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Abstract

In this paper, we propose a novel approach to econometric forecast-

ing of stationary and ergodic time series within a panel-data frame-

work. Our key element is to employ the bias-corrected average fore-

�We are especially grateful for the comments and suggestions given by Marcelo Fernan-

des, Antonio Galvão, Wagner Gaglianone, Ra¤aella Giacomini, Clive Granger, Marcelo

Medeiros, Marcelo Moreira, Zhijie Xiao, and Hal White. We also bene�ted from com-

ments given by the participants of the conference �Econometrics in Rio.�We thank Wag-

ner Gaglianone and Claudia Rodrigues for research assistance and gratefully acknowledge

support given by CNPq-Brazil, CAPES, and Pronex. João Victor Issler thanks the hos-

pitality of the Rady School of Management, and the Department of Economics of UCSD,

where parts of this paper were written. Both authors thank the hospitality of University

of Illinois, where the �nal revision was writen. The usual disclaimer applies.
yCorresponding Author.

1



cast. Using panel-data sequential asymptotics we show that it is po-

tentially superior to other techniques in several contexts. In particular,

it delivers a zero-limiting mean-squared error if the number of fore-

casts and the number of post-sample time periods is su¢ ciently large.

We also develop a zero-mean test for the average bias. Monte-Carlo

simulations are conducted to evaluate the performance of this new

technique in �nite samples. An empirical exercise, based upon data

from well known surveys is also presented. Overall, these results show

promise for the bias-corrected average forecast.

Keywords: Common Features, Panel-Data Econometrics.
J.E.L. Codes: C32, C33, E21, E44, G12.

1 Introduction

Bates and Granger(1969) made the econometric profession aware of the bene-

�ts of forecast combination when a limited number of forecasts is considered.

The widespread use of di¤erent combination techniques has lead to an inter-

esting puzzle from the econometrics point of view �the well known forecast

combination puzzle: if we consider a �xed number of forecasts (N <1),
combining them using equal weights (1=N) fare better than using �optimal

weights�constructed to outperform any other forecast combination.

Regardless of how one combine forecasts, if the series being forecast is

stationary and ergodic, and there is enough diversi�cation among forecasts,

we should expect that a weak law-of-large-numbers (WLLN) applies to well-

behaved forecast combinations. Indeed, Timmermann(2006) uses �nancial-

economic arguments based upon risk diversi�cation to defend the idea of

pooling of forecasts. This motivates labeling it �a �nancial approach to eco-

nomic forecasts,�since it is based on a principle so keen on �nance; see, e.g.,

Ross (1976), Chamberlain and Rothschild (1983), and Connor and Korajzcyk

(1986, 1993). Of course, to obtain this WLLN result, the number of fore-

casts has to diverge (N !1), which entails the use of asymptotic panel-data
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techniques. In our view, one of the reasons why pooling forecasts has not

yet been given a full asymptotic treatment is that forecasting is frequently

thought to be a time-series experiment, not a panel-data experiment. As far

as we know, despite its obvious bene�ts, there has been no work where the

pooling forecasts was considered in a panel-data context, with the number

of forecasts (N) and time-series observations (T ) diverging without bounds.

In this paper, we propose a novel approach to econometric forecasting

of stationary and ergodic series within a panel-data framework. First, we

decompose individual forecasts into three components: the series being fore-

cast, a time-invariant forecast bias, and a zero-mean forecast error. We show

that the series being forecast is a common feature of all individual forecasts;

see Engle and Kozicki(1993). Second, when N; T ! 1, and we use stan-
dard tools from panel-data asymptotic theory, we show that the pooling of

forecasts delivers optimal limiting forecasts in the sense that they have a

zero mean-squared error. The key element of this result is the use of the

bias-corrected average forecast �equal weights in combining forecasts cou-

pled with a bias-correction term. The use of equal weights avoids estimating

forecast weights, which contributes to reduce forecast variance, although po-

tentially at the cost of an increase in bias. The use of a bias-correction term

eliminates any possible detrimental e¤ect arising from equal weighting. One

important element of our technique is to use the forecast combination puzzle

to our advantage, but now in an asymptotic context.

The use of the bias-corrected average forecast is a parsimonious choice in

forecasting that delivers optimal forecasts in a mean-squared error sense �

zero limiting mean-squared error. The only parameter we need to estimate

is the mean bias, which requires the use the sequential asymptotic approach

developed by Phillips and Moon (1999). Indeed, the only way we could

increase parsimony in our framework is by doing without any bias correction.

To test the usefulness of performing bias correction, we developed a zero-

mean test for the average bias which draws upon the work of Conley (1999)

on random �elds.
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Despite the lack of panel-data work on the pooling of forecasts, there has

been panel-data research on forecasting focusing on pooling of information;

see Stock and Watson (1999 and 2002a and b) and Forni et al. (2000, 2003).

There, asymptotic theory was not used to pool forecasts, but information.

The former is related to forecast combination and operates a reduction on

the space of forecasts. The latter operates a reduction on a set of highly

correlated regressors. In principle, forecasting can bene�t from the use of

both procedures. However, the payo¤of pooling forecasts is greater than that

of pooling information: while pooling information delivers optimal forecasts

in the mean-squared error sense (Stock and Watson), it cannot drive the

mean-squared forecast error to zero as the pooling of forecasts can.

One important element of our technique is the introduction of a bias-

correction term. If a WLLN applies to a equal-weight forecast combination,

we cannot guarantee a non-zero mean-squared error in forecasting, since the

limit average bias of all forecasts may be non-zero. In this context, one inter-

esting question that can be asked is the following: why are forecasts biased?

From an economic standpoint, Laster, Bennett and Geoum (1999) show that

professional forecasters behave strategically (i.e., they bias forecasts) if their

payo¤s depend mostly on publicity from the forecasts than from forecast-

accuracy itself. Since one way to generate publicity is to deviate from a

consensus (average) forecast, rewarding publicity may induce bias. From an

econometric point of view, Patton and Timmermann (2006) consider an addi-

tional reason for the existence of bias in forecasts: what may look like forecast

bias under a speci�c loss function may be just the consequence of the fore-

caster using a di¤erent loss function in producing the forecast1. Hoogstrate,

Palm and Pfann (2000) show that pooling cross-sectional slopes can help

in forecasting. One of the potential reasons why this procedure works in

practice is that only cross-sectional slopes are pooled, not individual e¤ects,

showing that the latter may be working as a bias-correction device. A �nal

1Also, Clements and Hendry�s (1999) work on intercept correction can be viewed as a

study of bias.
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reason for bias in forecasts is non-stationarity of the variable being forecast

or of a subset of the conditioning variables. This is explored by Hendry and

Clements (2002) and Clements and Hendry (2006).

Given that important forecast studies are motivated by bias in forecast-

ing, it seems desirable to build a forecasting device that incorporates bias

correction. We view the introduction of the bias-corrected average forecast

as one of the original contributions of this paper. The way we estimate the

bias-correction term relies on the use of a forecast-speci�c component to cap-

ture the bias in individual forecasts. Of course, this can only be fully studied

asymptotically within a panel-data framework, which reinforces our initial

choice of approach.

The ideas in this paper are related to research done in two di¤erent �elds.

From econometrics, it is related to the common-features literature after En-

gle and Kozicki (1993). Indeed, we attempt to bridge the gap between a

large literature on common features applied to macroeconomics, e.g., Vahid

and Engle (1993, 1997), Issler and Vahid (2001, 2006) and Vahid and Issler

(2002), and the econometrics literature on forecasting related to common

factors, forecast combination, bias correction, and structural breaks, per-

haps best represented by the work of Bates and Granger (1969), Granger

and Ramanathan(1984), Forni et al. (2000, 2003), Hendry and Clements

(2002), Stock and Watson (2002a and b), Elliott and Timmermann (2003,

2004, 2005), and, more recently, by the excellent surveys of Clements and

Hendry (2006), Stock and Watson (2006), and Timmermann (2006) � all

contained in Elliott, Granger and Timmermann (2006). From �nance and

econometrics, our approach is related to the work on factor analysis when the

number of assets is large, to recent work on panel-data asymptotics, and to

panel-data methods focusing on �nancial applications, perhaps best exempli-

�ed by the work of Ross (1976), Chamberlain and Rothschild (1983), Connor

and Korajzcyk (1986, 1993), Phillips and Moon (1999), Bai and Ng (2002,

2004), Bai (2005), and Pesaran (2005), and Araujo, Issler and Fernandes

(2006).
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The rest of the paper is divided as follows. Section 2 presents our main

results and the assumptions needed to derive them. Proofs are presented in

the Appendix. Section 3 presents the results of a Monte-Carlo experiment.

