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Abstract

The departure from the traditional concern with the central ten-

dency is in line with the increasing recognition that an assessment of

the degree of uncertainty surrounding a point forecast is indispensable

(Clements, 2004). We propose an econometric model to estimate the

conditional density without relying on assumptions about the para-

metric form of the conditional distribution of the target variable. The

methodology is applied to the US unemployment rate and the survey of

professional forecasts. Specification tests based on Koenker and Xiao

(2002) and Gaglianone, Lima, Linton and Smith (2011) indicate that

our approach correctly approximates the true conditional density.
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1 Introduction

Although forecasters sometimes attach measures of uncertainty, until re-

cently most forecasts were provided in the form of point forecasts (see

Diebold et al., 1998). Density forecasts, usually stated as probability distri-

butions, are becoming more common. They inform the user of the forecast

about the risks involved in using the forecast for decision making. For

example, monetary authorities in inflation-targeting countries often focus

their attention on the probability of future inflation falling within some pre-

defined target range. Users of growth forecasts may be concerned about the

probability of recession rather than a specific point estimation of the GDP

growth rate. Moreover, volatility forecasts, as measured by the variance, and

other measures of risk and uncertainty, can be extracted from the density

forecast.

The main concern about the current literature of density forecast is that

it places some parametric structure on the shape of the conditional distribu-

tion. If this parametric representation is misspecified, then density forecasts

will probably be misleading. The usage of nonparametric methods normally

requires an enormous amount of data, which is not common in macroeco-

nomic forecasting. Besides, nonparametric methods are highly computer

intensive, which may discourage applied users. This paper aims to pro-

vide a simple, although accurate, approach to compute a density forecast

for various forecasting horizons. Our approach is based on quantile regres-

sion techniques and can be seen as a generalization of the idea proposed by

Capistrán and Timmermann (2009) used to obtain the best point forecast.
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We consider a general econometric model with dynamics in the condi-

tional mean and variance. We discuss the curse-of-dimensionality problem

that plagues many econometric models and propose to address it by allowing

the consensus forecast to affect both location and scale of the distribution

of the target variable (yt+h). By imposing a quite weak assumption on the

loss function used by individual forecasters, we identify the optimal indi-

vidual forecast as a function of a common factor (here represented by the

consensus forecast) and an idiosyncratic component that depends solely on

the individual loss function. We also show that this optimal individual fore-

cast corresponds to some conditional quantile of yt+h. Finally, given our

econometric model, a family of conditional quantiles can be estimated and

we use it to construct the density forecasts.

We illustrate the applicability of this method by analyzing forecasts of

the US unemployment rate during the time period that includes the sub-

prime economic crisis. Our results indicate that the economic crisis seems

to have affected the scale of the distribution strongly, resulting in larger

probabilities for the event that the unemployment will exceed the 9 or 10%

rate in the near future. Finally, in order to validate the estimates presented

in this paper, we conduct robustness tests and compare our results to the

ones obtained using a benchmark GARCH (1,1) model. Our robustness

analysis indicates that the proposed quantile method is superior to other

methods that rely on parametric assumptions of the distribution function.

This paper is organized as follows: Section 2 presents the problem, discusses

the econometric model and assumptions, and presents our results on forecast

optimality. Section 3 shows how to construct a density forecast from quantile
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regressions and presents our empirical illustration with US unemployment

rate data, and Section 4 concludes.

2 The Econometric Model

Suppose that an agent is interested in forecasting some stationary univari-

ate time series {yt+h}∞h=1, given the information available at time t, Ft. We

denote the conditional distribution of yt+h given Ft as Ft+h,t, and the con-

ditional density as ft+h,t. Note that the parametric form of this conditional

distribution (density) is not known. The current literature has proposed a

parametric approach to estimate ft+h,t, but in this paper we will not adopt

this method. Point forecasts conditional on Ft are denoted as ŷt+h,t and

a density forecast is an estimate f̂t+h,t of the future density (or distribu-

tion function) of a random variable, conditional on Ft. The data generating

process (DGP) with conditional mean and variance dynamics is defined as

yt+h = X ′t+h,tα+
(
X ′t+h,tγ

)
ηt+h, (1)

ηt+h|Ft ∼ iid Fη,h (0, 1) ,

where Fη,h (0, 1) is some distribution with mean zero and unit variance,

which depends on h but does not depend on Ft, Xt+h,t ∈ Ft is a k×1 vector

of covariates that can be predicted using information available at time t, and

α and γ are k × 1 vectors of parameters. This class of DGPs is very broad

and includes most common volatility processes (e.g. ARCH and stochastic

volatility). The important thing to notice is that no parametric structure is

4



placed on Fη,h. In this model, covariates affect the location as well as the

scale of the distribution. This model is quite general but may suffer from the

curse-of-dimensionality problem. Indeed, let T be the sample size available

to estimate (1), then if the size of the information set Ft is large enough,

there will be a large amount of parameters k to be estimated. This leads to

loss of degrees of freedom and large out-of-sample forecast errors. Besides,

standard estimators (such as OLS) are not feasible when k > T .

