Unit 2: Models, Censoring, and Likelihood for Failure-Time Data

Ramón V. León

Unit 2 Objectives

- Describe models for continuous failure-time processes/distributions
 - Time to failure
- Describe models that we will use for the discrete data from these continuous failure-time processes/distributions
 - Data resulting primarily by interval censoring, i.e. failure times that one knows that they fell in an interval
 - Rounding
Unit 2 Objectives

- Describe common censoring mechanisms that restrict our ability to observe all of the failure times that might occur in a reliability study
 - Right censoring: survival times, i.e., one only knows that a failure would have occurred past some survival (censoring) time.
 - Left censoring: one only knows that the failure occurred before some (censoring) time
 - Interval censoring: one only knows that the failure occurred in an interval and not the exact time to failure
Typical Failure-Time Probability Functions

Cumulative Distribution Function
\[F(t) = P(T \leq t) = 1 - \exp(-t^{1.7}) \]

Probability Density Function
\[f(t) = \frac{dF(t)}{dt} = 1.7 \times t^{1.7} \times \exp(-t^{1.7}) \]

Survival Function
\[S(t) = P(T \geq t) = \int_{t}^{\infty} f(t) \, dt = \exp(-t^{1.7}) \]

Hazard Function
\[h(t) = \frac{f(t)}{S(t)} = \frac{f(t)}{1 - F(t)} = 1.7 \times t^{7} \]
Hazard Function or Instantaneous Failure Rate Function

The hazard function $h(t)$ is defined by

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t < T \leq t + \Delta t | T > t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{P(t < T \leq t + \Delta t) / P(T > t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{P(t < T \leq t + \Delta t)}{P(T > t) \Delta t}$$

$$= \frac{f(t)}{S(t)} = \frac{f(t)}{1 - F(t)}$$

CDF in Terms of the Hazard Function

$$H(t) = \int_0^t h(x) dx = \int_0^t \frac{f(x)}{1 - F(x)} dx$$

Let $u = F(x) \Rightarrow du = f(x) dx$, so

$$H(t) = \int_0^{F(t)} \frac{du}{1 - u} = -\ln(1 - u)_{0}^{F(t)} = -\ln(1 - F(t)) = -\ln S(t)$$

$$\Rightarrow$$

$$F(t) = 1 - \exp(-H(t)) = 1 - \exp\left(-\int_0^t h(x) dx\right)$$
Hazard Function or Instantaneous Failure Rate Function

- $h(t)$ describes propensity of failure in the next small interval of time given survival to time t
 \[h(t) \times \Delta t \approx \Pr(t < T \leq t + \Delta t \mid T > t). \]
- Some reliability engineers think of modeling in terms of $h(t)$.

Engineers Interpretation of the Hazard Function

The hazard function can be interpreted as a failure rate if there is a large number of items, say $n(t)$, in operation at time t. Then

\[n(t) \times h(t) \Delta t = \text{Expected number of failures in time (} t, t + \Delta t) \]

\[\Rightarrow \]

\[h(t) = \text{Expected number of failures per unit of time per unit at risk} \]
FIT Rate

A FIT rate is defined as the hazard function in units of 1/hours multiplied by 10^9.

Example 2.5

- 165,000 copies of a component
- Hazard rate constant over time at 15 FITs.
 - $h(t) = 15 \times 10^{-9}$ failures per unit per hour for all times t measured in units of hours.
- A prediction for the number of failures from this component in 1 year (8760 hours) of operation is
 - $15 \times 10^{-9} \times 165,000 \times 8760 = 21.7$
Bathtub Curve Hazard Function

Cumulative Hazard Function and Average Hazard Rate

- Cumulative hazard function:
 \[H(t) = \int_0^t h(x) \, dx. \]
 Notice that, \(F(t) = 1 - \exp \left[-H(t) \right] = 1 - \exp \left[- \int_0^t h(x) \, dx \right]. \)

