt are i.i.d. innovations that can be
distributed as t∞, t5, . . . or t1.

In this Subsection, since the errors are i.i.d., we use qT = 0 lags to compute
the long-run variance for all the four tests.

3.1.1 Size

Table 1: Size of the tests at 5% significance level.

t∞ t5 t3 t2 t1
T = 100

KPSS 0.049 0.050 0.048 0.044 0.029
IKPSS 0.049 0.050 0.050 0.049 0.050
XL 0.030 0.023 0.019 0.015 0.006
SS 0.039 0.040 0.040 0.040 0.039

T = 500
KPSS 0.050 0.049 0.049 0.045 0.028
IKPSS 0.051 0.050 0.050 0.050 0.049
XL 0.043 0.035 0.027 0.020 0.007
SS 0.050 0.049 0.049 0.049 0.049

T = 1000
KPSS 0.050 0.049 0.049 0.046 0.028
IKPSS 0.050 0.050 0.051 0.049 0.049
XL 0.047 0.039 0.032 0.022 0.007
SS 0.050 0.051 0.051 0.051 0.051

We first consider the size of the tests, so our Data Generating Process (DGP)
is

yt = εt,

with εt i.i.d. t∞, . . . or t1. Our results are displayed in Table 1 and are easy to
summarize. For the KPSS and IKPSS, our results are, as expected, very close
to the ones obtained by de Jong et al. (2007). The KPSS test is undersized for
infinite variance (and mean) fat tail distributions, t2 and t1. The size distortion
of the KPSS test for the Cauchy distribution does not come as a surprise, since
this test requires the existence of the first moment. The KPSS has correct
size for the normal and finite variance fat tailed data, such as t5 and t3. The
empirical size of the KPSS test does not seem to depend on the sample size.
The IKPSS has empirical size very close to nominal size in all the cases.

The XL test is too conservative. It is even more undersized the smaller the
sample size is and the fatter the tail of the distribution is. Under normality,
it has empirical size close to nominal size for moderate sample sizes (T = 500
or T = 1000). Note that the XL test requires the existence of the first two
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moments, so this test is supposed to have a large size distortion for the t2
distribution, and even larger for the Cauchy distribution.

Notice that the IKPSS and SS tests are robust to distributions without
finite mean and/or variance. The robustness of the SS test does not come as
a surprise since it is well known that quantile estimation does not depend on
distributional assumptions. However, for very small samples (T = 100), the SS
test is more conservative than the IKPSS. This happens because we estimate 81
unconditional quantiles in order to compute the SS test. Since the precision of
such estimates depends on the density of observations around the quantiles, the
performance of the SS test tends to deteriorate in very small samples. Indeed,
for sample sizes equal to 500 or 1000 the empirical size of the SS test is very
close to the nominal size, 0.05.

3.1.2 Power against Alternatives with Unit Root

We parameterize the unit root alternative in a fashion similar to de Jong et al.
(2007),

yt = λrt + εt,

where

rt =
t∑

j=1
µj

is a random walk, and µt and εt are i.i.d. and independent from each other,
and follow the same distribution (normal, . . . or Cauchy). The scale factor λ
measures the relative importance of the random walk component. We considered
λ = 0.01 and λ = 0.1.

First of all, the results, summarized in Table 2, indicate that the power of
all the four tests is increasing on λ and on T , as one would expect.

As noted by de Jong et al. (2007), the IKPSS test has more power than
the KPSS test for fat tail distributions, but it has less power for normal and t5
distributions. Actually, the power of the IKPSS test is increasing on the fatness
of the tail, which also happens with the SS test (and with the XL test, except
for a few cases). Under normality, the KPSS has more power than the other
three tests.

Both the SS and the IKPSS tests have more power than the XL test in all
cases. Moreover, for this alternaive hypothesis of unit root, the XL test has less
power than the KPSS test, except for the infinite mean distribution (Cauchy).

The SS test has performance very similar to the IKPSS test. In all the
cases, the SS test has power very close to the winner, when it is not the winner
itself. For the infinite mean cases (Cauchy distribution), the SS test is the most
powerful test among all the four tests analyzed, except for one case (T = 100
and λ = 0.01).
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Table 2: Power of the tests, at 5% significance level, against the alternative
hypothesis of unit root.