As mentioned by Stock and Watson (2005), the challenge of many-

predictor forecasting is to "turn dimensionality from a curse into a bless-

ing". There are many methods for forecasting economic time series variables

using many predictors. In the dynamic factor model with principal compo-

nent analysis (PCA), h-step ahead forecasts are produced by regressing yt+h

against the estimated factor Ĉt and, possibly, lags of Ĉt and yt. To obtain

iterated h-step ahead forecasts, one needs to specify a subsidiary model of

the dynamic process followed by the common factor Ct. One approach, pro-

posed by Bernanke, Boivin and Eliasz (2005) models (yt, Ct) jointly as a

vector autoregression, which is estimated by using Ĉt (PCA estimates) in

place of Ct. References on applications of dynamic factor models and PCA

to economic forecasting can be found in Stock and Watson (2005) and, more

recently, in Diebold et al. (2009).

Another method used to address the curse of dimensionality problem

is based on the combination of many individual forecasts. Forecast com-

bination is the pooling of two or more individual forecasts from a panel of

forecasts to produce a single, pooled forecast. This method was originally

developed by Bates and Granger (1969) for pooling forecasts from separate
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forecasters, whose forecasts may or may not be based on statistical models.

Data on forecasters’opinions can be easily obtained from surveys of profes-

sional forecasters, such as the Blue Chip survey published in the Blue Chip

Economic Indicators, the Survey of Professional Forecasters and the Liv-

ingston survey of forecasts, both published by the Federal Reserve Bank of

Philadelphia. These surveys summarize the forecasts of experts from indus-

try, government, banking and academia, and the results of the surveys are

often released in terms of mean and median forecasts of all the respondents

(consensus forecast), as well as the individual responses from each analyst.

In a recent paper, Capistrán and Timmermann (2009) studied the com-

bination of forecasts from survey data by using various combination methods

in common use, such as the equal-weighted forecast, previous best forecast,

least squares estimation of combination weights, shrinkage, and the odds ma-

trix approach. Since combining forecasts from survey data is complicated

by the frequent entry and exit of individual forecasters, they also considered

a new method that projects the target variable on the consensus forecast,

defined in their paper as being the average forecast from the survey. In other

words, they consider the following forecasting equation

yt+h = α0 + α1Ct+h,t + εt+h, (2)

where Ct+h,t is the average forecast of yt+h based on the information avail-

able at time t, and εt+h is the forecasting error.

If the goal is to minimize the mean-squared-error (MSE) loss function,

then the optimal point forecasts of yt+h obtained from model (2) will sim-
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ply be ŷt+h,t = α̂0 + α̂1Ct+h,t where α̂0 and α̂1 are OLS estimates of the

intercept and slope parameters. Although model (2) can be used to obtain

optimal point forecasts under MSE loss, it says little about optimality under

loss functions other than the MSE. To motivate, assume that there exists

a continuum of forecasters who make their best predictions by using loss

functions Li that differs from MSE. In this case, as we will show below, the

forecast ŷt+h,t = α̂0+ α̂1Ct+h,t is no longer optimal and disagreement among

forecasters would result from this heterogeneity of loss functions. In what

follows, we generalize the model (2) by allowing a heterogeneous popula-

tion of forecasters with different loss functions. In this new approach, the

parameters α0 and α1 will depend on Li and optimal density forecasts can

naturally be constructed from quantile regressions.

In order to develop this new approach, we re-write DGP (1) as follows

yt+h = X ′t+h,tα+
(
X ′t+h,tγ

)
ηt+h (3)

X ′t+h,t = (1, Ct+h,t)

α = (α0, α1)
′

γ = (γ0, γ1)
′

ηt+h|Ft ∼ iid Fη,h (0, 1) ,

where Ct+h,t is the consensus forecast, defined as the average or me-

dian forecast from some survey of professional forecasters, and α and γ are

2 × 1 vectors of parameters. In this model, the consensus forecast affects

both the location and scale of the conditional distribution of yt+h. This is
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also a parsimonious model and, therefore, does not suffer from the curse-of-

dimensionality problem.

Our next step is to derive the optimal individual forecast under DGP

(3) and some class of unknown loss functions. Following the literature (i.e.

Granger (1969), Granger and Newbold (1986), Christoffersen and Diebold

(1997), and Patton and Timmermann (2007)), each individual chooses an

optimal forecast ŷit+h,t by minimizing an expected loss function L
i. In this

paper we assume that the loss functions are defined according to Assumption

1 below.

Assumption 1 (Loss Function) The loss function Li is a homogeneous

function solely of the forecast error eit+h,t ≡ yt+h− ŷit+h,t, that is, Li =

L(eit+h,t), and L(ae) = g(a)L(e) for some positive function g.1

Proposition 1 presents our result on forecast optimality.