Section 4 presents an empirical analysis using the methods proposed here,

confronting the performance of our bias-corrected average forecast with that

of other types of forecast combination. Section 5 concludes.

2 Econometric Setup and Main Results

Suppose that we are interested in forecasting a weakly stationary and ergodic

univariate process fytg using a large number of forecasts that will be com-
bined to yield an optimal forecast in the mean-squared error (MSE) sense.

These forecasts could be the result of using several econometric models that

need to be estimated prior to forecasting, or the result of using no formal

econometric model at all, e.g., just the result of an opinion poll on the vari-

able in question using a large number of individual responses. We can also

imagine that some (or all) of these poll responses are generated using econo-

metric models, but then the econometrician that observes these forecasts has

no knowledge of them.

We consider 3 consecutive distinct time periods, where time is indexed

by t = 1; 2; : : : ; T1; : : : ; T2; : : : ; T . The period from t = 1; 2; : : : ; T1 is labeled

the �estimation sample,�where models are usually �tted to forecast yt, if

that is the case. The period from t = T1 + 1; : : : ; T2 is labeled the post-

model-estimation or �training sample�, where realizations of yt are usually

confronted with forecasts produced in the estimation sample, if that is the

case. The �nal period is t = T2 + 1; : : : ; T , where genuine out-of-sample

forecasting is entertained, bene�ting from the results obtained during the

training sample. In what follows, we let T2 ! 1. In order to guarantee
that the number of observations in the training sample will go to in�nity at

rate T , we let T1 be O (1). Hence, asymptotic results will not hold for the

estimation sample.
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Regardless of whether forecasts are the result of a poll or of the esti-

mation of an econometric model, we label forecasts of yt, computed using

conditioning sets lagged h periods, by fhi;t, i = 1; 2; : : : ; N . Therefore, f
h
i;t are

h-step-ahead forecasts and N is either the number of models estimated to

forecast yt or the number of respondents of an opinion poll regarding yt.

West (1996) considers only two consecutive periods. The �rst has R

data points are used to estimate models (R stands for regression), and the

subsequent P data points are used for prediction. As opposed to West, in the

case we have to estimate econometric models, we need 3 consecutive periods

because we have two estimation periods. In the �rst we estimate models and

in second these models are used to estimate a bias-correction term. Therefore,

only in the third period genuine out-of-sample forecasting is entertained. In

the case of surveys, since we do not have to estimate models, our setup is

equivalent to that of West. Indeed, in his setup, R;P !1 as T !1, and
lim
T!1

R=P = � 2 [0;1]. Here, R = T2 � T1 and P = T � T2, apart from
irrelevant constants. Therefore,

� = lim
T!1

R=P = lim
T!1

T2 � T1
T � T2

= lim
T!1

T2=T � T1=T
1� T2=T

=
�

1� �; where 0 < � < 1:

Hence, in our setup, � 2 (0;1) instead of as in West2. In what follows, to
make our notation similar to that of West, we denote by R the number of

observations in the training sample and by P the number of observations in

the out-of-sample period.

In our setup, we also let N go to in�nity, which raises the question of

whether this is plausible in our context. On the one hand, if forecasts are

the result of estimating econometric models, they will di¤er across i if they

are either based upon di¤erent conditioning sets or upon di¤erent functional

forms of the conditioning set (or both). Since there is an in�nite number

2To inlcude the supports of � 2 [0;1] we must, asymptotically, give up having either
a training sample or a genuine out-of-sample period.
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of functional forms that could be entertained for forecasting, this gives an

in�nite number of possible forecasts. On the other hand, if forecasts are the

result of a survey, although the number of responses is bounded from above,

for all practical purposes, if a large enough number of responses is obtained,

then the behavior of forecast combinations will be very close to the limiting

behavior when N !1.
Recall that, if we are interested in forecasting yt, stationary and ergodic,

using information up to h periods prior to t, then, under a MSE loss function,

the optimal forecast is the conditional expectation using information avail-

able up to t� h: Et�h (yt). Using this well-known optimality result, Hendry
and Clements (2002) argue that, the fact that the simple forecast average

1
N

NX
i=1

fhi;t consistently outperforms individual forecasts f
h
i;t, shows the profes-

sion�s inability to approximate Et�h (yt) reasonably well. With this motiva-
tion, our setup writes the fhi;t�s as approximations to the optimal forecast as

follows:

fhi;t = Et�h (yt) + ki + "i;t, (1)

where ki is the individual model time-invariant bias and "i;t is the indivual

model error term in approximating Et�h (yt). Here, the optimal forecast is
a common feature of all individual forecasts3. We can always decompose

the series yt into Et�h (yt) and an unforecastable componenet �t, such that
Et�h (�t) = 0 in:

yt = Et�h (yt) + �t. (2)

Combining (1) and (2) yields,

fhi;t = yt � �t + ki + "i;t, or,
fhi;t = yt + ki + �t + "i;t, where, �t = ��t: (3)

3If an individual forecast is the conditional expectation Et�h (yt), then ki = "i;t = 0.

Notice that this implies that its MSE is smaller than that of 1
N

NX
i=1

fhi;t, something that is

rarely seen in practice when a large number of forecasts are considered.
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Equation (3) is indeed the well known two-way decomposition, or error-

component decomposition, of the forecast error fhi;t � yt:

fhi;t = yt + �i;t i = 1; 2; : : : ; N; t > T1; (4)

�i;t = ki + �t + "i;t.

It has been largerly used in econometrics dating back to Wallace and Hussein

(1969), Amemiya (1971), Fuller and Battese (1974); see also Baltagi (1984)

and Baltagi and Chang (1994) for a more recent setup. Davies and Lahiri

(1995) used a three-way decomposition to investigate forecast rationality for

the Survey of Professional Forecasts, within a panel-data context. As far as

we know, neither a two- nor a three-way decomposition were used in studying

the optimality of forecast combinations using panel-data asymptotics �the

focus of our paper.

By construction, our framework in (4) speci�es explict sources of forecast

errors that are found in both yt and fhi;t; see also the discussion in Davies

and Lahiri. The term ki is the time-invariant forecast bias of model i or of

respondent i. It captures the long-run e¤ect of forecast-bias of model i, or,

in the case of surveys, the time invariant bias introduced by respondent i.

Its source is fhi;t. The term �t arises because forecasters do not have future

information on y between t�h+1 and t. Hence, the source of �t is yt, and it
is an additive aggregate zero-mean shock a¤ecting equally all forecasts4. The

term "i;t captures all the remaining errors a¤ecting forecasts, such as those

of idiosyncratic nature and others that a¤ect some but not all the forecasts

(a group e¤ect). Its source is fhi;t.

From equation (4), we conclude that ki; "i;t and �t depend on the �xed

horizon h. Here, however, to simplify notation, we do not make explicit this

4Because it is a component of yt, and the forecast error is de�ned as fhi;t�yt, the forecast
error arising from lack of future information should have a negative sign in (4); see (3).

To eliminate this negative sign, we de�ned �t as the negative of this future-information

component.
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dependence on h. In our context, it makes sense to treat h as �xed and not as

an additional dimension to i and t. In doing that, we follow West (1996) and

the subsequent literature. As argued by Vahid and Issler (2002), forecasts are

usually constructed for a few short horizons, since, as the horizon increases,

the MSE in forecasting gets hopelessly large. Here, h will not vary as much

as i and t, especially because N; T !15.