λ = 0.01 λ = 0.1
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.061 0.060 0.064 0.068 0.141 0.588 0.590 0.590 0.587 0.564
IKPSS 0.057 0.060 0.069 0.100 0.477 0.488 0.561 0.633 0.735 0.921
XL 0.035 0.028 0.026 0.029 0.146 0.442 0.468 0.502 0.563 0.679
SS 0.047 0.047 0.055 0.079 0.453 0.500 0.558 0.627 0.739 0.951

T = 500
KPSS 0.307 0.308 0.315 0.337 0.413 0.988 0.987 0.986 0.974 0.873
IKPSS 0.230 0.299 0.394 0.593 0.980 0.972 0.983 0.991 0.997 1.000
XL 0.213 0.211 0.229 0.293 0.513 0.980 0.980 0.982 0.984 0.963
SS 0.241 0.290 0.375 0.571 0.983 0.982 0.989 0.995 0.999 1.000

T = 1000
KPSS 0.606 0.607 0.608 0.608 0.582 1.000 0.999 0.999 0.996 0.934
IKPSS 0.507 0.595 0.697 0.858 0.999 0.998 0.999 1.000 1.000 1.000
XL 0.509 0.512 0.533 0.596 0.713 0.999 0.999 0.999 0.999 0.990
SS 0.539 0.605 0.694 0.853 1.000 0.999 1.000 1.000 1.000 1.000

3.1.3 Power against Alternatives with Unconditional Heteroskedas-
ticity

Recall that the driving force of the KPSS (IKPSS) test is the fluctuation of
the data around the sample mean (median). So they should have low power to
detect processes with a constant distribution location, but with a distribution
scale that changes over time. Such processes are not strict stationarity.

To investigate this possibility, we consider the following DGP:

yt =
√

1 + stεt.

Notice that now the scale factor is varying over time! We considered s = 0.01
and s = 0.05. In this model, there is no unit root, the mean (when it exists)
and median are constant over time, but the distribution scale is changing. More
precisely, the variance (when it exists) is changing linearly over time at rate s.

Table 3 exhibits our results. Basically, the KPSS test has power equal to
size even for large sample sizes (T = 1000). So, since it is undersized for fat tail
distributions (t2 and Cauchy), it has power less than significance level, 5%. In
fact, it is a biased test (power less than size) in several instances.

The IKPSS test has power close to size. Even for large samples (T = 1000),
the maximum power offered by the IKPSS is never more than 0.072.

The XL test has power against this alternative of time-varying scale for thin
tail distributions. For the t2 distribution, its power is low. For the Cauchy
distribution, its power is very close to its size and, actually, it is never greater
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Table 3: Power of the tests, at 5% significance level, against the alternative
hypothesis of time-varying volatility.

s = 0.01 s = 0.05
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.049 0.049 0.049 0.043 0.028 0.052 0.051 0.050 0.044 0.026
IKPSS 0.051 0.051 0.050 0.051 0.051 0.055 0.056 0.056 0.056 0.056
XL 0.098 0.050 0.032 0.019 0.006 0.388 0.171 0.086 0.039 0.008
SS 0.072 0.064 0.061 0.058 0.051 0.239 0.190 0.167 0.146 0.102

T = 500
KPSS 0.051 0.053 0.050 0.046 0.027 0.053 0.053 0.052 0.046 0.025
IKPSS 0.057 0.057 0.057 0.056 0.057 0.066 0.065 0.065 0.066 0.066
XL 1.000 0.823 0.399 0.110 0.010 1.000 0.943 0.600 0.188 0.012
SS 0.974 0.913 0.851 0.758 0.505 1.000 0.999 0.996 0.984 0.860

T = 1000
KPSS 0.054 0.053 0.051 0.047 0.026 0.056 0.052 0.051 0.046 0.026
IKPSS 0.060 0.060 0.060 0.061 0.060 0.072 0.068 0.070 0.070 0.070
XL 1.000 0.982 0.705 0.210 0.010 1.000 0.989 0.786 0.280 0.013
SS 1.000 1.000 1.000 1.000 0.973 1.000 1.000 1.000 1.000 0.999

than 0.013, even when T = 1000. This low power of the XL test for both the
t2 and the t1 distributions are not so surprising, since this test requires the
existence of the first two moments. These distortions of the XL test for the
infinite variance and/or infinite mean cases can be seen throughout the paper,
in several tables.