Proposition 1 Under DGP(3) and a homogeneous loss function (Assump-

tion 1), the optimal forecast will be

ŷit+h,t = α0(τ i) + α1(τ i)Ct+h,t (4)

where α0(τ i) =
(
α0 + γ0γ

i
h

)
; α1(τ i) = (α1 + γ1γ

i
h) and γ

i
h is a constant

that depends only on the distribution Fη,h (0, 1) and the loss function

Li, i ∈ (0; 1).
1This is exactly the same Assumption L2 of Patton and Timmermann (2007). Although it

rules out certain loss functions (e.g., those which also depend on the level of the predicted vari-
able), many common loss functions are of this form, such as MSE, MAE, lin-lin, and asymmetric
quadratic loss.
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Proof. See Appendix.

From equation (4) we see that the individual optimal forecast is an affi ne

function of the common factor Ct+h,t, whereas the functions α0(τ i) and

α1(τ i) are the idiosyncratic components. Thus, Proposition 1 shows that

optimal individual forecasts are based on the same information set Ft and

that differences in opinion among professional forecasters are explained by

the presence of different loss functions Li.2

Given this optimality result, it is now important to show the relationship

between an optimal individual forecast and the conditional quantiles of yt+h.

Recall that Ft+h,t is the conditional distribution of yt+h and therefore

Ft+h,t
(
ŷit+h,t

)
= Pr

(
yt+h < ŷit+h,t|Ft

)
(5)

= Pr

 yt+h = α0 + α1Ct+h,t + (γ0 + γ1Ct+h,t) ηt+h <

< α0 + α1Ct+h,t + (γ0 + γ1Ct+h,t) γ
i
h|Ft


= Pr

(
ηt+h < γih|Ft

)
= Fη,h

(
γih
)

where Fη,h
(
γih
)
= τ i is a fixed value of τ ∈ (0; 1). Thus, it follows that,

by definition, the optimal forecast ŷit+h,t must coincide with the conditional

quantile function of yt+h at level τ i:

ŷit+h,t = Qyt+h (τ i | Ft) , for some τ i ∈ (0; 1). (6)

This result was first presented by Weiss (1996) and more recently by

Patton and Timmermann (2007) who showed that, in this framework in

2Recent research by Patton and Timmermann (2010) supports our findings by pointing out
that differences in opinion are not primarily driven by differences in information.
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which the loss function depends solely on the forecast error, the optimal

forecast is some summary measure of the true conditional density of the

variable yt+h (the mean for quadratic loss, the median for absolute error loss,

and the quantile for more general loss). As shown in (6), the consequence of

this result is that the forecaster with an unknown loss function that satisfies

assumption 1 will only care about the accuracy of a specific conditional

quantile of yt+h.3

Thus, the ith forecaster specializes in predicting Qyt+h (τ i | Ft) and, if

a continuum of individual forecasts were available, we could use it to esti-

mate the conditional density. However, as the cross-section observations in

the Survey of Professional Forecasters are very short, no such a continuous

amount exist. We notice that it is possible to identify all possible missing

individual forecasts by fully exploring the relationship between an individual

optimal forecast and some conditional quantile τ i of yt+h. In other words,

from DGP (3) we can identify a family of conditional quantilesQyt+h (τ | Ft),

τ ∈ (0, 1) as follows

Qyt+h (τ | Ft) = α0(τ) + α1(τ)Ct+h,t ; (7)

α0(τ) = (α0 + γ0γh) and α1(τ) = (α1 + γ1γh) ;

γh = F−1η,h(τ), τ ∈ (0, 1) .

Equation (7) states that we can identify the quantiles of ft+h,t through

a quantile regression of yt+h on the single covariate Ct+h,t. This result can

3Patton and Timmermann (2010) report strong evidence that this type of specialization tends
to persist over time. They found that most optimistic (pessimistic) forecasters continue to be
optimistic (pessimistic) in the following period.
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be used to estimate the conditional density ft+h,t without imposing any

parametric form on Fη,h. To the best of our knowledge, no other work has

fully exploited this framework.

Finally, given a family of estimated conditional quantile functions, it is

straightforward to estimate the conditional density of the target variable

through the formula (see Koenker, 2005):

f̂t+h,t =
(τ i − τ i−1)

Q̂yt+h (τ i | Ft)− Q̂yt+h (τ i−1 | Ft)
.

The conditional densities can also be estimated (for instance) by the

Epanechnikov kernel, which is a weighting function that determines the

shape of the bumps. We prefer the latter because it generates smooth den-

sities, especially when the time series sample size is short, which is going to

be the case in our empirical analysis presented in section 3.

So far we proposed a quantile method to estimate the conditional den-

sity ft+h,t but it is natural now to discuss some forms of evaluating such

a method. A conventional procedure for testing distributional assumptions

is the Kolmogorov test. Diebold, Gunther, and Tay (1998) were the first

ones to propose a framework for evaluating density forecasts based on Kol-

mogorov tests for conditional distribution in time series. However, they did

not consider the effect of parameter estimation on the critical values. In-

deed, it is well known that when parameters are estimated, the Kolmogorov

test is not asymptotically distribution free (see Durbin, 1973). This means

that different critical values are needed for different distributions and for

different parameter values.
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Bai (2003) considered a solution to the above problem by using a mar-