From the prespective of combining forecasts, the components ki; "i;t and �t
play very di¤erent roles. If we regard the problem of forecast combination as

one aimed at diversifying risk, i.e., a �nance approach, then, on the one hand,

the risk associated with "i;t can be diversi�ed, while that associated with �t
cannot. On the other hand, in principle, diversifying the risk associated with

ki can only be achieved if a bias-correction term is introduced in the forecast

combination, which reinforces its usefulness.

We now list our set of assumptions.

Assumption 1 We assume that ki; "i;t and �t are independent of each other
for all i and t.

Independence is an algebraically convenient assumption used throughout

the literature on two-way decompositions; see Wallace and Hussein (1969)

and Fuller and Battese (1974) for example. At the cost of unnecessary com-

plexity, it could be relaxed to use orthogonal components, e.g., Baltagi (1980)

and the subsequent literature, something we avoid here.

Assumption 2 ki is an identically distributed random variable in the cross-

sectional dimension, but not necessarily independent, i.e.,

ki � i.d.(B; �2k); (5)
5Davies and Lahiri considered a three-way decomposition with h as an added dimension.

The foucs of their paper is forecast rationality. In their approach, �t and "i;t depend on h

but ki does not, the latter being critical to identify ki within their framework. Since, in

general, this restriction does not have to hold, our two-way decomposition is not nested

into their three-way decompostion. Indeed, in our approach, ki varies with h and it is

still identi�ed. We leave treatment of a varying horizon, within our framework, for future

research.
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where B and �2k are respectively the mean and variance of ki. In the

time-series dimension, ki has no variation, therefore, it is a �xed para-

meter.

The idea of dependence is consistent with the fact that forecasters learn

from each other by meeting, discussing, debating, etc. Through their ongo-

ing interactions, they maintain a current collective understanding of where

their target variable is most likely heading to and its upside and downside

risks. Given the assumption of identical distribution for ki, B represents the

market (or collective) bias. Since we focus on combining forecasts, a pure

idiosyncratic bias does not matter but a collective bias does. In principle, we

could allow for heterogeneity in the distribution of ki �means and variances

to di¤er across i. However, that will be a problem in testing the hypothesis

that forecast combinations are biased.

It is desirable to discuss the nature of the term ki, which is related to the

question of why we cannot focus solely on unbiased forecasts, for which ki =

0. The role of ki is to capture the long-run e¤ect, in the time dimension, of

the bias of econometric models of yt, or of the bias of respondent i. A relevant

question to ask is �why would forecasters introduce bias under MSE loss?

Laster, Bennett and Geoum (1999), Patton and Timmermann (2006), and

Batchelor (2007) list di¤erent arguments consistent with forecasters having

a loss function di¤erent from MSE. The argument applies for surveys and

for models as well, since a forecaster can use a model that is unbiased and

add a bias term to it. In the examples that follow, all forecasters employ

a combination of MSE loss and a secondary loss function. Bias is simply

a consequence of this secondary loss function and of the intensity in which

the forecaster cares for it. The �rst example is that of a bank selling an

investment fund. In this case, the bank�s forecast of the fund return may

be upward-biased simply because it may use this forecast as a marketing

strategy to attract new clients for that fund. Although the bank is penalized

by deviating from Et�h (yt), it also cares for selling the shares of its fund.
The second example introduces bias when there is a market for pessimism or
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optimism in forecasting. Forecasters may want to be labelled as optimists or

pessimists in a �branding�strategy to be experts on �worst-�or on �best-case

scenarios,�respectively. Batchelor lists governments as examples of experts

on the latter.

Assumption 3 The aggregate shock �t is a stationary and ergodic MA
process of order at most h� 1, with zero mean and variance �2� <1.

Since h is a bounded constant in our setup, �t is the result of a cumulation

of shocks to yt that occurred between t� h+ 1 and t. Being an MA (h� 1)
is a consequence of the wold representation for yt and of (2). If yt is already

an MA (�) process, of order smaller than h � 1, then, its order will be the
same of that of �t. In any case, it must be stressed that �t is unpredictable,

i.e., that Et�h (�t) = 0. This a consequence of (2) and of the law of iterated
expectations, simply showing that, from the perspective of the forecast hori-

zon h, unless the forecaster has superior information, the aggregate shock �t
cannot be predicted.

Assumption 4: Let "t = ("1;t; "2;t; ::: "N;t)
0 be a N � 1 vector stacking

the errors "i;t associated with all possible forecasts. Then, the vec-

tor process f"tg is assumed to be covariance-stationary and ergodic for
the �rst and second moments, uniformly on N . Further, de�ning as

�i;t = "i;t � Et�1 ("i;t), the innovation of "i;t, we assume that

lim
N!1

1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� = 0: (6)

Non-egordicity of "t would be a consequence of the forecasts fhi;t beyond ki.

Of course, forecasts that imply a non-ergodic "t could be discarded. Because

the forecasts are computed h-steps ahead, forecast errors "i;t can be serially

correlated. Assuming that "i;t is weakly stationary is a way of controlling

its time-series dependence. It does not rule out errors displaying conditional
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heteroskedasticity, since the latter can coexist with the assumption of weak

stationarity; see Engle (1982) and Bollerslev (1986).

Equation (6) limits the degree of cross-sectional dependence of the er-

rors "i;t. It allows cross-correlation of the form present in a speci�c group

of forecasts, although it requires that this cross-correlation will not prevent

a weak law-of-large-numbers from holding. Following the forecasting litera-

ture with large N and T , e.g., Stock and Watson (2002b), and the �nancial

econometric literature, e.g., Chamberlain and Rothschild (1983), the condi-

tion lim
N!1

1
N2

PN
i=1

PN
j=1

��E ��i;t�j;t��� = 0 controls the degree of cross-sectional
decay in forecast errors. It is noted by Bai (2005, p. 6), that Chamberlain

and Rothschild�s cross-sectional error decay requires:

lim
N!1

1

N

NX
i=1

NX
j=1

��E ��i;t�j;t��� <1: (7)

Notice that this is the same cross-sectional decay used in Stock and Watson.

Of course, (7) implies (6), but the converse is not true. Hence, Assump-

tion 2 has a less restrictive condition than those commonly employed in the

literature of factor models.

We state now basic results related to the classic question of �to pool or

not to pool forecasts,� when only simple weights (1=N) are used; see, for

example, Granger (1989) and Palm and Zellner (1992).

Proposition 1 Under Assumptions 1-4, the mean-squared error in forecast-
ing yt, using the individual forecast fhi;t, is E

�
fhi;t � yt

�2
= k2i +�

2
�+�

2
�i
, where

�2�i is the variance of "i;t, i = 1; 2; ; :::; N .

Proof. Start with:
fhi;t � yt = ki + �t + "i;t.

Then,

MSEi = E
�
fhi;t � yt

�2
= E(ki + �t + "i;t)2 = E

�
k2i
�
+ E

�
�2t
�
+ E

�
"2i;t
�
;(8)

= k2i + �
2
� + �

2
�i
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where �2�i is the variance of "i;t. Assumption 1 is used in the last line of (8).

We also use the fact that ki is a constant in the time-series dimension in the

last line of (8).

Proposition 2 Under Assumptions 1-4, as N !1, the mean-squared error
in forecasting yt, combining all possible individual forecasts fhi;t, is

MSEaverage = E

 
plim
N!1

1
N

NX
i=1

fhi;t � yt

!2
= B2 + �2�.

Proof. Start with the cross-sectional average of (4):

1

N

NX
i=1

fhi;t � yt =
1

N

NX
i=1

ki + �t +
1

N

NX
i=1

"i;t.

Computing the probability limit of the right-hand side above gives,

plim
N!1

 
1

N

NX
i=1

ki + �t +
1

N

NX
i=1

"i;t

!
= plim

N!1

1

N

NX
i=1

ki + �t + plim
N!1

1

N

NX
i=1

"i;t:

(9)

We will compute the probability limits in (9) separately. The �rst one is

a strightforward application fo the law of large numbers:

plim
N!1

1

N

NX
i=1

ki = B.

