

Search for new particles at LHC

Charmonium Renaissance

Stefan Spanier University of Tennessee

• Standard Model

- Fermions: basic constituents of matter
- Bosons: force mediators
- Anti-particles: opposite charge, baryon/lepton number, and helicity, same mass

..maybe more, but not clear

Standard Model Interactions

Interaction	Mediator	Range	In Nature	
Strong	gluon	10^{-15} m	Binds quarks into hadrons	} QCD
Electromagnetic	photon	$\infty \frac{1}{r^2}$	Binds together atoms and molecules	- Glashow
Weak	W, Z boson	$< 10^{-18}$ m	Enables beta decay of neutron	J

- SM is a Quantum Field Theory: describes all interactions as exchange of particles, and all particles as excited states of quantum field
 - Gauge Invariant: force laws applicable at all places and times (global) + local !
 - Renormalizable: predicted interaction rates scale based on energy/distance

Gross, Politzer, Wilczek Noble Price 2004

Quantum Fluctuations (anti) screen color charge

dominates at large distance (low energy) \rightarrow confinement

 $\lambda \propto \frac{1}{E}$

Perturbation Theory fails use Potential Models, Symmetries ..

[Experimental Tests of Asymptotic Freedom, arXiv:hep-ex/0606035]

- Shortcomings
- Standard Model unsatisfactory for several reasons, e.g.
 - 19 ad-hoc free parameters
 -> no prediction beyond EW scale
 - Forces do not converge
 - Gravity (DM) not included
- Additional particles/interactions?

Search

directly (new peaks in spectra)

Grand Unification Theory

Minimal Supersymmetric SM

• SUSY - MSSM

- The SUSY extension is a small perturbation consistent with electroweak precision data (CP violation in B Decays)
- The lightest SUSY neutralino is stable and massive \rightarrow
- Lightest SUSY-Higgs mass well below 100 GeV (?) and is pseudo-scalar

SUSY

Bottonium Spectrum Hides MSSM Higgs ?

- Summary
 - Standard Model is unsatisfactory and probably a low energy limit of a more general theory
 → Where are the new (non-SM) particles?
 - Details within the SM, particularly QCD require effort to be able to distinguish new from old
 → Where are objetcs made of gluons and quarks other than mesons and hadrons that are predicted by QCD but haven't been found

Glueballs

Hybrids

Tetra-quark states ...

Onia States

In 2005 BaBar experiment discovers charmonium like state in initial state radiation among whole series of discovery of new, unexpected states \rightarrow Even though above DD threshold does not decay this way

• Onia States

Mass (MeV)

Charmonium Spectroscopy Renaissance

• More States in Sub-Decays

- M. Ablikim et al. (BESIII Collaboration), "Observation of a Charged Charmoniumlike Structure in e⁺e⁻ → π⁺π⁻J/ψ at √s = 4.26 GeV," Phys. Rev. Lett. **110**, 252001 (2013).
- [2] Z. Q. Liu et al. (Belle Collaboration), "Study of e⁺e⁻ → π⁺π⁻J/ψ and Observation of a Charged Charmoniumlike State at Belle," Phys. Rev. Lett. **110**, 252002 (2013).

• Exotic States

- Large mass, decay into J/ψ implies $c\overline{c}$ content; $c\overline{c}$ -bar is electrically neutral
- Charged pion carries charge of the Z_c state
 - \rightarrow implies additional (light) quarks (ud or ud) participate in state
- ➔ 4-Quark States never been observed before !?

• 4 Quark States

• Particle Production in Proton-Proton Collisions at LHC

- → Gluon Fusion is dominant process
- Soft-scattering has higher cross section but mostly along beam

• The Large Hadron Collider (LHC)

Proton-proton collider (up to E_{CM}=14 TeV) 27 km in circumference, 50-175m deep between Jura mountains (France) and Lake Geneva (Switzerland)

First year running:
> Startup Nov. 2009
> Several months calibration runs
2011 running:
> 7 TeV p-p runs
2012 running
> 8 TeV p-p runs
2015 resume running
> 13 TeV p-p

• LHC

Each beam

- 2808 bunches of protons
- ~10¹¹ protons/bunch
- Circulation time: 89 μs
- Current: ~ 0.6 Ampere
- Time between collisions: 25 ns
- Fill time (450 GeV): 7.5 min
- Acceleration time : 20 min
- Beam lifetime : ~15 hours