The SS test has very good power against this alternative of time-varying
scale. Even for moderate sample sizes (T = 500), it offers power 1, or very
close to 1, for almost all distributions and, when s = 0.05, it offers power above
98% for four (out of five) distributions. The SS test has more power than all the
other tests in almost all cases, against this alternative hypothesis of time-varying
scale.

3.1.4 Power against Alternative with Time-Varying Kurtosis

The results above show that both the XL and the SS tests can reveal lack
of stationarity in the data even when it has constant mean (or median). In
this sense, these tests can be used to test the null hypothesis of covariance
stationarity.

However, if a process is strict stationary then the data must also have no
excess fluctuation around other sample quantiles. Recall that the driving force
of the new test is the fluctuation of the data around sample quantiles τ ∈
[0.10, 0.90]. If the data exhibit excessive fluctuation around sample quantiles
then the null hypothesis of strict stationarity will be rejected.
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To investigate this, consider a family of real-valued discrete random variables
X(ν) parametrized by ν ∈

[√
2,∞

)
and defined by the following probability

mass distribution:

P (X(ν) = x) =


1
ν2 if x = − ν√

2 ,

1− 2
ν2 if x = 0,

1
ν2 if x = ν√

2 ,

0 otherwise.

Note that E [X(ν)] = 0, E
[
X(ν)2] = 1, E

[
X(ν)3] = 0 and E

[
X(ν)4] = ν2

2 ,
so the expectation, variance and skewness do not vary with ν, but the kurtosis
depends on ν. Now, define

ηt := X

(√
2 + 8 t

T

)
(3.1)

and consider the DGP
yt = ηt + εt,

that is, the process is now the error εt, that can be distributed as normal, . . . ,
or Cauchy, plus a discrete random variable ηt that has zero mean (and median)
and skewness, and unit variance, but has time-varying kurtosis.

It is worthwhile to notice that Kapetanios (2007) says that stationarity tests
applied to such processes with changes only in higher unconditional moments
have not been analyzed in the literature, and Xiao and Lima (2007) say that
many widely used stationarity tests cannot even capture changes in the uncon-
ditional variance.

As implicit in the definition of ηt, we choose the equation

ν(t) :=
√

2 + 8 t
T
. (3.2)

to relate the time t to the parameter ν(t). But why do we choose this equation?
First, note that

P (X(ν) 6= 0) = P

(
X(ν) = ν√

2

)
+ P

(
X(ν) = − ν√

2

)
= 2
ν2 ,

so we have to restrict ν to be at least
√

2. Also, note that P (X(ν) = 0) > 0.98
if ν > 10, so ν should not be much larger than 10 in our simulations. In summa,
ν(t) cannot be less than

√
2, and it should not be larger than 10, hence Eq.

(3.2) seems to be a reasonable choice.4

4The results of our simulation are sensitive to the choice of Eq. (3.2). More precisely, the
SS test loses some power if ηt 6= 0 too seldom or too often, as one could expect. However, the
other tests have never power against the alternative of time-varying kurtosis, no matter the
choice for Eq. (3.2) is.
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Table 4: Power of the tests, at 5% significance level, against the alternative
hypothesis of time-varying kurtosis.

t∞ t5 t3 t2 t1
T = 100

KPSS 0.049 0.048 0.049 0.045 0.027
IKPSS 0.052 0.051 0.051 0.051 0.052
XL 0.050 0.032 0.024 0.017 0.006
SS 0.085 0.070 0.065 0.060 0.051

T = 500
KPSS 0.050 0.050 0.048 0.046 0.027
IKPSS 0.051 0.050 0.050 0.052 0.052
XL 0.060 0.044 0.032 0.022 0.007
SS 0.386 0.273 0.221 0.178 0.112

T = 1000
KPSS 0.049 0.048 0.050 0.046 0.028
IKPSS 0.051 0.050 0.051 0.050 0.051
XL 0.058 0.046 0.035 0.023 0.007
SS 0.723 0.536 0.438 0.342 0.199

Since the KPSS and the IKPSS tests are not able to detect time-varying
variance when the mean (when it exists) and median are constant over time,
we expect they are not able to detect time-varying kurtosis when both the
distribution location and the distribution scale are constant over time. This is
exactly what we see in Table 4. Their power and size are about the same.