The second will turn out to be zero. Our strategy is to show that, in

the limit, the variance of 1
N

NX
i=1

"i;t is zero, a su¢ cient condition for a weak

law-of-large-numbers (WLLN) to hold for f"i;tgNi=1.
Because "i;t is weakly stationary and mean-zero, for every i, there exists

a scalar Wold representation of the form:

"i;t =

1X
j=0

bi;j�i;t�j (10)

where, for all i, bi;0 = 1,
P1

j=0 b
2
i;j <1, and �i;t is white noise.
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In computing the variance of 1
N

NX
i=1

1X
j=0

bi;j�i;t�j we use the fact that there

is no cross correlation between �i;t and �i;t�k, k = 1; 2; : : :. Therefore, we need

only to consider the sum of the variances of terms of the form 1
N

PN
i=1 bik�i:t�k.

These variances are given by:

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
=

1

N2

NX
i=1

NX
j=1

bi;kbj;kE
�
�i;t�j;t

�
; (11)

due to weak stationarity of "t. We now examine the limit of the generic term

in (11) with detail:

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
=

1

N2

NX
i=1

NX
j=1

bi;kbj;kE
�
�i;t�j;t

�
�

1

N2

NX
i=1

NX
j=1

��bi;kbj;kE ��i;t�j;t��� = 1

N2

NX
i=1

NX
j=1

jbi;kbj;kj
��E ��i;t�j;t��� � (12)

�
max
i;j
jbi;kbj;kj

�
1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� : (13)
Hence:

lim
N!1

VAR

 
1

N

NX
i=1

bi;k�i;t�k

!
� lim

N!1

�
max
i;j
jbi;kbj;kj

�
�

lim
N!1

1

N2

NX
i=1

NX
j=1

��E ��i;t�j;t��� = 0;

since the sequence fbi;jg1j=0 is square-summable, yielding limN!1

�
max
i;j
jbi;kbj;kj

�
<

1, and Assumption 4 imposes lim
N!1

1
N2

PN
i=1

PN
j=1

��E ��i;t�j;t��� = 0.
Thus, all variances are zero in the limit, as well as their sum, which gives:

plim
N!1

1

N

NX
i=1

"i;t = 0:
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Therefore,

E

 
plim
N!1

1

N

NX
i=1

fhi;t � yt

!2
= E (B + �t)

2

= B2 + �2�: (14)

We can now compare the MSE of a generic individual forecast with that

of an equally weighted (1=N) forecast combination by using the usual bias-

variance standard decomposition of the mean squared error (MSE)

MSE = Bias2 + V AR.

Proposition 1 shows that we can decompose individual MSE�s,MSEi, as:

MSEi = k2i + �
2
� + �

2
�i

= Bias2i + V ARi, i = 1; 2; :::; N

where Bias2i = k
2
i and V ARi = �

2
� + �

2
�i
.

Proposition 2 shows that averaging forecasts reduces variance, but not

necessarily MSE,

MSEaverage = B2 + �2� (15)

= Bias2average + V ARaverage,

where V ARaverage = �2� < V ARi = �
2
�+�

2
�i
, but comparing Bias2average = B

2

with Bias2i = k2i requires knowledge of B and ki, which is also true for

comparing MSEaverage with MSEi. If the mean bias B = 0, i.e., we are

considering unbiased forecasts, on average, thenMSEi = k2i +�
2
�+�

2
�i
, while

MSEaverage = �
2
�. Therefore, if the number of forecasts in the combination

is large enough, combining forecasts with a zero collective bias will lead

to a smaller MSE �as concluded in Granger (1989). However, if B 6= 0,
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we cannot conclude that the average forecast has MSE lower than that of

individual forecasts, since B2 may be larger or smaller than k2i + �
2
�i
.

This motivates studying bias-correction in forecasting, since one way to

eliminate the term B2 in (14) is to perform bias correction coupled with

equal weights (1=N) in the forecast combination. The next set of results

investigates the properties of the bias-corrected average forecast.

Proposition 3 If Assumptions 1-4 hold, then, the bias-corrected average

forecast, given by 1
N

NX
i=1

fhi;t� 1
N

NX
i=1

ki, obeys plim
N!1

 
1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki

!
=

yt + �t and has a mean-squared error as follows:

MSEBCAF = E

"
plim
N!1

 
1
N

NX
i=1

fhi;t � 1
N

NX
i=1

ki

!
� yt

#2
= �2�. Therefore, it is

an optimal forecasting device in the MSE sense.

Proof. From the proof of Propostion 2, we have:

plim
N!1

1

N

NX
i=1

fhi;t � yt � plim
N!1

1

N

NX
i=1

ki = �t + plim
N!1

1

N

NX
i=1

"i;t

= �t;

leading to:

E

"
plim
N!1

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki

!
� yt

#2
= �2�:

Proposition 3 shows that the bias-corrected average forecast is an opti-

mal forecast in the MSE sense. Bias correction eliminates the term B2 from

the MSE expression, while equal weights naturally eliminates the variance of

idiosyncratic components and group e¤ects. The only term left in the MSE

is �2�, related to unforecastable news to the target variable after the fore-

cast combination was computed �something we could not eliminate unless

we had superior (future) information. From a �nance perspective, all risks
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associated with terms that could be diversi�ed were eliminated by using the

bias-corrected average forecast. We were left only with the undiversi�able

risk expressed in �2�. Therefore, the optimal result.

There are in�nite ways of combining forecasts. So far, we have considered

only equal weights 1=N . In order to discuss the forecast-combination puzzle,

we now consider other combination schemes, consistent with a weak law-of-

large-numbers (WLLN) for forecast combinations, i.e., bounded weights that

add up to unity, in the limit.

Corollary 4 Consider the sequence of deterministic weights f!igNi=1, such

that j!ij < 1 uniformly on N and lim
N!1

NX
i=1

!i = 1. Then, under Assump-

tions 1-4,

plim
N!1

 
NX
i=1

!if
h
i;t �

NX
i=1

!iki � yt

!
= �t; and,

E

"
plim
N!1

 
NX
i=1

!if
h
i;t �

NX
i=1

!iki

!
� yt

#2
= �2�:

and the same result of Proposition 3 follows when a generic f!igNi=1 is used
instead of 1=N .

This corollary to Proposition 3 shows that there is not a unique optimum

in the MSE sense. Indeed, any other combination scheme consistent with a

WLLNs will be optimal as well. Of course, �optimal�population weights,

constructed from the variance-covariance structure of models with stationary

data, will obey the structure in Corollary 4. Hence, �optimal�population

weights canot perform better than 1=N under bias correction. Therefore,

there is no forecast-combination puzzle in the context of populational weights.

Although the discussion using populational weights is useful, the puzzle is

associated with weights !i estimated using data. Therefore, we now compare

1
N

NX
i=1

fhi;t with a bias-corrected version of
NX
i=1

!if
h
i;t with estimated weights.
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We follow the discussion in Hendry and Clements (2002) using N di¤erent

forecasts instead of just 2. Weights !i can be estimated (b!i) by running the
following regression, minimizing MSE subject to

NX
i=1

!i = 1:

y = �i+ !1f1 + !2f2 + :::+ !NfN + �, (16)

where y denotes the R � 1 vector of observations of the target variable,
f1, f2; :::; fN denotes, respectively, the R � 1 vectors of observations of the
N individual forecasts, and i is a vector of ones. Estimation is done over

the time interval T1 + 1; : : : ; T2 (i.e., over the training sample). On the

one hand, because regression (16) includes an intercept, the forecast bf =b�i + b!1f1 + b!2f2 + ::: + b!NfN is unbiased, but its variance grows with N ,

since we have to estimate N weights to construct it. Notice that � plays the

role of a bias-correction term.