tingale transformation approach, proposed by Khmaladze (1981), to derive

an asymptotically distribution-free test. Bai established consistency of the

test for any location-scale model such as GARCH and IGARCH. Since our

quantile method for density forecasting is based on the fact that Fη,h is un-

known, we need a version of the Kolmogorov test that is robust not only

against parameter estimation but also against uncertainty caused by the

presence of unknown distribution function. Fortunately, Koenker and Xiao

(2002) developed a general Kolmogorov test in which the functional form of

Fη,h does not need to be specified under the null hypothesis. It is, therefore,

possible to test the null that the true conditional density ft+h,t can be gen-

erated by a specific quantile process. In addition to the Kolmogorov test,

we can also apply the specification test recently developed by Gaglianone,

Lima, Linton, and Smith (2011) to evaluate the out-of-sample performance

of the proposed quantile method.
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3 An Empirical Illustration: Forecasting the Den-

sity of the US Unemployment Rate.

In this section, we illustrate our methodology by using the US unemployment

rate yt (quarterly data), and a set of individual forecasts from the Survey

of Professional Forecasters (SPF).4 The sample considered in this paper

covers the period 1969.Q1 until 2010.Q3 (167 time series observations). For

each sample period, we observe the actual unemployment rate as well as the

median (ŷmedt+h,t) and the average forecasts (ŷ
aver
t+h,t) for the unemployment rate

at period t+h that were computed using the information available at period

t. Here, h ranges from 1 to 4, meaning that in the third quarter of 2010

(i.e. 2010.Q3) we would have observed the actual unemployment rate for

2010.Q3 as well as the median and average forecasts for 2010.Q4, 2011.Q1,

2011.Q2 and 2011.Q3. We follow the previous literature (i.e., Figlewski,1983,

Figlewski and Urich,1983, and Capistrán and Timmermann, 2009) and use

the average forecast as our approximation of the consensus forecast, Ct+h,t5.

Figure 1 confirms the existence of disagreement among individual forecasts

(gray marks) and shows that the average (consensus) forecast (black dots)

is able to track down the changes in the market expectations.

4Forecasts for the quarterly average unemployment rate (seasonally adjusted, percentage
points).

5Results based on the median forecast are close to the ones obtained using the average forecast
and are available upon request. Unlike the mean, the median has the property to be robust against
outliers.
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Figure 1 - Individual (and average) forecasts

for the US unemployment rate {ŷit+4,t; ŷavert+4,t}

Since our sample ends in 2010.Q3, we will make density forecasts for the

first four quarters out of our sample, that is: 2010.Q4, 2011.Q1, 2011.Q2,

and 2011.Q3. According to our approach, we should follow the following

steps:

Step 1. Estimate the quantile regression (7) by using the one-step-ahead

average forecast ŷavert+1,t as covariate, yt+1 as dependent variable, and sample

t =1969.Q1 ,..., 2010.Q3. In other words, we choose α0(τ) and α1 (τ) that

solves the following problem

min
(α0,α1)∈R2

2010.Q3∑
t=1969.Q1

ρτ
(
yt+1 − α0 − α1ŷavert+1,t

)
, (8)

where ρτ (u) = u (τ − I (u < 0)). This is the quantile regression opti-

mization problem developed by Koenker and Basset (1978).

The estimated quantile function obtained from solving problem (8) is

equal to

Q̂yt+1 (τ | Ft) = α̂0(τ) + α̂1 (τ) ŷ
aver
t+1,t (9)
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Step 2: Use (9) to forecast the quantiles of the unemployment rate at

2010.Q4 by just evaluating (9) at the last observation of ŷavert+1,t, that is,

compute

Q̂y2010.Q4 (τ | F2010.Q3) = α̂0(τ) + α̂1 (τ) ŷ
aver
2010.Q4,2010.Q3,

for various τ ∈ (0, 1).

Step 3: Construct the density forecast of the unemployment rate at

2010.Q4 by using the quantile interpolating methods suggested in the pre-

vious section. Here, we particularly use the Epanechnikov kernel because

it generates smooth densities, especially when the time series sample size is

short, which is the case in our empirical analysis. The forecast of densities

for longer horizons (i.e., h > 1) can be generated in a similar way except

that we have to replace in (9) the regressand yt+1 and the regressor yavert+1,t

by yt+h and ŷavert+h,t respectively. The quantile functions are estimated for τ

ranging from 0.05 to 0.95.

All the results from the proposed quantile method will be compared

to the ones from a benchmark model. To motivate such a comparison we

chose a model that presents some similarities to the location scale model

(3), but also differs in some relevant aspects. In other words, we keep

the conditional mean equal to α0 + α1Ct+h,t but we now assume that the

distribution function is symmetric and known so that the benchmark model

can no longer capture the increased risk of a higher unemployment rate in the

US economy. If such an upside risk is an important feature exhibited by the

data, then the model that fails to capture it should be rejected empirically.
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Given a known parametric form of the distribution function, a specifi-

cation test can be carried out using the Kolmogorov test proposed by Bai

(2003) which is robust against parameter estimation. For the special case of

GARCH models with Gaussian innovations, Bai (2003) provides the func-

tional form of the transforming functions used to compute the test statis-

tic. For these reasons, we considered the following benchmark GARCH(1,1)

model

yt+h = α0 + α1Ct+h,t + σt+hεt+h (10)

