Majorana Double Beta Decay Search Project
(Majorana Demonstrator)

Sergey Vasilyev

University of Tennessee, Knoxville
Outline

• Neutrino properties (short)
• Introduction to double-beta decay
• Majorana Demonstrator Project
• Summary
Current knowledge and open questions

What we know (from ν oscillations):

- Neutrino flavour eigenstates differ from their mass eigenstates
- Neutrinos oscillate, hence they must have mass
- Mixing angles and Δm^2 values known (with varying accuracies)

What we don't know:

- Normal or inverted hierarchy?
- Dirac or Majorana particle?
- CP violating phases in mixing matrix?
- **No information about absolute mass scale!** (only upper limits)
- Existence of sterile neutrinos?
Dirac or Majorana particle?

How test of Majorana nature of neutrinos ($\bar{\nu} \equiv \nu$)?

The key test originally proposed by G. Racah (1937):

\[n \rightarrow p + e^- + \bar{\nu} \rightarrow (\bar{\nu} \equiv \nu) + n \rightarrow p + e^- + p + e^- \]

Such a combination of events would violate the conservation of lepton number ($\Delta L=2$)

One way to study the Racah process is use real $\bar{\nu}$:

Ray Davis (1955) performed the famous $^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ reaction using anti-neutrinos from reactor

($\nu + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + e^-$ - reaction for famous experiment with neutrinos from the Sun)

Can produce $\bar{\nu}$ indeed ^{37}Ar nuclei in reaction above?
“Rumors of a positive result reached Bruno Pontecorvo in Moscow in 1957 and caused him to invent neutrino oscillations in direct analogy with the Gell-Mann-Pais analysis of neutral Kaon decay. The rumors eventually died out but the idea of oscillations is still alive and kicking.” – S.P. Rosen (1992)

In 1957 with the discovery of parity nonconservation and the two-component neutrino, it was recognised that the two-step process of Racha is inhibited by helicity: the right-handed anti-neutrino emitted by the first neutron is in the wrong helicity state to be re-absorbed by another neutron. In order to complete the second step of the Racah process, the anti-neutrino must be able to flip its helicity and turn itself into a neutrino.

A much more sensitive method is to study double beta decay.
Table 1. Emission and Absorption of Neutrinos in the Standard Model

<table>
<thead>
<tr>
<th>Process</th>
<th>Transition</th>
<th>Beta ray</th>
<th>Neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>$n \rightarrow p$</td>
<td>e_L^-</td>
<td>$\bar{\nu}_{eR}$</td>
</tr>
<tr>
<td>Emission</td>
<td>$p \rightarrow n$</td>
<td>e_R^+</td>
<td>ν_{eL}</td>
</tr>
<tr>
<td>Absorption</td>
<td>$n \rightarrow p$</td>
<td>e_L^-</td>
<td>ν_{eL}</td>
</tr>
<tr>
<td>Absorption</td>
<td>$p \rightarrow n$</td>
<td>e_R^+</td>
<td>$\bar{\nu}_{eR}$</td>
</tr>
</tbody>
</table>

Table 2. Emission and Absorption of Neutrinos in a Modified Standard Model. The parameter η denotes small admixture of opposite helicities.

<table>
<thead>
<tr>
<th>Process</th>
<th>Transition</th>
<th>Beta ray</th>
<th>Neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>$n \rightarrow p$</td>
<td>e^-</td>
<td>$\bar{\nu}{eR} + \eta \bar{\nu}{eL}$</td>
</tr>
<tr>
<td>Absorption</td>
<td>$n \rightarrow p$</td>
<td>e^-</td>
<td>$\nu_{eL} + \eta \nu_{eR}$</td>
</tr>
</tbody>
</table>
Important:

It can be treated the admixture of right-handed currents (RHC-mechanism) as a separate *phenomenological* mechanism for $0\nu\beta\beta$ decay. But it is not a separate *fundamental* mechanism. In gauge theories *the mass* is the fundamental mechanism for lepton number nonconserving processes: RHC-mechanism will not work unless there are mass term present in the neutrino mass matrix (*J. Schechter-J.Valle theorem*)
How to observe $\Delta L=2$

Expected for 35 isotopes, $2\nu\beta\beta$ found for 11 isotopes

$\beta^+\beta^+, \beta^+\mathrm{EC}$, ECEC rates smaller unless resonant enhancement
(e.g. for $^{152}\text{Gd} - ^{152}\text{Sm}$, ECEC Q=56 keV, Phys Rev Lett 106(2011) 052504)

Experimental signature for DBD

"Single" beta decay not allowed

only "double beta decay"

$$(A,Z) \rightarrow (A,Z+2) + 2 \, e^- + 2\bar{\nu} \quad \Delta L=0$$

$$(A,Z) \rightarrow (A,Z+2) + 2 \, e^- \quad \Delta L=2$$

Schechter Valle theorem: $0\nu\beta\beta \iff$ Majorana ν

TAUP 2011, Munich

Schwingenheuer, Double Beta Decay
From $T_{1/2}$ to $\langle m_{ee} \rangle$

\[\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{ee} \rangle^2}{m_e^2} \]

- $T_{1/2}^{0\nu}$ = measured experimentally
- $G^{0\nu}$ = phase space factor $\sim Q^5$
- $M^{0\nu}$ = nuclear matrix element
- m_e = electron mass

Experiment observes $N^{0\nu} = \ln2 \frac{N_A}{A} a \cdot \epsilon \cdot Mt / T_{1/2}$ and $N^{bkg} = Mt \cdot B \cdot \Delta E$