There are two cases to be considered. The behavior of estimated weights

in small samples and asymptotically, when N; T !1. In both cases, feasi-
ble estimates requires N < R. In small samples, when N is close to R from

below, the variance of bf may be big enough as to yield an inferior forecast
(MSE) relative to 1

N

NX
i=1

fhi;t, although the latter is biased. Thus, the weighted

forecast cannot avoid the �curse of dimensionality�that plagues several esti-

mates across econometrics. In this context, the curse of dimensionality in bf is
a possible explanation to the forecast-combination puzzle6. Asymptotically,

feasibility requires:

0 < lim
N;T!1

N

R
= c < 1; (17)

which implies that N ! 1 at a smaller rate than T 7. As long as this

6We thank an anonymous referee for casting the problem in these terms.
7We could cast this condition in terms of N; T2 and T1. Then,

0 < lim
N;T!1

N

R
= lim

N;T!1

N

T2 � T1
= lim

N;T!1

N=T

T2=T � T1=T
=
�1
�
= c < 1;

which requires that N !1 at a smaller rate than T2.
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condition is achieved, weights are estimated consistently in (16) and we are

back to Corollary 4 �asymptotically, there is no forecast-combination puzzle.

The bias-variance tradeo¤ in MSE motivates the main question of our

paper as follows: can we compute a forecast combination that will have

asymptotically the same variance as in 1
N

NX
i=1

fhi;t and zero bias as in bf? It
turns out that the answer is yes �the bias-corrected average forecast (BCAF)

in Proposition 4. Hence, we are able to improve upon the simple average

forecast8.

Despite the optimal behavior of the bias-corrected average forecast 1
N

NX
i=1

fhi;t�

1
N

NX
i=1

ki, it is imediately seen that it is unfeasible because the ki�s are un-

known. Therefore, below, we propose replacing ki by a consistent estimator.

The underlying idea behind the consistent estimator of ki is that, in the

training sample, one observes the realizations of yt and fhi;t, i = 1:::N , for the

R training-sample observations. Hence, one can form a panel of forecasts:�
fhi;t � yt

�
= ki + �t + "i;t; i = 1; 2; : : : ; N; t = T1 + 1; � � � ; T2; (18)

where it becomes obvious that ki represents the �xed e¤ect on this panel. It is

natural to exploit this property of ki in constructing a consistent estimator.

This is exactly the approach taken here. In what follows, we propose a

non-parametric estimator of ki. It does not depend on any distributional

assumption on ki � i.d.(B; �2k) and it does not depend on any knowledge of
the models used to compute the forecasts fhi;t. This feature of our approach

widens its application to situations where the �underlying models are not

known, as in a survey of forecasts,�as discussed by Kang (1986).

Due to the nature of our problem �large number of forecasts �and the

8Only in an asymptotic panel-data framework can we formally state weak law-of-large-

numbers for forecast combinations. We see this as a major advantage of our approach

vis-à-vis the commonly employed time-series approach with �xed N � especially when

N = 2 or N = 3.
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nature of ki in (18) �time-invariant bias term �we need to consider large

N , large T asymptotic theory to devise a consistent estimator for ki. Panels

with such a character are di¤erent from large N , small T panels. In or-

der to allow the two indices N and T to pass to in�nity jointly, we could

consider a monotonic increasing function of the type T = T (N), known as

diagonal-asymptotic method; see Quah (1994) and Levin and Lin (1993).

One drawback of this approach is that the limit theory that is obtained de-

pends on the speci�c relationship considered in T = T (N). A joint-limit the-

ory allows both indices (N and T ) to pass to in�nity simultaneously without

imposing any speci�c functional-form restrictions. Despite that, it is sub-

stantially more di¢ cult to derive and will usually apply only under stronger

conditions, such as the existence of higher moments. Searching for a method

that allows robust asymptotic results without imposing too many restrictions

(on functional relations and the existence of higher moments), we consider

the sequential asymptotic approach developed by Phillips and Moon (1999).

There, one �rst �xes N and then allows T to pass to in�nity using an in-

termediate limit. Phillips and Moon write sequential limits of this type as

(T;N !1)seq.
By using the sequential-limit approach of Phillips and Moon, we now

show how to estimate ki, B, and �t consistently.

Proposition 5 If Assumptions 1-4 hold, the following are consistent esti-
mators of ki, B, �t, and "i;t, respectively:

bki =
1

R

PT2
t=T1+1

fhi;t �
1

R

PT2
t=T1+1

yt, plim
T!1

�bki � ki� = 0,
bB =

1

N

PN
i=1
bki, and, plim

(T;N!1)seq

� bB �B� = 0,
b�t =

1

N

NX
i=1

fhi;t � bB � yt, plim
(T;N!1)seq

(b�t � �t) = 0,
b"i;t = fhi;t � yt � bki � b�t, plim

(T;N!1)seq
(b"i;t � "i;t) = 0:
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Proof. Although yt; �t and "i;t are ergodic for the mean, fhi;t is non ergodic
because of ki. Recall that, T2; R!1, as T !1. As T !1,
1

R

PT2
t=T1+1

fhi;t =
1

R

PT2
t=T1+1

yt +
1

R

PT2
t=T1+1

"i;t +
1

R

PT2
t=T1+1

�t + ki

p! E (yt) + ki + E ("i;t) + E (�t)

= E (yt) + ki

Given that we observe fhi;t and yt, we propose the following consistent esti-

mator for ki, as T !1:

bki =
1

R

PT2
t=T1+1

fhi;t �
1

R

PT2
t=T1+1

yt, i = 1; :::; N

=
1

R

PT2
t=T1+1

(yt + ki + �t + "i;t)�
1

R

PT2
t=T1+1

yt

= ki +
1

R

PT2
t=T1+1

"i;t +
1

R

PT2
t=T1+1

�t

or,bki � ki =
1

R

PT2
t=T1+1

"i;t +
1

R

PT2
t=T1+1

�t:

Using this last result, we can now propose a consistent estimator for B:

bB = 1

N

PN
i=1
bki = 1

N

PN
i=1

�
1

R

PT2
t=T1+1

fhi;t �
1

R

PT2
t=T1+1

yt

�
.

First let T !1,

bki p! ki, and,

1

N

NX
i=1

bki p! 1

N

NX
i=1

ki.

Now, as N !1, after T !1,

1

N

NX
i=1

ki
p! B;

Hence, as (T;N !1)seq,

plim
(T;N!1)seq

� bB �B� = 0:
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We can now propose a consistent estimator for �t:

b�t = 1

N

NX
i=1

fhi;t � bB � yt = 1

N

NX
i=1

fhi;t �
1

N

NX
i=1

bki � yt.
We let T !1 to obtain:

plim
T!1

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

bki � yt! =
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki � yt

= �t +
1

N

NX
i=1

"i;t:

Letting now N !1 we obtain plim
N!1

1
N

NX
i=1

"i;t = 0 and:

plim
(T;N!1)seq

(b�t � �t) = 0:
Finally,

b"i;t = fhi;t � yt � bki � b�t, and fhi;t � yt = ki + �t + "i;t.
Hence :b"i;t � "i;t =

�
ki � bki�+ (�t � b�t) :

Using the previous results that plim
T!1

�bki � ki� = 0 and plim
(T;N!1)seq

(b�t � �t) =
0, we obtain:

plim
(T;N!1)seq

(b"i;t � "i;t) = 0:
The result above shows how to construct feasible estimators in a sequen-

tial asymptotic framework, leading to the feasible bias-corrected average fore-

cast. We now state our most important result.

Proposition 6 If Assumptions 1-4 hold, the feasible bias-corrected average

forecast 1
N

NX
i=1

fhi;t� bB obeys plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t � bB! = yt+�t = Et�h (yt)
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and has a mean-squared error as follows:

E

"
plim

(T;N!1)seq

 
1
N

NX
i=1

fhi;t � bB!� yt#2 = �2�. Therefore it is an optimal fore-
casting device.

Proof. We let T !1 to obtain:

plim
T!1

 
1

N

NX
i=1

fhi;t � bB! = plim
T!1

T!1

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

bki!

= plim
T!1

 
1

N

NX
i=1

fhi;t �
1

N

NX
i=1

ki

!
= yt + �t +

1

N

NX
i=1

"i;t:

Letting now N !1 we obtain plim
N!1

1
N

NX
i=1

"i;t = 0 and:

plim
(T;N!1)seq

 
1

N

NX
i=1

fhi;t � bB! = yt + �t = Et�h (yt) ;
which is the optimal forecast, from (3). The MSE of the feasible bias-

corrected average forecast is:

E

"
plim

(T;N!1)seq

 
1

N

NX
i=1

fhi;t � bB!� yt#2 = �2�:
showing that we are back to the result in Proposition 3.