εt+h ∼ i.i.d.N (0, 1) ,

where σ2t+h = β0+β1σ
2
t+h−1+ γ (yt+h−1 − α0 − α1Ct+h−1,t−1)

2, and εt+h =

σ−1t+h(yt+h−α0−α1Ct+h,t)6. The parameters are assumed to satisfy β0 > 0,

γ ≥ 0, β1 ≥ 0, and (β1 + γ) < 1. Notice that (10) is a location scale

model with location parameter given by α0 + α1Ct+h,t and with the con-

sensus forecast affecting the scale of the distribution through the term

γ (σt+h−1εt+h−1)
2. Moreover, the distribution function is assumed to be

known and symmetric about the mean whereas it is unknown in model

(3). Thus, we want to investigate whether this forecasting method based

on parametric assumptions of the distribution function can be supported by

the data. In order to do so, we use (10) to estimate the conditional quantiles

Qyt+h (τ | Ft) for τ ranging from 0.05 to 0.95 and the density is constructed

using the same interpolation method of section 2.

6The Gaussian maximum likelihood method is used to estimate the parameters of this model.
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The conditional densities computed using models (3) and (10) appear in

panels 1 and 2 of figure 2, respectively. Notice that the shape of the condi-

tional densities computed using the location-scale model (3) does not seem to

match up with the one from a normal distribution, especially for longer fore-

cast horizons. Indeed, unlike the standard parametric approach currently

adopted in practice, the quantile regression setup allows us to forecast the

density without relying on the normality assumption. In this sense, the re-

sulting density forecast is far from normal and is therefore able to reflect

the current increased risk of a higher unemployment rate in the US econ-

omy provoked by the recent subprime crisis. Panel 2 shows the conditional

density computed using the Gaussian GARCH (1,1) model. Compared to

the density in panel 1, it is clear that the GARCH(1,1) model is unable to

capture the increased risk of a higher unemployment rate for the 2011.Q1,

2011.Q2 and 2011.Q3 periods.
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Figure 2 - Density forecast of the US unemployment rate

conditional at SPF average forecasts

Panel 1: Location Scale Model
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Note: The conditional densities are generated by the Epanechnikov kernel.
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Given the conditional density f̂t+h,t, we can compute the probability that

the unemployment rate will exceed a given level, which might be a useful

tool for making decisions on relevant macroeconomic policies. For exam-

ple, the current economic crisis severely affected the unemployment rate in

the USA, raising it to more than 10% in the last quarter of 2009 and to

more than 9% during the first three quarters of 2010. Thus, a policy maker

might be interested to forecast the probability that the unemployment rate

will surpass say 10% or 9% in the near future. The consensus forecast says

nothing at all about the conditional density of yt+h, which is the relevant

information needed to answer such questions. Table 1 reports the average

forecast from SPF, the bias-adjusted average forecast proposed by Capistrán

and Timmermann (2009), the median conditional quantile obtained by eval-

uating (7) at τ = 0.5, as well as the forecast of an unemployment rate greater

than 10% and 9%, respectively. All the point and probability forecasts are

for the periods 2010.Q4, 2011.Q1, 2011.Q2, and 2011.Q3. The same median

and probability forecasts were also computed using the GARCH(1,1) model

and are displayed in the last 3 columns of table 1.

There are many interesting results we can derive from Table 1. First,

the forecasts obtained from the proposed location scale model (3) indicate

that the US economy will recover very slowly from the current economic

crisis. Indeed, columns 6 and 7 of table 1 shows that the probability that

the unemployment rate will be above 9% and 10% in the near future is di-

minishing over time although the probability of a higher than 9% rate is still

quite large (44%) at 2011.Q3. Second, the conditional mean of f̂t+h,t (fourth

column) is greater than its conditional median (fifth column), confirming the
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right-skewness of f̂t+h,t reported in Figures 2, and consequently the presence

of an increased risk of a higher unemployment rate in the United States. If

we assume that the 10% rate is an indicator of economic recession, then the

risk of a double-dip recession in the near future is not negligible, although it

is going down to 15% in 2011.Q3 (seventh column of table 1). Third, since

all point forecasts (columns 3, 4 and 5) are lower than 10% for all out-of-

sample periods, one could be misled to conclude that the probability that

the unemployment rate will exceed 10% in the near future is close to zero.

Finally, columns 8, 9 and 10 show that the GARCH(1,1) fails to predict

the high (although decreasing) probability that the unemployment rate will

remain above 9% by the third quarter of 2011 and it also fails to predict

the existence of a non-negligible probability of an above 10% rate. Thus,

the benchmark model seems to fail to predict the increased risk of a higher

unemployment rate in the near future.