- Average hazard rate in interval \((t_1, t_2)\):
 \[\text{AHR}(t_1, t_2) = \frac{\int_{t_1}^{t_2} h(u) \, du}{t_2 - t_1} = \frac{H(t_2) - H(t_1)}{t_2 - t_1}. \]
Practical Interpretation of Average Hazard Rate

\[AHR(t_1, t_2) = \frac{F(t_2) - F(t_1)}{t_2 - t_1} = \frac{P(t_1 \leq T \leq t_2)}{t_2 - t_1} \]

if \(F(t_2) = P(T \leq t_2) \) is small, say less than 0.1

In particular,

\[AHR(t) = \int_0^t \frac{h(u)du}{t} = \frac{H(t)}{t} \approx \frac{F(t)}{t} = \frac{P(T \leq t)}{t} \]

if \(F(t) = P(T \leq t) \) is small, say less than 0.1

Derivation

\[\int_0^t f(u)du \leq \int_0^t f(u)du \leq \int_0^t f(u)du \]

\[\Rightarrow \]

\[\frac{F(t_2) - F(t_1)}{S(t_2)} \leq \int_0^t h(u)du = H(t_2) - H(t_1) \leq \frac{F(t_2) - F(t_1)}{S(t_2)} \]

\[\Rightarrow \]

\[\frac{1}{S(t_2)} \left[\frac{F(t_2) - F(t_1)}{t_2 - t_1} \right] \leq \frac{H(t_2) - H(t_1)}{t_2 - t_1} = AHR(t_1, t_2) \leq \frac{1}{S(t_2)} \left[\frac{F(t_2) - F(t_1)}{t_2 - t_1} \right] \]

So if \((F(t_1) \leq F(t_2)) \) is small \(S(t_2) \leq S(t_1) \) is close to 1

\[\Rightarrow \]

\[AHR(t_1, t_2) = \left[\frac{F(t_2) - F(t_1)}{t_2 - t_1} \right] = \frac{P(t_1 \leq T \leq t_2)}{t_2 - t_1} \]
Quantile Function

The p quantile of F is the smallest time t_p such that

$$P(T \leq t_p) = F(t_p) \geq p,$$

where $0 < p < 1$

When $F(t)$ is constant over some intervals, there can be more than one solution t to the equation $F(t) \geq p$. Taking t_p equal to the smallest t value satisfying $F(t) \geq p$ is a standard convention.

Distribution Quantiles
Simple Quantile Calculation

When \(F(t) \) is strictly increasing there is a unique value \(t_p \) that satisfies \(F(t_p) = p \), and we write
\[
t_p = F^{-1}(p).
\]

Example:
\(t_{20} \) is the time by which 20\% of the population will fail. For,
\[
F(t) = 1 - \exp(-t^{1.7}), \quad p = F(t_p) \text{ gives } t_p = \left[-\log(1-0.2)\right]^{1/1.7}
\]
and \(t_{2.2} = \left[-\log(1-0.2)\right]^{1/1.7} = 0.414. \)

Terminology:

\(t_{10} \) is also known as B10)

Models for Discrete Data from a Continuous Time Process

All data are discrete! Partition \((0, \infty)\) into \(m + 1 \) intervals depending on inspection times and roundoff as follows:
\[
(t_0, t_1), (t_1, t_2), \ldots, (t_{m-1}, t_m), (t_m, t_{m+1})
\]
where \(t_0 = 0 \) and \(t_{m+1} = \infty \). Observe that the last interval is of infinite length.
Partitioning of Time into Non-Overlapping Intervals

\[\pi_1 \quad \pi_2 \quad \pi_3 \ldots \pi_{m-1} \quad \pi_m \quad \pi_{m+1} \]

\[t_0 = 0 \quad t_1 \quad t_2 \ldots \quad t_{m-1} \quad t_m \quad t_{m+1} = \infty \]

Times need **not** be equally spaced.

The \(\pi \)'s are the probabilities of failure in the intervals.

Graphical Interpretations of the \(\pi \)'s
Nonparametric Parameters

Define,

\[\pi_i = \Pr(t_{i-1} < T \leq t_i) = F(t_i) - F(t_{i-1}) \]
\[p_i = \Pr(t_{i-1} < T \leq t_i | T > t_{i-1}) = \frac{F(t_i) - F(t_{i-1})}{1 - F(t_{i-1})} = \frac{\pi_i}{S(t_{i-1})} \]

Because the \(\pi_i \) values are multinomial probabilities, \(\pi_i \geq 0 \) and \(\sum_{j=1}^{m+1} \pi_j = 1 \). Also, \(p_{m+1} = 1 \) but the only restriction on \(p_1, \ldots, p_m \) is \(0 \leq p_i \leq 1 \)