Here, combining forecasts using equal weights 1=N and bias correction

is also optimal, and we can approximate Et�h (yt) well enough. As before,
any other forecast combination as in Corollary 4 will also be optimal. Again,

there is no forecast combination puzzle here.

The advantage of equal weights 1=N is not having to estimate weights. To

get optimal forecasts, in the MSE sense, one has to combine all forecasts using

simple averaging, appropriately centering it by using a bias-correction term.

It is important to stress that, even though N !1, the number of estimated
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parameters is kept at unity: bB. This is a very attractive feature of our
approach compared to models that combine forecasts estimating �optimal�

weights, where the number of estimated parameters increases at the same

rate as N . Our answer to the curse of dimensionality is parsimony, implied

by estimating only one parameter � bB9.
Parsimony can be viewed form a di¤erent angle. From (16), we could

retrieve bB from an OLS regression of the form:

y = �i+ !1f1 + !2f2 + :::+ !NfN + �,

where the weights !i are constrained to be !i = 1=N for all i. There is only

one parameter to be estimated, �, and b� = bB, where bB is now cast in terms
of the previous literature.

The feasible bias-corrected average forecast can be made an even more

parsimonious estimator of yt when there is no need to estimate B. Of course,

this raises the issue of whether B = 0, in which case the optimal forecast

becomes 1
N

NX
i=1

fhi;t �the simple forecast combination originally proposed by

Bates and Granger (1969). We next propose the following test statistic for

H0 : B = 0.

Proposition 7 Under the null hypothesis H0 : B = 0, the test statistic:

bt = bBpbV d�!
(T;N!1)seq

N (0; 1) ;

9From a di¤erent perspective, notice that, bB = 1
N

NX
i=1

bki, where each bki is estimated
separately using R observations, whereas, f b!igNi=1 is jointly estimated using these same R
observations. Our estimator is also less restrictive form an asymptotic point-of-view. For

the weighted forecast combination, recall that the feasibility condition required that,

0 < lim
N;T!1

N

R
= c < 1:

Here, 0 < c <1.
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where bV is a consistent estimator of the asymptotic variance of B = 1
N

NX
i=1

ki.

Proof. Under H0 : B = 0, we have shown in Proposition 3 that bB is a

(T;N ! 1)seq consistent estimator for B. To compute the consistent esti-
mator of the asymptotic variance of B we follow Conley(1999), who matches

spatial dependence to a metric of economic distance. Denote by MSEi (�)
and MSEj (�) the MSE in forecasting of forecasts i and j respectively. For
any two generic forecasts i and j, we use MSEi (�)�MSEj (�) as a measure of
distance between these two forecasts. For N forecasts, we can choose one of

them to be the benchmark, say, the �rst one, computing MSEi (�)�MSE1 (�)
for i = 2; 3; � � � ; N . With this measure of spatial dependence at hand, we can
construct a two-dimensional estimator of the asymptotic variance of B andbB following Conley(1999, Sections 3 and 4). We label V and bV the estimates
of the asymptotic variances of B and of bB, respectively.
Once we have estimated the asymptotic covariance of B, we can test the

null hypothesis H0 : B = 0, by using the following t-ratio statistic:

t =
Bp
V
:

By the central limit theorem, t d�!
N!1

N (0; 1) under H0 : B = 0. Now

consider bt = bBpbV , where bV is computed using bk = (bk1;bk2; :::;bkN)0 in place of
k = (k1; k2; :::; kN)

0. We have proved that bki p! ki as T ! 1, then the test
statistics t and bt are asymptotically equivalent and therefore

bt = bBpbV d�!
(T;N!1)seq

N (0; 1) :
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3 Monte-Carlo Study

3.1 Experiment design

We follow the setup presented in the theoretical part of this paper in which

each forecast is the conditional expectation plus an additive bias term. Our

DGP is a simple stationary AR(1) process as described below:

yt = �0 + �1yt�1 + �t, t = 1; :::T1; :::; T2; :::; T (19)

�t � i.i.d.N(0; 1), �0 = 0, and �1 = 0:5, (20)

where �t is an (unpredictable) aggregate zero mean shock. We focus on

one-step-ahead forecasts for simplicity. The conditional expectation of yt is

Et�1 (yt) = �0 + �1yt�1. Since �t is unpredictable, the forecaster should be
held accountable for fi;t � Et�1 (yt). These deviations have two terms: the
individual speci�c biases (ki) and the idiosyncratic or group error term ("i;t).

Because �t �i.i.d.N(0; 1), the optimal MSE is unity in this exercise.
The conditional expectation Et�1 (yt) = �0 + �1yt�1 is estimated using a

sample of size 200, i.e., T1 = 200, so that b�0 ' �0 and b�1 ' �1: In practice,
however, forecasters may have economic incentives to make biased forecasts,

and there may be other sources of mispeci�cation arising frommispeci�cation

errors. Therefore, we assume that:

fi;t = b�0 + b�1yt�1 + ki + "i;t; (21)

= (b�0 + ki) + b�1yt�1 + "i;t for t = T1 + 1; � � � ; T , i = 1; :::N;
where, ki = �ki�1 + ui, ui �i.i.d. Uniform(a; b), 0 < � < 1, and "t =

("1;t; "2;t; ::: "N;t)
0, N � 1, is drawn from a multivariate Normal distribution

with size R+ P = T � T1, whose mean vector equals to zero and covariance
matrix equals 
 = (�ij). We introduce heterogeneity and spatial dependence

in the distribution of "i;t. The diagonal elements of 
 = (�ij) obey: 1 < �ii <p
10, and o¤-diagonal elements obey: �ij = 0:5 if ji� jj = 1, �ij = 0:25 if

ji� jj = 2 and �ij = 0 if ji� jj > 2. The exact value of �ii is randomly
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determined through an once-and-for-all draw from a uniform random variable

of size N , that is, �ii �i.i.d. Uniform(1;
p
10)10.

In Equation (21), we built spatial dependence in the bias term ki. The

cross-sectional average of ki is a+b
2(1��) . The additive bias ki is explicit in (21).

It could be implicit if we had considered a structural break in the target

variable as did Hendry and Clements (2002). There, an intercept change

in yt takes place right after the estimation of econometric models, biasing

all forecasts. Hence, intercept correction is equivalent to bias correction.

Notice that this is the case here too. A structural break as described would

violate weak stationarity and that is why it is not attempted here. We set

the degree of spatial dependence in ki by letting � = 0:5. For the support

of ui, we considered two cases: (i) a = 0 and b = 0:5 and; (ii) a = �0:5 and
b = 0:5. This implies that the average bias is B = 0:5 in (i), whereas B = 0

in (ii).Finally, notice that the speci�cation of "i;t satis�es Assumption 4 in

Section 2, as we let N !1.
Equation (21) is used to generate three panels of forecasts. They di¤er

from each other in terms of the number of forecasters (N): N = 10; 20; 40.

We assume that they all have the same number of training-sample and out-

of-sample observations: R = 50, and P = 50, respectively.

In each experiment, we conduct 50; 000 simulations of data set for the

three panels above. The total sample equals 300 observations (T1 = 200,

R = 50, and P = 50) in each panel.

3.2 Forecast approaches

In our simulations, we evaluate three forecasting methods: the feasible bias-

corrected average forecast (BCAF), the weighted forecast combination, and

the simple average of forecasts. Our results include aspects of the whole

distribution of the bias and the MSE of computed for these methods.

For the BCAF, we use the training-sample observations to estimate bki =
10The covariance matrix 
i does not change over simulations.
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1
R

T2P
t=T1+1

(yt � fi;t) and bB = 1
N

NP
i=1

bki. Then, we compute the out-of-sample
forecasts bfBCAFi;t = 1

N

NP
i=1

fi;t � bB, t = T2 + 1; :::; T , and its respective MSE

MSEBCAF =
1
P

TP
t=T2+1

�
yt � bfBCAFi;t

�2
.