In sum, the point forecasts are just estimates of the location parameter

of f̂t+h,t and therefore cannot say much about either the increased risk of

high unemployment rates or the low recovery pace of the US economy. The

methodology developed in this paper shows, however, that the consensus

(average) forecast, when used as a common factor of all individual forecasts,

can be very useful for computing the conditional density of yt+h without

imposing any assumption on the parametric form of the conditional distri-

bution. This is useful to recover an important piece of missing information

from the data. We suggest that this piece of information can be relevant for

the design of macroeconomic policies that aim to avoid the negative effects

of an extreme economic crisis.
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Table 1 - SPF average forecast, the bias-adjusted mean forecast,

the quantile regression-based median and probability forecasts, and

the GARCH(1,1)-based median and probability forecasts.

Period
Observed

unemployment
rate (%)

SPF
average
forecast

(%)

Biasadjusted
mean

forecast

Median
conditional

quantile (%)

Prob.

(unp>9%)

Prob.

(unp>10%)

GARCH(1,1)
median
forecast

Prob.

(unp>9%)

Prob.

(unp>10%)
2010.Q2 9.70        
2010.Q3 9.57        
2010.Q4  9.55 9.53 9.49 84% 25% 9.56 98% 6%
2011.Q1  9.39 9.37 9.23 66% 23% 9.11 61% 1%
2011.Q2  9.21 9.16 9.14 56% 19% 8.95 47% 7%
2011.Q3  9.02 8.92 8.77 44% 15% 8.63 36% 9%

So far, we have interpreted the above results without a proper evalua-

tion of the accuracy of our estimates. Our first concern regards the choice

of the location-scale model (3). This choice, in turn, affects the specification

of the quantile regression (7) that is used to estimate the density ft+h,t. If

the model (3) is misspecified, then the estimated density f̂t+h,t would not

be a correct approximation of the true unknown density ft+h,t. Robust in-

ference on quantile regression models can be carried out by using the test

developed by Koenker and Xiao (2002). It is, therefore, possible to test the

null hypothesis that the true conditional density ft+h,t can be generated by

a specific quantile process as, for example, the location-scale model (3). It

is also important to recall that conventional procedures for testing density

forecasts as the one proposed by Diebold, Gunther, and Tay (1998) and Bai

(2003) are not robust against uncertainty caused by both parameter estima-

tion and unknown distribution function. The robustness of the Koenker and

Xiao test is based on the simple fact that what can be done for tests based

on the parametric empirical process (as the Kolmogorov tests) can also be

adapted for tests based on the parametric empirical quantile process, which
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renders robustness against parameter estimation via the Khmaladze trans-

formation (as in the Bai test), and robustness against unknown distribution

functions via quantile regression estimation.

Our results have indicated the presence of an upside risk in the US un-

employment rate. Thus, we should expect that a model that fails to capture

such a risk should be rejected empirically. Table 2 reports the test statistics

of the Koenker-Xiao (2002) and Bai (2003) tests applied to the location scale

and benchmark GARCH (1,1) models, respectively.7 According to table 2,

the null hypothesis of location-scale model (3) cannot be rejected against

a more general quantile process, using the entire sample size from 1969.Q1

to 2010.Q3. This implies that the probability forecasts in Table 1 obtained

from model (3) are accurate approximations of the true probability. It also

shows that the null hypothesis of correct specification of the benchmark

GARCH(1,1) model with Gaussian innovations is rejected at 5% level of

significance for all forecasting horizons h, suggesting that the density fore-

cast obtained from such a model does not correctly approximate the true

one.

Table 2 - Koenker-Xiao (2002) and Bai (2003) Test Statistics.

horizons Koenker-Xiao Bai

h=1 0.15 3.01**

h=2 0.76 7.61**

h=3 0.97 3.20**

h=4 0.67 2.62**

Note: ** indicates rejection of the null at 5% of significance

7The Koenker and Xiao test is equivalent to Bai test when the distribution function is known.
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The above results lead us to conclude that the quantile regression based

approach proposed in this paper performs very well in generating a con-

ditional density that is close to the true one ft+h,t. Given the fact that

our quantile approach is quite general, in the sense that we do not need to

assume a parametric form for the distribution function Fη,h, and it is also

easy to implement, we believe that the computation of a density forecast no

longer needs to be considered a complex econometric exercise.

Now we turn to the out-of-sample forecast exercise. In this case, one

rejects a given forecasting model based on its out-of-sample performance.

Under the MSE loss function the optimal forecast is the conditional mean,

and a simple test of out-of-sample performance could be based on the fol-

lowing linear regression

yt+h = α0 + α1ŷ
i
t+h,t + et+h (11)

E [et+h|Ft] = 0.

From equation (11) we have that E [yt+h|Ft] = α0 + α1ŷ
i
t+h,t and there-

fore the null hypothesis of optimality (under the MSE loss) of the model that

generated ŷit+h,t can be tested through the coeffi cient restrictionsH0 : α0 = 0

and α1 = 1.