Notice:

\[S(t_{i-1}) = P(T > t_{i-1}) = \sum_{j=1}^{m+1} \pi_j \]
\[\pi_i = p_i S(t_{i-1}) \]

A Important Derivation

\[S(t_{i-1}) - S(t_i) = F(t_i) - F(t_{i-1}) = \pi_i = p_i S(t_{i-1}) \]
\[\Rightarrow \]
\[(1 - p_i)S(t_{i-1}) = S(t_i) \]
\[\Rightarrow \text{by induction} \]
\[S(t_i) = \prod_{j=1}^{i} (1 - p_j), \quad i = 1, \ldots, m + 1 \]
Nonparametric Parameters

Since

\[F(t_i) = 1 - \prod_{j=1}^{i} (1 - p_j), \quad i = 1, \ldots, m + 1 \]

and

\[F(t_i) = \sum_{j=1}^{i} \pi_j, \quad i = 1, \ldots, m + 1 \]

we view \(\pi = (\pi_1, \ldots, \pi_{m+1}) \) or \(p = (p_1, \ldots, p_{m+1}) \) as the nonparametric parameters.

Example Calculation of the Nonparametric Parameters

Probabilities for the Multinomial Failure Time Model

Computed from \(F(t) = 1 - \exp(-t^{1.7}) \)

<table>
<thead>
<tr>
<th>(t_i)</th>
<th>(F(t_i))</th>
<th>(S(t_i))</th>
<th>(\pi_i)</th>
<th>(p_i)</th>
<th>(1 - p_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>.265</td>
<td>.735</td>
<td>.265</td>
<td>.265</td>
<td>.735</td>
</tr>
<tr>
<td>1.0</td>
<td>.632</td>
<td>.368</td>
<td>.367</td>
<td>.500</td>
<td>.500</td>
</tr>
<tr>
<td>1.5</td>
<td>.864</td>
<td>.136</td>
<td>.231</td>
<td>.629</td>
<td>.371</td>
</tr>
<tr>
<td>2.0</td>
<td>.961</td>
<td>.0388</td>
<td>.0976</td>
<td>.715</td>
<td>.285</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1.000</td>
<td>.000</td>
<td>.0388</td>
<td>1.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(p_i = \frac{\pi_i}{S(t_{i-1})} \)
Examples of Censoring Mechanisms

Censoring restricts our ability to observe T. Some sources of censoring are:

- Fixed time to end test (lower bound on T for unfailed units)
- Inspection times (upper and lower bounds on T)
- Staggered entry of units into service leads to multiple censoring
- Multiple failure modes (also known as competing risks, and resulting in multiple right censoring):
 - Independent failure modes (simple)
 - Non-independent failure modes (difficult)

Simple analysis requires non-informative censoring assumptions

Likelihood (Probability of the Data) as a Unifying Concept

- Likelihood provides a general and versatile method of estimation
- Model/Parameters combinations with large likelihood are plausible
- Allows for censored, interval, and truncated data
- Theory is simple in regular models
- Theory more complicated in non-regular models (but concepts are similar)
- Limitation: can be computationally intensive (still not general software)
Determining the Likelihood (Probability of the Data)

The form of the likelihood will depend on

- Question and focus of the study
- Assumed model
- Measurement system (form of available data)
- Identifiability/parametrization

Likelihood Contributions for Different Kinds of Censoring
Likelihood Contributions for Different Kinds of Censoring

Example: $F(t) = 1 - \exp(-t^{1.7})$

- Interval-censored observations:
 $$L_i(p) = \int_{t_{i-1}}^{t_i} f(t) \, dt = F(t_i) - F(t_{i-1}).$$
 If a unit is still operating at $t = 1.0$ but has failed at $t = 1.5$ inspection, $L_i = F(1.5) - F(1.0) = .231$.

- Left-censored observations:
 $$L_i(p) = \int_0^{t_i} f(t) \, dt = F(t_i) - F(0) = F(t_i).$$
 If a failure is found at the first inspection time $t = .5$, $L_i = F(.5) = .265$.