For the weighted average forecast, we use R observations of the training

sample to estimate weights (!i) by OLS in:

y = �i+ !1f1 + !2f2 + :::+ !NfN + ",

where the restriction
NX
i=1

!i = 1 is imposed in estimation, and i is an R-

dimensional vector of ones, and y, f1, f2; :::fN denote, respectively, the R�1
vector of observations of the target variable and the N individual forecasts.

The weighted forecast bfweighted = b�i+b!1f1+b!2f2+:::+b!NfN is unbiased, but
its variance is grows with N for �xed R. The intercept � plays the role of bias

correction. After computing b� and fb!igNi=1, we employ the last P observations
to compute its respective MSE MSEWeighted =

1
P

TP
t=T2+1

�
yt � bfweightedi;t

�2
.

The last approach is the average forecast.There is no parameter to be esti-

mated using training sample observations. Therefore, out-of-sample forecasts

are computed according to the simple average faveragei;t = 1
N

NP
i=1

fi;t, t = T2 +

1; :::; T , and its MSE is computed asMSEAverage = 1
P

TP
t=T2+1

�
yt � bfaveragei;t

�2
.

Finally, for each approach, we also computed the out-of-sample bias. In

theory, the weighted forecast and the BCAF should have out-of-sample bias

close to zero, whereas it should be close to B = a+b
2(1��) for the average forecast.

3.3 Simulation Results

With the results of the 50; 000 replications, we describe the empirical distri-

butions of the bias and the MSE of all three forecasting methods. For each

distribution we compute the following statistics: (i) kurtosis; (ii) skewness,
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(iii) � -th unconditional quantile, with � = 0:01; 0:25; 0:50; 0:75; and 0:99.

In doing so, we seek to have a general description of all three forecasting

approaches.

The main results are presented in Tables 1 and 2. In Table 1, B = 0:5

and in Table 2 B = 0. In Table 1, the average bias across simulations of

the BCAF and the weighted forecast combination are practically zero. The

bias of the simple average forecast is between 0:39 and 0:46, depending on

N . In terms of MSE, the BCAF performs very well compared to the other

two methods. The simple average has an mean MSE at least 8:7% higher,

reaching 17:8% higher whenN = 40. The weighted combination has an mean

MSE at least 22:7% higher, reaching 431:3% higher when N = 40. This last

result is a consequence of the increase in variance when we increase N , with

R �xed, and N=R close to unity. Notice that, when N = 40 N=R = 0:8.

As stressed above, this results is expected and it would not happen if N=R

was small. Since R = 50, increasing N from 10 to 40 reveals the curse-

of-dimensionality of the weighted forecast combination. For the other two

methods, the distribution of MSE shrinks with N . For the BCAF, we reach

an average MSE of 1:147 when N = 40, whereas the theoretical optimal MSE

is 1:000.

Table 2 presents the results when B = 0. In this case, the optimal forecast

is the simple average, since there is no need to estimate a bias-correction term.

In terms of MSE, comparing the simple-average forecast with the BCAF, we

observe that they are almost identical �the mean MSE of the BCAF is about

1% higher than that of the average forecast, showing that not much is lost

in terms of MSE when we perform an unwanted bias correction. Bias is also

una¤ected by the correction. The behavior of the weighted average forecast

is identical to that in Table 1.
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4 Empirical Application

Professional forecasts guide market participants and inform them about fu-

ture economic conditions. However, many analysts argue that forecasters

might strategically bias forecasts as long as they receive economic incen-

tives to do so. The importance of microeconomic incentives for forecasters

and analysts is stressed by a number of empirical studies, such as Ehrbeck

and Waldmann (1996), Graham (1999), Hong et al. (2000), Lamont (2002),

Welch (2000), and Zitzewitz (2001).

In this section, we present an application of the method proposed here for

the case of forecast surveys, showing that bias correction can indeed help in

forecasting. We also test the hypothesis that forecasters behave strategically

using a dual loss function. When this fact is accounted for, the bias-corrected

average forecast introduced in this paper outperforms simple forecast aver-

ages (consensus). It is important to stress that, although our techniques

were conceived for a large N; T environment, the empirical results here show

the usefulness of our method even in a small N; T environment. Also, the

forecasting gains from bias correction are non-trivial.

4.1 The Central Bank of Brazil�s �Focus Forecast Sur-
vey�

The �Focus Forecast Survey,�collected by the Central Bank of Brazil, is a

unique panel database of forecasts. It contains forecast information on al-

most 120 institutions, including commercial banks, asset-management �rms,

and non-�nancial institutions, which are followed throughout time with a

reasonable turnover. Forecasts have been collected since 1998, on a monthly

frequency, and a �xed horizon, which potentially can serve to approximate a

large N; T environment for techniques designed to deal with unbalanced pan-

els �which is not the case studied here. Besides the large size of N and T in

the Focus Survey, it also has the following desirable features: the anonymity

of forecasters is preserved, although the names of the top-�ve forecasters for
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a given economic variable is released by the Central Bank of Brazil; forecasts

are collected at di¤erent frequencies (monthly, semi-annual, annual), as well

as at di¤erent forecast horizons (e.g., short-run forecasts are obtained for h

from 1 to 12 months); there is a large array of macroeconomic time series

included in the survey.

To save space, below we focus our analysis on the behavior of forecasts of

the monthly in�ation rate in Brazil (�t), in percentage points, as measured

by the o¢ cial Consumer Price Index (CPI), computed by FIBGE. In order

to obtain the largest possible balanced panel (N � T ), we used N = 18 and

a time-series sample period covering the period 2002:11 through 2006:3 (T =

41). Of course, in the case of a survey panel, there is no estimation sample.

We chose the �rst 26 time observations to compute bB � the average bias

� leaving 18 time-series observations for out-of-sample forecast evaluation.

The forecast horizon chosen was h = 6, this being an important horizon to

determine future monetary policy within the Brazilian In�ation-Targeting

program.

The results of our empirical exercise are presented in Tables 3 and 4. They

show that the average bias is positive for the 6-month horizon �0:06187 �

and marginally signi�cant, with a p-value of 0:063. This is a sizable bias

� approximately 0:745 percentage points in a yearly basis, for an average

in�ation rate of 5:266% a year. Out-of-sample forecast comparisons between

the simple average and the bias-corrected average forecast show that the

former has an MSE 18:2% bigger than that of the latter. We also computed

the MSE of the weighted forecast. Since we have N = 18 and R = 26,

N=R = 0:69, and our estimate could not avoid the curse of dimensionality

yielding a MSE 390:2% bigger than that of the BCAF.

5 Conclusions and Extensions

In this paper, we propose a novel approach to econometric forecasting of sta-

tionary and ergodic series within a panel-data framework, where the number
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of forecasts and the number of time periods increase without bounds. The

advantages of our approach are many. First, only in this context we can fully

understand why the pooling of forecasts works in practice under an MSE

loss function. Second, we can also propose improvements on simple forecast-

combination schemes. Here we propose the bias-corrected average forecast.

Third, the techniques discussed here are applicable in two important con-

texts: when forecasts are a result of model estimation, and when they are

the result of opinion polls.

The basis of our method is to decompose individual forecasts into three

components: the series being forecast, a time-invariant forecast bias, and a

zero-mean forecast error. The series being forecast is viewed as a common

feature of all individual forecasts. Standard tools from panel-data asymp-

totic theory are used to devise an optimal forecasting combination that has

a zero limiting mean-squared forecast error. This optimal forecast combina-

tion uses equal weights and a bias-correction term. The use of equal weights

avoids estimating forecast weights, which contributes to reduce forecast vari-

ance, although potentially at the cost of an increase in bias. The use of a

bias-correction term eliminates any possible detrimental e¤ect arising from

equal weighting. We label this optimal forecast as the bias-corrected average

forecast.