When we turn to investigate the out-of-sample performance of the model

used to forecast the conditional density, we need to evaluate the performance

of this model in predicting each quantile of the conditional density and not

just its mean. The fact that we can use a quantile model to estimate ft+h,t

allows us to give a value-at-risk model interpretation to (3). Thus, we can
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implement specification tests available in the risk-management literature to

evaluate the (pseudo) out-of-sample forecast performance of our location-

scale model. We use the Gaglianone, Lima, Linton and Smith (GLLS) test to

evaluate the out-of-sample performance of the location-scale model because

it has the advantage of exhibiting a good finite sample power against a

misspecified model. To construct our pseudo out-of-sample forecast, we

considered a sub-sample {yt+h;Ct+h,t}T
∗

t=1 where T
∗ = 90 is initially used to

estimate the quantile regression (7). Then we make h-step ahead forecasts

of the τ th conditional quantile based on FT ∗ by evaluating (7) at Ct+h,t =

CT ∗+h,T ∗ (the last observation of Ct+h,t in the sub-sample). For a given τ ,

the forecast quantile is called V aR (τ)T ∗+h,T ∗ , and we keep updating the

sample until T ∗ = T = 167 (full sample). For each new observation added

to the estimating sample, the quantile regressions (7) are re-estimated and

a new set of h-step ahead forecasts are calculated by using the same above

procedure. At the end, for a given τ , we end up with four time series

denoted by
{
V aR (τ)T ∗+h,T ∗

}167
T ∗=90

and h = 1, 2, 3, 4. The GLLS test is

implemented through the following quantile regressions using the pseudo

out-of-sample observations.

Qyt+h (τ |Ft) = β0 (τ) + β1 (τ)V aR (τ)t+h,t , (12)

t = T ∗ = 90, ..., 167 and h = 1, 2, 3, 4. (13)

The null hypothesis of correct specification of the location-scale model

at quantile level τ is given by H0 : β0 (τ) = 0 and β1 (τ) = 1, which implies

that Qyt+h (τ |Ft) = V aR (τ)t+h,t. Gaglianone, Lima, Linton and Smith
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(2011) conducted some monte-carlo simulations and concluded that for a

sample size as small as 250 observations, the GLLS test can be oversized

for τ as low as 0.01 and 0.05. This implies that our null hypothesis of

correct specification of the location scale model could be over-rejected at

extreme values of τ and small sample sizes. Since we only have 77 out-

of-sample observations, we can avoid this size-distortion problem on the

GLLS test by moving away from extreme values of τ . For this reason, we

considered τ = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70 and 0.80. Table 3 shows p-

values of the GLLS test applied to both models for forecasting horizons

h = 1, 2, 3 and 4, with the p-values of the GARCH (1,1) model appearing

within the parenthesis.

Table 3 - The GLLS Test (p-values)

τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

h = 1
0.64

(0.00)

0.34

(0.06)

0.44

(0.09)

0.94

(0.41)

0.81

(0.01)

0.99

(0.00)

0.76

(0.60)

h = 2
0.25

(0.00)

0.46

(0.00)

0.78

(0.00)

0.97

(0.15)

0.65

(0.14)

0.98

(0.24)

0.62

(0.98)

h = 3
0.19

(0.00)

0.48

(0.06)

0.72

(0.05)

0.73

(0.01)

0.59

(0.03)

0.25

(0.22)

0.90

(0.00)

h = 4
0.73

(0.60)

0.45

(0.07)

0.56

(0.71)

0.35

(0.24)

0.17

(0.00)

0.45

(0.00)

0.68

(0.06)

The results in Table 3 indicate that, for a 5% test, the quantile regression

specification (7), which is derived from the location scale model (3), yields

forecasts of conditional quantiles of yt+h, V aR (τ)t+h,t, that are statistically
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close to the conditional quantiles of yt+h, Qyt+h (τ |Ft) at the out-of-sample

period. This guarantees out-of-sample optimality of the location scale model

at the chosen τ ′s and complements the results from Table 2 regarding the use

of the quantile regression-based method proposed in this paper to forecast

densities. On the other hand, the GARCH(1,1) model fails to predict almost

50% of the suggested conditional quantiles.

Our last concern regarding the use of quantile regression to produce

predictive densities is about the presence of "crossings" of the conditional

quantile functions (see Koenker 2005, p. 56). He (1997) pointed out that

the crossing problem occurs more frequently in multiple-variable regressions.

In this sense, we should not expect crossing to be an issue in our empirical

results because they are based on estimates from single-variable regressions.

Nonetheless, we considered a robustness check and re-estimated the quantile

regressions (7) by using the robust method proposed by He (1997).8 We

forecast the probabilities of the unemployment rate to surpass 9% and 10%

by using the He’s method and the results are presented in Table 4 along

with the probability forecasts displayed in Table 1.

Table 4 - Comparison between quantile regression probability forecasts

(unrestricted and restricted estimation)

Period
Median

conditional
quantile (%)

Prob.

(unp>9%)

Prob.

(unp>10%)

He (1997)'s
estimation

Prob. (unp>9%)

He (1997)'s
estimation

Prob. (unp>10%)
2010.Q4 9.49 84% 25% 83% 24%
2011.Q1 9.23 66% 23% 67% 23%
2011.Q2 9.14 56% 19% 56% 20%
2011.Q3 8.77 44% 15% 44% 17%

8For a location-scale model, Chernozhukov et al. (2010) recognize that the method
proposed by He (1997) avoids crossings of the estimated quantile functions.
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Table 4 shows that the robust restricted quantile regression method pro-

posed by He (1997) produces probability forecasts that are very similar to

the ones computed by using the unrestricted quantile regression method of

Koenker and Basset (1978). This confirms our analysis in which crossing is

not supposed to be a problem in single-variable quantile regressions, which

comes out as an additional advantage of the density forecasting method

proposed in this paper.