The XL test presents very low power (never greater than 0.06). Except for
the normal distribution, its power is less than the significance level, 5%.

The new test has good power when the sample size is moderate (T = 500
and, specially, T = 1000). When the sample size is very small (T = 100),
its power is small, but we have to considerate that the SS test is a bit too
conservative when the sample size is very small. Our test performs well when
the kurtosis exists (normal and t5 distributions), as one would expect; its power
decreases with the fatness of the tail.

These results show that the SS test can reveal lack of stationarity in the data
even when they have constant mean (or median), variance and skewness (if they
exist). The new test is actually testing the null hypothesis of strict stationarity.

3.2 Serially Dependent Innovations
In this Subsection, the errors εt are serially correlated. More specifically,

εt = ρεt−1 + ξt, (3.3)

with ε0 = 0, ρ ∈ (0, 1) and ξt ∼ i.i.d.tι, ι ∈ {∞, 5, 3, 2, 1}.
Then, we need a sampling scheme to compute size and power of the tests.

Following Psaradakis (2006), we use the so-called stationary bootstrap method
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introduced by Politis and Romano (1994) that, like the regular block bootstrap
proposed by Künsch (1989) and Liu and Singh (1992), does not depend on any
parametric assumptions about the data-generating mechanism. However, unlike
the block bootstrap, the stationary bootstrap generates resampled data that are
stationary.

In the stationary bootstrap, (overlapping) blocks are draw, with replace-
ment, from the original time series, until the resampled time series has the same
length as the original time series. Each observation in the original time series
has the same probability of being the beginning of a block. The length of each
block is given by a geometric distribution with parameter p, so the average block
length is 1

p .
To considerably reduce the time required to run the simulations, we use the

technique suggested by Davidson and MacKinnon (1999), in which they build
only one resampled time series for each of the N replications of the Monte Carlo,
instead of resampling many time series for each of the N replications. The idea
is that each resampled time series come from the same DGP; they have the same
distribution. So the test statistics extracted from them can be pooled together
to form the empirical distribution of the test statistic under the null hypothesis
of stationarity. In other words, Fi, the frequency of rejection (size, under the
null, or power, under the alternative hypothesis) of the test i, is given by

Fi = 1
N

N∑
j=1

1Tj
i
>Q(1−α)

i

,

where Tji is the test statistic of the test i applied to the original time series
generated by the Monte Carlo in the replication j, Q(1−α)

i is the 1− α quantile
of the empirical distribution of the test statistics of the ith test calculated from
the N resampled time series,

{
Tji
∗}N

j=1
, and α = 0.05 is the significance level.

To estimate the long-run variance we use the Bartlett Kernel. We use the
same number of lags used by both Kwiatkowski et al. (1992) and de Jong et al.
(2007):

qT = round

[
4
(
T

100

) 1
4
]
. (3.4)

However, if the errors are highly serial correlated, using the number of lags
given by Eq. (3.4) may generate underestimated long-run variances, which
would lead to oversized tests; the tests would reject too often. On the other
hand, if the errors present very small serial correlation, the use of Eq. (3.4)
may overestimate the long-run variance, which would lead to a loss in power.
To avoid these distortions, Xiao and Lima (2007) use, in their paper, a data-
dependent bandwidth selection:

q
(XL)
T = round

[
min

{(
3T
2

) 1
3
(

2 |ρ̂|
1− ρ̂2

) 2
3

, 8
(
T

100

) 1
3
}]

, (3.5)
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where ρ̂ is an estimate of the first-order autoregression coefficient of ε̂t. They
also experiment with

q
(XL)
T = round

[
min

{(
3T
2

) 1
3
(

2 |ρ̂|
1− ρ̂2

) 2
3

, 12
(
T

100

) 1
3
}]

, (3.6)

but this latter option seems to overestimate the long-run variance: the tests
they analyze are undersized and with a lower power than the same tests but
with the use of the Eq. (3.5).