In theory �large N and T �the use of a bias-corrected average forecast is

potentially superior to the use of any single forecast and is equal or superior

to any other combining technique. Moreover, in practice �small N and/or

T �an important element of the use of the bias-corrected average forecast is

that the forecast combination puzzle works to our advantage, now augmented

with a bias-correction term. Hence, there will be situations in which we can

improve upon the simple average forecast by using bias-correction, and others

which we cannot. Our framework o¤ers a statistical test for excluding the

bias-correction term.

The Monte-Carlo experiment and the empirical analyses performed here

show the usefulness of our new approach. Regarding model misspeci�cation
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bias, the Monte-Carlo experiment shows important improvement over con-

ventional combination techniques. In the empirical exercise, we showed that

using our method leads to an improvement in forecasting accuracy under

MSE loss � from about 10% to about 60%. As one should expect, higher

gains for bias correction are observed when the null hypothesis of a zero bias

is rejected in testing.

For reasons of space, we refrain from fully discussing here natural ex-

tensions of our proposed method. A partial account of those includes the

following:

1. In the panel of forecasts:�
fhi;t � yt

�
= ki + "i;t; i = 1; 2; : : : ; N; T1 < t < T2; (22)

we impose a unity coe¢ cient for yt, but we could have had an encom-

passing panel-regression system:

fhi;t = �iyt + ki + "i;t; i = 1; 2; : : : ; N; T1 < t < T2; (23)

where �i can be interpreted as the beta of forecast-model i vis-à-vis

yt. A natural hypothesis to test is H0 : �i = 1, for all i, which can be

implemented using standard panel techniques.

2. There may be instances where forecast models produce forecasts that

are too highly correlated. In theory, this may prevent a weak law-of-

large-numbers from holding for the error terms. In this case we can

combine pooling of information and pooling of forecasts:

�
fhi;t � yt

�
= ki+

KX
k=1

�i;kfk;t+�i;t; i = 1; 2; : : : ; N; T1 < t < T2;

(24)

where fk;t are zero-mean pervasive factors and, as is usual in factor

analysis,
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plim
N!1

1
N

PN
i=1 �i;t = 0. In this context:

"i;t =

KX
k=1

�i;kfk;t + �i;t; i = 1; 2; : : : ; N; T1 < t < T2:

Thus, factor and principal-component analyses (Stock andWatson(1999

and 2002a and b) and Forni et al. (2000, 2003)) are combined with the

idea of bias-corrected average forecasts. In that sense, we combine

pooling of forecasts with pooling of information in the same model.

3. The �nal extension considered here is to allow for a time-varying bias

term �t. In this case,�
fhi;t � yt

�
= ki + �t + "i;t; i = 1; 2; : : : ; N; T1 < t < T2: (25)

The techniques of Fuller and Battese (1974) can be a starting point to

generate consistent estimates of ki and �t in a context where N and T

are large.
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A Tables and Figures

Table 1: Monte-Carlo Results
T2 = 50 a = 0; b = 0:5
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Bias Distributions MSE Distributions

BCAF Average Weighted BCAF Average Weighted

N = 10

skewness -0.009 0.003 0.004 0.404 0.438 0.632

kurtosis 3.043 3.037 3.038 3.221 3.298 3.823

mean 0.000 0.391 -0.001 1.561 1.697 1.916

� = 0:01 -0.590 -0.091 -0.643 0.911 0.989 1.080

� = 0:25 -0.169 0.252 -0.186 1.337 1.448 1.608

� = 0:50 -0.001 0.391 -0.001 1.540 1.672 1.872

� = 0:75 0.167 0.530 0.184 1.763 1.918 2.179

� = 0:99 0.578 0.879 0.641 2.394 2.642 3.138

N = 20

skewness 0.010 -0.013 0.011 0.442 0.444 0.961

kurtosis 3.115 3.084 3.138 3.321 3.321 5.011

mean 0.000 0.440 -0.002 1.286 1.466 2.128

� = 0:01 -0.532 -0.001 -0.690 0.754 0.853 1.117

� = 0:25 -0.153 0.316 -0.195 1.098 1.247 1.723

� = 0:50 -0.001 0.440 -0.004 1.266 1.444 2.053

� = 0:75 0.151 0.565 0.192 1.452 1.659 2.448

� = 0:99 0.535 0.876 0.687 1.987 2.275 3.851

N = 40

skewness -0.015 -0.006 -0.016 0.438 0.448 2.852

kurtosis 3.147 3.090 3.600 3.324 3.338 22.203

mean 0.000 0.465 0.000 1.147 1.351 6.094

� = 0:01 -0.515 0.050 -1.209 0.673 0.786 2.165

� = 0:25 -0.145 0.346 -0.315 0.980 1.150 4.021

� = 0:50 0.000 0.465 0.002 1.130 1.331 5.337

� = 0:75 0.141 0.583 0.312 1.295 1.529 7.243

� = 0:99 0.509 0.876 1.209 1.771 2.100 17.669
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Table 2: Monte-Carlo Results
T2 = 50; a = �0:5; b = 0:5

Bias Distributions MSE Distributions

BCAF Average Weighted BCAF Average Weighted

N = 10

skewness -0.009 0.005 0.004 0.404 0.395 0.632

kurtosis 3.043 3.016 3.038 3.221 3.228 3.823

mean 0.000 0.000 -0.001 1.561 1.547 1.916

� = 0:01 -0.590 -0.511 -0.643 0.911 0.905 1.080

� = 0:25 -0.169 -0.149 -0.186 1.337 1.326 1.608

� = 0:50 -0.001 0.000 -0.001 1.540 1.526 1.872

� = 0:75 0.167 0.147 0.184 1.763 1.745 2.179

� = 0:99 0.578 0.516 0.641 2.394 2.369 3.138

N = 20

skewness 0.010 -0.015 0.011 0.442 0.414 0.961

kurtosis 3.115 3.071 3.138 3.321 3.283 5.011

mean 0.000 0.000 -0.002 1.286 1.272 2.128

� = 0:01 -0.532 -0.462 -0.690 0.754 0.746 1.117

� = 0:25 -0.153 -0.130 -0.195 1.098 1.089 1.723

� = 0:50 -0.001 0.000 -0.004 1.266 1.254 2.053

� = 0:75 0.151 0.130 0.192 1.452 1.435 2.448

� = 0:99 0.535 0.456 0.687 1.987 1.951 3.851

N = 40

skewness -0.015 -0.005 -0.016 0.438 0.414 2.852

kurtosis 3.147 3.090 3.600 3.324 3.266 22.203

mean -0.002 0.000 0.000 1.147 1.133 6.094

� = 0:01 -0.515 -0.426 -1.209 0.673 0.667 2.165

� = 0:25 -0.145 -0.123 -0.315 0.980 0.971 4.021

� = 0:50 -0.002 0.000 0.002 1.130 1.116 5.337

� = 0:75 0.141 0.121 0.312 1.295 1.278 7.243

� = 0:99 0.509 0.424 1.209 1.771 1.733 17.669
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Notes: ????(A) RMSEpi i = 1; 2 denotes the mean of the relative MSE of:

(1) the simple average forecast (RMSEp1), and, (2) the weighted-average

forecast (RMSEp2). In both cases, the MSE of the bias-corrected average

forecast is taken as numeraire. (B) The superscript p indicates the number

of observations in the training sample.
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Table 3: The Brazilian Central Bank Focus Survey
Computing Average Bias and Testing the No-Bias Hypothesis

Horizon (h) Avg. Bias bB H0 : B = 0

p-value

6 0:06187 0:063

Notes: (1) N = 18, R = 26, P = 15, and h = 6 months ahead.

Table 4: The Brazilian Central Bank Focus Survey
Comparing the MSE of Simple Average Forecast with that of
the Bias-Corrected Average Forecast and the Weighted

Average Forecast
Forecast Horizon (a) MSE (b) MSE (c) MSE (b)/(a) (c)/(a)

(h) BCAF Avg. Forecast Weighted Avg. Forecast

6 0:0683 0:0808 0:2665 1:182 3:902

Notes: (1) N = 18, R = 23 and P = 18, and h = 6 months ahead.
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