- Muon Trigger
 - L1 hardware trigger (~1 μ s)
 - High-level trigger: tracking/vertexing

invariant $\mu^+\mu^-$ mass combinations J/ $\psi \rightarrow \mu^+\mu^-$ displaced ($\Delta m=200 \text{ MeV}$)/prompt (250 MeV)

Requirements:

High resolution (~15 μm), granular tracker Hermetic

Operate 5 years in high radiation field Important for vertex finding

- Barrel Pixel Detector (BPix)
 - 3 layers at radii 4.3, 7.2, and 11.0 cm
 - ~48 million pixels
- Forward Pixel Detector (FPix)
 - 2 disks at Z = 34.5 and 46.5 cm
 - ~18 million pixels

- Muon Efficiency
- Muon tracking
- excellent $\sigma_{pT}/p_T \sim 1\%$
- efficiency > 99% for central μ
- excellent vertex reconstruction impact parameter σ ~15um

Muon Efficiency
- "tag and probe" in data

- Monte Carlo (compatible with data)

• Search for Double J/ ψ

Search for Double J/ ψ - Discriminating Variables

²⁶

- Search for Double J/ $\psi~$ Cut and Count

With somewhat restricted kinematic range And requirements as indicated in event variable distributions

?

• Production of Double J/ ψ - Background % Opportunity

Single Parton Scattering (SPS) – 2 particle production

Production of particles such as Higgs or others due to this process – only?

Double-parton scattering (DPS) present ?

If present changes predictions of production rate (indirect searches) and background predictions (direct ~) → Sensitivity in search for new particles limited by knowledge about DPS % SPS

Theory does not make predictions for the kinematic regime of CMS !!

Each double J produced still needs to be combined with rest of the event → Complex hadronic production models • Measurement of Double J/ ψ

Models not developed for CMS acceptance

Assumes dominance of SPS, CS production, e.g.

[Novoselov, arXiv:1106.2184v1]

- Expect distinct differences between different models
 - SPS/DPS in $|\Delta y|$
 - CS/CO in p_T

• Measurement of Double J/ ψ

Reverse engineer the cross section from data

 \rightarrow model independent!

CMS is in kinematic regime complementary to LHCb

Event-by-event Correction of Signal Yield

Efficiency ε_i - Muon Substitution Method
 Place the measured muon 4-momenta in a simulated event
 Ensure energy and momentum conservation in approximation

• Differential Cross Section

$$\frac{d\sigma(pp \to 2J/\psi + X)}{dp_T} = \sum_i \frac{N_i}{L \cdot BF(J/\psi \to \mu^+ \mu^-)^2 \cdot \Delta p_T}$$

• Differential Cross Section

- \rightarrow Published to provide input for model builders
- → Use improved generator and subject to full detector simulation

• What do others see?

Observation of J/ψ pair production in pp collisions at $\sqrt{s} = 7$ TeV

The LHCb Collaboration ¹

Abstract

The production of J/ ψ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of 37.5 pb⁻¹ collected with the LHCb detector. The production cross-section for pairs with both J/ ψ in the rapidity range $2 < y^{J/\psi} < 4.5$ and transverse momentum $p_T^{J/\psi} < 10 \text{ GeV}/c$ is

 $\sigma^{J/\psi J/\psi} = 5.1 \pm 1.0 \pm 1.1 \text{ nb},$

where the first uncertainty is statistical and the second systematic.

What do others see?
 EVIDENCE FOR ψψ PRODUCTION IN π⁻ INTERACTIONS AT 150 AND 280 GeV/c

NA3 Collaboration [Phys Lett B 114B (1982) 457]

Fig. 3. $\psi\psi$ invariant mass spectrum. Dashed squares: 150 GeV/ c data. Dotted: 280 GeV/c data. The curve is the computed mass spectrum of uncorrelated $\psi\psi$ pairs generated by Monte Carlo and accepted by the apparatus (arbitrary normalisation).

• Summary

LHC is successfully continuing particle production described by SM and beyond SM

The proton-proton collision program will continue in 2015 with the chance to turn many 3 sigma evidences into observations or nothing

We opened a new box for new particle searches that has been not accessed before

If confirmed, signals may continue the onia renaissance or even turn out to be beyond SM signals