To deal with these issues, Hobijn et al. (2004) suggest the modification of
the Eq. (3.4) to

qT = round

[
ℵ
(
T

100

) 1
4
]
,

where ℵ is chosen in other to minimize these size distortions, maybe in a two-
step procedure, as in Andrews (1991) or Newey and West (1994). Anyway, in
their simulations, Hobijn et al. (2004) use ℵ = 4, and they show that the results
are not too sensitive to the choice of the bandwidth. Some experiments we did
reached the same conclusion, so we also use ℵ = 4, that is, we stick to the usual
Eq. (3.4).5

In this Subsection, we report results for the cases with first-order autoregres-
sive coefficient ρ = 0.3 and with parameter of the geometric distribution that
gives the length of the blocks in the bootstrap p = 0.1. We also run simulations
with ρ = 0.6 and p = 0.03, and the results do not change too much. However,
in fact, for the cases with ρ = 0.6, a larger number of lags than what is given
by Eq. (3.4) would be more suited, since the size distortions start to be very
noticeable when ρ = 0.6. But, for ρ = 0.3, Eq. (3.4) is the one offering the best
results.

Our Monte Carlo has N = 105 replications.

3.2.1 Size

Let us begin with the size of the tests. The DGP is again

yt = εt,

where εt follows the AR(1) in Eq. (3.3) with ρ=0.3.
Table 5 brings the results. When T = 1000, all tests have size close to

level (5%) for almost all distributions. But for the infinity mean distribution
(Cauchy), the KPSS is slightly undersized, while the XL test seems to be over-
sized.

However, when the sample size gets smaller, all the four tests get somewhat
oversized.

5See Hobijn et al. (2004) for a further and interesting discussion about the influence of the
bandwidth on the size and power of stationarity tests.
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Table 5: Size of the tests at 5% significance level.

t∞ t5 t3 t2 t1
T = 100

KPSS 0.068 0.070 0.069 0.066 0.058
IKPSS 0.070 0.069 0.071 0.070 0.070
XL 0.063 0.061 0.059 0.056 0.060
SS 0.073 0.072 0.071 0.074 0.075

T = 500
KPSS 0.056 0.058 0.056 0.052 0.044
IKPSS 0.053 0.056 0.054 0.056 0.056
XL 0.055 0.054 0.049 0.047 0.059
SS 0.054 0.056 0.052 0.054 0.053

T = 1000
KPSS 0.053 0.052 0.054 0.051 0.043
IKPSS 0.052 0.053 0.054 0.053 0.052
XL 0.051 0.052 0.049 0.045 0.063
SS 0.051 0.053 0.054 0.052 0.052

3.2.2 Power against Alternatives with Unit Root

Our DGP under the alternative hypothesis with unit root is

yt = λrt + εt,

where

rt =
t∑

j=1
µj

is a random walk and εt follows the AR(1) in Eq. (3.3) with ρ = 0.3 and
innovations ξt, and µt and ξt are i.i.d. and independent from each other, but
follow the same distribution (normal, . . . or Cauchy).

We can see in Table 6 that, similar to the results from last Subsection (i.i.d.
case), the KPSS test has more power than the IKPSS under normality, but the
IKPSS test has more power than the KPSS for fat tail distributions (t3, t2 and
t1). For the t5 distribution, the KPSS and the IKPSS have about the same
power. Actually, the power of the IKPSS, XL and SS tests are increasing with
the fatness of the tail. Under normality, the KPSS test offers the best power.

The SS and the IKPSS tests have very similar results, and they are partic-
ularly good for fat tails distributions (specially t3, t2 and t1).

The tests are vaguely less powerful here, with serially correlated errors, than
in the last Subsection, where the errors were i.i.d.. However, they are, in general,
very powerful. For λ = 0.1 and T = 1000, the power of the four tests are close
to 1 regardless of the distribution.
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Table 6: Power of the tests, at 5% significance level, against the alternative
hypothesis of unit root.