- Right-censored observations:
 $$L_i(p) = \int_{t_i}^{\infty} f(t) \, dt = F(\infty) - F(t_i) = 1 - F(t_i).$$
 If a unit has not failed by the last inspection at $t = 2$, $L_i = 1 - F(2) = .0388$.
Likelihood for Life Data

\[d_i = 2 = \text{number of observations interval censored in } t_{i-1} \text{ and } t_i \]

\[l_i = 3 = \text{number of observations left-censored at } t_i \]

\[r_i = 2 = \text{number of observations right-censored at } t_i \]

Likelihood for Life Table Data

- For a life table the data are: the number of failures \((d_i)\), right censored \((r_i)\), and left censored \((l_i)\) units on each of the nonoverlapping interval \((t_{i-1}, t_i]\), \(i = 1, \ldots, m+1, t_0 = 0\).

- The likelihood (probability of the data) for a single observation, \(d_{i}, \text{ in } (t_{i-1}, t_i]\) is

\[
L_i(\pi; \text{data}_i) = F(t_i; \pi) - F(t_{i-1}; \pi).
\]

- Assuming that the censoring is at \(t_i\)

<table>
<thead>
<tr>
<th>Type of Censoring</th>
<th>Characteristic</th>
<th>Number of Cases</th>
<th>Likelihood of Responses (L_i(\pi; \text{data}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left at (t_i)</td>
<td>(T \leq t_i)</td>
<td>(l_i)</td>
<td>([F(t_i)]^{l_i})</td>
</tr>
<tr>
<td>Interval (t_{i-1} < T \leq t_i)</td>
<td>(d_i)</td>
<td>([F(t_i) - F(t_{i-1})]^{d_i})</td>
<td></td>
</tr>
<tr>
<td>Right at (t_i)</td>
<td>(T > t_i)</td>
<td>(r_i)</td>
<td>([1 - F(t_i)]^{r_i})</td>
</tr>
</tbody>
</table>
Likelihood: Probability of the Data

- The total likelihood, or joint probability of the DATA, for \(n \) independent observations is

\[
L(\pi; \text{DATA}) = c \prod_{i=1}^{n} L_i(\pi; \text{data}_i)
\]

\[
= c \prod_{i=1}^{m+1} [F(t_i)]^{d_i} [F(t_i) - F(t_{i-1})]^{r_i} [1 - F(t_i)]^{e_i}
\]

where \(n = \sum_{j=1}^{m+1} (d_j + r_j + e_j) \) and \(c \) is a constant depending on the sampling inspection scheme but not on \(\pi \). So we can take \(c = 1 \).

- Want to find \(\pi \) so that \(L(\pi) \) is large.

Likelihood for Arbitrary Censored Data

- In general, the \(i \)th observation consists of an interval \((t_{l,i}, t_i]\), \(i = 1, \ldots, n \) \((t_{l,i} < t_i)\) that contains the time event \(T \) for the \(i \)th individual.

The intervals \((t_{l,i}, t_i]\) may overlap and their union may not cover the entire time line \((0, \infty)\). In general \(t_{l,i} \neq t_{i-1} \).

- Assuming that the censoring is at \(t_i \)

<table>
<thead>
<tr>
<th>Type of Censoring</th>
<th>Characteristic</th>
<th>Likelihood of a single Response (L_i(\pi; \text{data}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left at (t_i)</td>
<td>(T \leq t_i)</td>
<td>(F(t_i))</td>
</tr>
<tr>
<td>Interval</td>
<td>(t_{l,i} < T \leq t_i)</td>
<td>(F(t_i) - F(t_{l,i}))</td>
</tr>
<tr>
<td>Right at (t_i)</td>
<td>(T > t_i)</td>
<td>(1 - F(t_i))</td>
</tr>
</tbody>
</table>
Likelihood for General Reliability Data

• The total likelihood for the DATA with \(n \) independent observations is

\[L(\pi; \text{DATA}) = \prod_{i=1}^{n} L_i(\pi; \text{data}_i). \]

• Some of the observations may have multiple occurrences. Let \((t_{ij}^j, t_{ij}), j = 1, \ldots, k \) be the distinct intervals in the DATA and let \(w_j \) be the frequency of observation of \((t_{ij}^j, t_{ij}) \). Then

\[L(\pi; \text{DATA}) = \prod_{j=1}^{k} \left[L_j(\pi; \text{data}_j) \right]^{w_j}. \]

• In this case the nonparametric parameters \(\pi \) correspond to probabilities of a partition of \((0, \infty)\) determined by the data (Examples later).

Other Topics in Chapter 2

• Random censoring
• Overlapping censoring intervals
• Likelihood with censoring in the intervals
• How to determine C