4 Conclusion

This paper proposed a semiparametric approach for forecasting the condi-

tional density of a time series process yt+h. It was showed that individual

optimal forecasts have a common factor which is represented by the consen-

sus forecast. From a statistical point of view, this common factor framework

allows us to define any conditional quantile of yt+h as an affi ne function of

the average forecast.

The methodology developed in this paper provides a simple and effi cient

way to estimate the uncertainty behind an economic forecast, and therefore

can be useful in identifying the correct economic policy under different cir-

cumstances. Perhaps most importantly, our approach is applicable under a

wide variety of structures, since it does not depend on the underlying model

used to generate the consensus forecast and does not require knowledge of

the parametric form of the conditional distribution function. Given this

semiparametric approach, we were able to make h-step-ahead forecasts of

any quantile of yt+h and, therefore, forecast the entire density.
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We illustrated the applicability of this method by analyzing forecasts on

the US unemployment rate during the time period that includes the sub-

prime economic crisis. Our results indicate that the US economy is expected

to have a slow recovery from the current economic crisis and that the risk

of double-dip recession in the near future is not negligible, although it has

been going down over time. In order to validate the estimates presented in

this paper, we used the test for quantile regression inference developed by

Koenker and Xiao (2002). The results suggested that the density forecast

obtained by using the proposed quantile approach is statistically close to

the true density ft+h,t.

Although the proposed methodology has several appealing properties,

it should be viewed as complementary to existing approaches rather than

competing with them. An empirical comparison in which the quantile ap-

proach proposed in this paper is implemented with survey factors as well

as estimated factors from observable economic variables would be very in-

teresting. In the latter, we would have to take a stand on which particular

variables agents use to compute their forecasts, a decision that, in practice,

would lead us to consider a dynamic factor model with principal component

analysis plus a subsidiary model to compute iterated forecasts. Although

more complicated than the approach based on survey factors, the structural

approach has the advantage of being general enough to allow counterfactual

exercises. The first step towards this type of analysis has recently been taken

by De Nicolò and Lucchetta (2010) who proposed new measures of systemic

risk by estimating quantile models with estimates of factors as conditioning

variables. Furthermore, several important topics remain open for future re-
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search, such as: (i) the linear representation of the DGP is something that

could be relaxed in future research; (ii) nonlinear dynamics across quantiles

should also be explored; (iii) forecasts of counterfactual distributions using

data from experimental economics (lab or field) in which the effect of eco-

nomics incentives from forecast users on the behavior of economic forecasters

can be investigated.

Appendix

Proof of Proposition 1. The proof is similar to the one shown by Granger

(1969), Christoffersen and Diebold (1997) and Patton and Timmermann

(2007) in the first part of their proposition 2. Thus, by homogeneity of the

loss function and DGP (3) we have that:

ŷit+h,t =
arg min

ŷ

∫
Li(y − ŷ)dFt+h,t(y)

arg min

ŷ

∫ [
g

(
1

X ′t+h,tγ

)]−1
Li

(
1

X ′t+h,tγ
(y − ŷ)

)
dFt+h,t(y)

=
arg min

ŷ

∫ [
g

(
1

(γ0 + γ1Ct+h,t)

)]−1
Li
(

1

(γ0 + γ1Ct+h,t)
(y − ŷ)

)
dFt+h,t(y)

=
arg min

ŷ

∫
Li
(

1

(γ0 + γ1Ct+h,t)
(y − ŷ)

)
dFt+h,t(y)

=
arg min

ŷ

∫
Li
(

1

(γ0 + γ1Ct+h,t)

(
α0 + α1Ct+h,t + γ0ηt+h + γ1Ct+h,tηt+h − ŷ

))
dFt+h,t(y).

Let us represent a forecast by α0+α1Ct+h,t+(γ0 + γ1Ct+h,t) γ̂t+h,t. This
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way, it follows that:

ŷit+h,t = α0 + α1Ct+h,t + (γ0 + γ1Ct+h,t) ·
arg min

γ̂

∫
Li
(

1

(γ0 + γ1Ct+h,t)
(α0 + α1Ct+h,t

+(γ0 + γ1Ct+h,t) ηt+h − α0 − α1Ct+h,t − (γ0 + γ1Ct+h,t) γ̂))dFη,h(η)

= α0 + α1Ct+h,t + (γ0 + γ1Ct+h,t) ·
arg min

γ̂

∫
Li
(
ηt+h − γ̂

)
dFη,h(η)

= α0 + γ0γ
i
h + α1Ct+h,t + γ1Ct+h,tγ

i
h

= α0(τ i) + α1(τ i)Ct+h,t where α0(τ i) =
(
α0 + γ0γ

i
h

)
and α1(τ i) = (α1 + γ1γ

i
h),

in which we have used the fact that Fη,h(η) is time-invariant by definition.
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