λ = 0.01 λ = 0.1
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.074 0.073 0.072 0.076 0.115 0.316 0.319 0.314 0.324 0.333
IKPSS 0.072 0.074 0.078 0.091 0.235 0.286 0.315 0.339 0.391 0.484
XL 0.065 0.065 0.064 0.067 0.132 0.230 0.242 0.256 0.296 0.363
SS 0.076 0.078 0.078 0.090 0.234 0.285 0.305 0.327 0.391 0.545

T = 500
KPSS 0.190 0.191 0.199 0.216 0.292 0.783 0.782 0.778 0.766 0.675
IKPSS 0.158 0.193 0.246 0.366 0.747 0.758 0.772 0.786 0.811 0.847
XL 0.137 0.142 0.161 0.207 0.354 0.748 0.745 0.751 0.774 0.771
SS 0.156 0.178 0.220 0.332 0.785 0.774 0.789 0.807 0.849 0.950

T = 1000
KPSS 0.419 0.420 0.424 0.429 0.432 0.922 0.922 0.923 0.912 0.815
IKPSS 0.366 0.424 0.501 0.640 0.921 0.909 0.915 0.923 0.933 0.948
XL 0.332 0.339 0.368 0.438 0.533 0.913 0.908 0.908 0.917 0.901
SS 0.369 0.410 0.481 0.623 0.951 0.926 0.932 0.943 0.963 0.994

3.2.3 Power against Alternatives with Unconditional Heteroskedas-
ticity

Again, the DGP is
yt =

√
1 + stεt,

where εt follows the AR(1) in Eq. (3.3) with ρ = 0.3.
Table 7 shows that the XL test is somewhat more powerful here with serial

correlated errors than in the counterpart i.i.d. case (Table 3). On the other
hand, the SS test seems to have a lower power here, with serial correlated errors.
Anyway, even though the power of the SS test reduces with the fatness of the
tail, the SS test is more powerful than the XL test for fat tail distributions (t3,
t2 and t1), while the XL test is more powerful under normality. This is because
the power of the XL test declines faster than the power of the SS test with the
fatness of the tail. For the t5 distribution, we have mixed results.

The power of the KPSS test is about its size. But, surprisingly, the IKPSS
presents power faintly above size when T = 500 and, specially, when T = 1000.
Anyway, its power is very small: it is never above 0.075 even when T = 1000
and s = 0.5.

3.2.4 Power against Alternative with Time-Varying Kurtosis

Finally, consider the DGP
yt = ηt + εt,
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Table 7: Power of the tests, at 5% significance level, against the alternative
hypothesis of time-varying volatility.

s = 0.01 s = 0.05
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.068 0.068 0.069 0.064 0.057 0.071 0.069 0.069 0.064 0.055
IKPSS 0.068 0.069 0.070 0.070 0.072 0.075 0.075 0.072 0.074 0.076
XL 0.130 0.097 0.081 0.064 0.058 0.305 0.202 0.141 0.096 0.059
SS 0.098 0.093 0.093 0.088 0.081 0.201 0.172 0.159 0.141 0.112

T = 500
KPSS 0.058 0.054 0.058 0.053 0.044 0.059 0.058 0.057 0.055 0.042
IKPSS 0.062 0.059 0.062 0.061 0.063 0.070 0.071 0.070 0.070 0.073
XL 0.873 0.722 0.393 0.161 0.059 0.998 0.872 0.557 0.237 0.062
SS 0.823 0.699 0.612 0.494 0.249 0.984 0.946 0.895 0.801 0.449

T = 1000
KPSS 0.055 0.057 0.054 0.053 0.042 0.059 0.059 0.057 0.052 0.040
IKPSS 0.064 0.063 0.063 0.064 0.066 0.074 0.075 0.073 0.071 0.072
XL 1.000 0.967 0.686 0.260 0.066 1.000 0.980 0.757 0.328 0.068
SS 1.000 0.999 0.994 0.971 0.660 1.000 1.000 1.000 0.999 0.864

where ηt is given by Eq. (3.1) and εt follows the AR(1) in Eq. (3.3) with ρ = 0.3.
As you can see in Table 8, the KPSS, IKPSS and XL tests have power

really close to size (Table 5), but the SS test has power against this alternative
hypothesis of time-varying kurtosis. Its power declines with the fatness of the
tail. Under normality, its power is 0.417 when T = 1000. However, the power of
the SS test is clearly smaller than its counterpart with i.i.d. innovations (Table
4).

4 An Empirical Illustration
In this section we present an empirical analysis in which the use of the SS test
can lead to a significant different finding.

We use the log returns on the S&P 500 index, from 01/03/1991 to 08/11/2008,
summing up to T = 4438 observations. A visual inspection in the first panel of
Figure 2 leads to the belief that the returns rt exhibit mean reversion, which
suggests that the returns rt do not have a unit root. However note, yet in the
first panel, that the variance seems to change over time; about the central third
of the plot seems to have a higher volatility than the rest of the time series.
Then, we expect that both the KPSS and the IKPSS tests cannot reject the
null hypothesis of stationarity, but that both the XL and the SS tests can.

Time series commonly present some serial correlation, so the practitioner
should use some resampling scheme to compute the p-values of the tests. In this
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Figure 2: (1) Plot of the log returns on S&P 500 from 01/03/1991 to 08/11/2008;
(2) plot of the standardized returns; (3) plots of the variances of both the
returns and the standardized returns; (4) plot of the kurtoses of the standardized
returns.
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Table 8: Power of the tests, at 5% significance level, against the alternative
hypothesis of time-varying kurtosis.

t∞ t5 t3 t2 t1
T = 100

KPSS 0.066 0.067 0.068 0.064 0.057
IKPSS 0.068 0.068 0.069 0.068 0.069
XL 0.086 0.069 0.063 0.059 0.059
SS 0.100 0.091 0.089 0.083 0.076

T = 500
KPSS 0.054 0.057 0.056 0.051 0.044
IKPSS 0.055 0.055 0.055 0.055 0.056
XL 0.071 0.059 0.051 0.047 0.058
SS 0.219 0.159 0.127 0.097 0.064

T = 1000
KPSS 0.052 0.053 0.054 0.051 0.042
IKPSS 0.052 0.051 0.054 0.052 0.054
XL 0.063 0.057 0.049 0.045 0.063
SS 0.417 0.271 0.209 0.145 0.072

Section we report results both by comparing the tests statistics to the critical
values of the asymptotic distributions and by p-values computed via bootstrap.
Since the returns rt are reasonably uncorrelated,6, the two approaches agree,
that is, the critical values of the asymptotic distributions are valid.

Due to the lack of serial correlation in the returns, we use qT = 0 lags to
compute the long-run variance, i.e., the long-run variance is simply the contem-
poraneous variance. Also, we employ a simple bootstrap (block length is one),
which can be seen as a particular case of the stationary bootstrap used in the
last Section with p = 1, the probability of the geometric distribution that gives
that gives the length of the blocks. We tried some different number of lags qT
and some different probabilities p of the geometric distribution, but the results
do not vary much. The bootstrap is based on R = 105 replications.7

The p-value Pi of the test i is then given by

Pi = 1
R

R∑
j=1

1Ti<Tj
i

∗ ,

where Ti is the test statistic of the test i computed on the time series of returns
and Tji

∗
is the test statistic of the test i computed on the jth bootstrapped

sample.
6We cannot reject, at 5% of significance level, the null hypothesis that the first order

autoregressive coefficient is zero.
7Note that, in this Section, on the contrary of the last Section, we are not using the

Davidson and MacKinnon’s (1999) fast bootstrap scheme, since there is no Monte Carlo.
Rather, there is only one original time series, the returns time series.
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Table 9: Tests statistics of the four analyzed tests applied to 4438 observations
of returns on the S%P 500 index. To indicate statistical significance at 10%, 5%
and 1%, we use ∗, ∗∗ and ∗∗∗, respectively. The lower panel shows the p-values,
computed via bootstrap.

rt r
std(121)
t r

std(66)
t r

std(33)
t

Tests Statistics
KPSS 0.282 0.184 0.178 0.214
IKPSS 0.264 0.262 0.256 0.281
XL 6.298∗∗∗ 1.389 1.083 1.138
SS 4.933∗∗∗ 2.129∗∗∗ 2.153∗∗∗ 2.042∗∗∗

P-Values (via bootstrap)
KPSS 0.153 0.303 0.310 0.243
IKPSS 0.170 0.174 0.179 0.152
XL 0.000 0.475 0.823 0.769
SS 0.000 0.005 0.003 0.009

The results can be seen in the first column of Table 9. As we expected, both
the KPSS and the IKPSS tests fail to reject the null hypothesis of stationarity
since the returns are mean reverting, but both the XL and the SS tests reject
the null of stationarity at 1% significance level. The absence of unit root is not
a sufficient condition for stationarity since the scale of the return distribution
may be varying over time. To visualize how the variance is varying on time, we
compute variances using a rolling window of length 2h + 1.8 More specifically,
given h ∈ N, define

{
V

(h)
t

}T−h
t=h+1

by

V
(h)
t := 1

2h+ 1

t+h∑
j=t−h

r2
j .

We compute this for windows of one year (h = 121), one semester (h = 66)
and one quarter (h = 33).9 We plot V (66)

t in the third panel of Figure 2 with a
continuous curve; we will explain the dotted curve shortly. The plots for both
the annually and the quarterly windows are very similar. Indeed, the variance
is time-varying and it is larger in the middle third of the time series, as we could
visually inspect in the plot of the returns rt in the first panel.

Now, let us define a standardized return,

r
std(h)
t := rt√

V
(h)
t

,

8We use a rolling window instead of an ARCH type variance (Engle, 1982) because we are
interested in the unconditional variance rather than the conditional one.

9We adopt the usual approximations that one month has about 22 observations and that
one year has about 252 observations).
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and compute variances using the rolling window,

V
std(h)
t := 1

2h+ 1

t+h∑
j=t−h

r
std(h)
j

2
.

The standardized return with semesterly window r
std(66)
t is plotted in the second

panel of Figure 2, while its variance V std(66)
t is plotted in the third panel, as a

dotted curve. The plots for both the annually and the quarterly windows are
very similar.

Notice that the variance of the standardized return (the dotted curve) is
always about the unity, i.e., the standardized return has unit variance, constant
over time. So, the standardized returns are probably covariance stationary. In-
deed, when applying the four stationarity tests to the standardized return, we
find the the KPSS, the IKPSS and the XL tests fail to reject the null hypoth-
esis of stationarity. However, the SS test rejects it at any usual significance
level. What is going on? Probably, the standardized returns have the first two
moments constant over time, but it has higher moments that are time-varying.

To investigate this, let us compute kurtoses of the standardized returns using
the rolling window:

K
std(h)
t := 1

2h+ 1

t+h∑
j=t−h

r
std(h)
j

4
.

The fourth and last panel of Figure 2 brings the plot of Kstd(66)
t . Indeed, the

kurtosis is not constant over time. Actually, it is quite erratic. We see similar
behavior for the skewness, when computed with the rolling window. The plots
for both the annually and the quarterly windows are not too dissimilar.

In summa, the SS test can capture these fluctuations in higher moments of
the returns, and even in higher moments of the standardized returns, so it can
strongly reject the null hypothesis of strict stationarity. This empirical exercise
casts doubts on results in the literature that are obtained from models that
assume stationarity of returns.

5 Conclusion
In this paper we introduce a new test for strict stationarity. We show, through
comprehensive Monte Carlo experiments, that this test is comparable to both
classical and new tests for stationarity, in terms of power against alternative
hypothesis with unit root or unconditional heteroskedasticity.

More importantly, we show that this test has good power against alternative
hypothesis with higher moments varying on time, like a time-varying kurtosis,
while the other tests fail to reject this hypothesis.

It is important to note that the new test requires larger sample sizes to have
power, against this alternative hypothesis of time-varying kurtosis, approach-
ing 1, when the first three moments (when they exist) are constant over time.
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However, this is not an issue when considering sample sizes typically used in
financial econometrics, as the empirical exercise shows.

Moreover, the new test is particularly more powerful than the other ana-
lyzed tests for fat tail distributions. This superiority of the SS test for fat tail
distributions makes it very suitable when analyzing financial time series, which
are know for presenting fat tails.

To reinforce this suitability of the SS test for financial econometrics, we
finish the paper with an empirical exercise in which the SS test is the only
analyzed test able to detect the non-stationarity of the standardized returns
on the S&P 500 index. This result leads us to believe that many models that
assume stationarity of stock returns may not be a good approximation of the
reality.
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