Experimental sensitivity

$T_{1/2}(90\% CL) > \begin{cases} \frac{\ln2}{2.3} \frac{N_A}{A} a \cdot \epsilon \cdot Mt & \text{for } N^{bkg} = 0 \\ \frac{\ln2}{1.64} \frac{N_A}{A} a \cdot \epsilon \sqrt{\frac{Mt}{B \cdot \Delta E}} & \text{for large } N^{bkg} \end{cases}$

M = mass of detector
t = measurement time
A = isotope mass per mole
N_A = Avogadro constant
a = fraction of $0\nu\beta\beta$ isotope
ϵ = detection efficiency
B = background index in units cmt/(keV kg y)
ΔE = energy resolution = energy window size
Focus on light neutrino exchange mode

Decay rate depends on an effective Majorana mass. Its calculation requires knowledge of nuclear physics quantities.

\[
\left(T_{1/2}^{0\nu} \right)^{-1} = G^{0\nu} \cdot \left| M^{0\nu} \right|^2 \cdot \left< m_{\beta\beta} \right>^2
\]

Because of the imaginary phases cancellations may occur.

\[
\left< m_{\beta\beta} \right> = m_1 \cdot U_{e1}^2 + m_2 \cdot U_{e2}^2 \cdot e^{2i\phi_{12}} + m_3 \cdot U_{e3}^2 \cdot e^{2i\phi_{13}}
\]

Assumes decay is driven by light neutrino exchange.
Nuclear $0\nu\beta\beta$-decay ($\bar{\nu} = \nu$)

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{\nu}_e\nu_e)$

Light neutrino exchange mechanism

virtual excitation of states of all multipolarities in $(A,Z+1)$ nucleus

GT amplitudes to 1^+ states — from charge-exchange reactions

Nuclear Matrix Elements

\[\left[T_{1/2}^{0\nu} \right]^{-1} = G_{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \]

Extracting an effective neutrino mass requires an understanding of the nuclear matrix elements (NME) at about the 20% theoretical uncertainty level.

Recent progress NSM-QRPA:
- 2005 within \(x \times 5 \)
- 2012 agree within \(x \sim 2 \)

Agreement between methods doesn’t necessarily provide an estimate of theoretical uncertainties or of actual values.

Dueck, Rodejohann & Zuber Phys. Rev. D 63 054031 (2011) with \(r_0 = 1.2 \) fm and \(g_A = 1.25 \)
Germanium for neutrinoless double-beta decay experiments

Germanium detectors

• Source is detector
• Good energy resolution
• Well established technology
• Intrinsically clean (high-purity germanium)

76Ge isotope for 0νββ

• Q-value of 2039keV above most backgrounds
• Can be enriched to >86% in 76Ge (nat. abundance ~ 8%)
• Slow 2νββ rate (10^{21} yr)
• Best limit to date on 0νββ
Sensitivity and backgrounds - ^{76}Ge

Background free

\[
\left(T_{1/2}^{0v} \right)^{-1} \propto \epsilon_{\text{eff}} \cdot I_{\text{abundance}} \cdot \text{Source Mass} \cdot \text{Time}
\]

Background limited

\[
\left(T_{1/2}^{0v} \right)^{-1} \propto \epsilon_{\text{eff}} \cdot I_{\text{abundance}} \cdot \sqrt{\text{Source Mass} \cdot \text{Time} / \text{Bkg} \cdot \Delta E}
\]

Mod. Phys. Lett. A 21 (2006), p. 1547 (3σ): (1.30-3.55) x 10^{25} years

Inverted Hierarchy ($m_1 \rightarrow 0 \text{ eV}$)

0νββ-decay

Wednesday, February 6, 13

s, Feb. 6, 2013

Seminar 03/26/2014
Experiments & sensitivity to $0\nu\beta\beta$-decay

To reach IH region requires sensitivities of

$0\nu\beta\beta \ T_{1/2} \sim 10^{26} - 10^{27} \text{ years}$

$(2\nu\beta\beta \ T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

Most sensitive experiments to date using ^{76}Ge, ^{130}Te, and ^{136}Xe have attained $T_{1/2} > 10^{25} \text{ years}$

Typical Source Mass \cdot exposure times of 30 - 90 kg-years

$$\left[T_{1/2}^{0\nu} \right]^{-1} \propto \varepsilon_{\text{eff}} \cdot I_{\text{abundance}} \cdot \text{Source Mass} \cdot \text{Time}$$

Background free

$$\left[T_{1/2}^{0\nu} \right]^{-1} \propto \varepsilon_{\text{eff}} \cdot I_{\text{abundance}} \cdot \frac{\sqrt{\text{Source Mass} \cdot \text{Time}}}{Bkg \cdot \Delta E}$$

Background limited
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter, Brianna Mount, Greg Serfling, Jared Thompson

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusev,
Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
Nicolas Abgrall, Mark Amman, Paul Barton, Yuen-Dat Chan, Alex Hegai,
James Loach, Paul Luke, Ryan Martin, Susanne Mertens, Alan Poon,
Kai Vetter, Harold Yaver

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliott, Johnny Goett, Keith Rielage, Larry Rodriguez, Michael Ronquest, Harry Salazar, Wenzhi Xu

North Carolina State University, Raleigh, North Carolina and TUNL
Dustin Combs, Lance Loviner, David G. Phillips II, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Jim Beene, Fred Bertrand, Greg Capps, Alfredo Galindo-Uribarri, Kim Jeske, David Radford, Robert Varner, Brandon White, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsui

Pacific Northwest National Laboratory, Richland, Washington
Estanislao Aquayo, Jim Fast, Eric Hoppe, Richard T. Kouzes, Brian LaFerriere, Jason Merriman, John Orrell, Nicole Ovman, Doug Reid

South Dakota School of Mines and Technology, Rapid City, South Dakota
Adam Caldwell, Cabot-Ann Christoferson, Stanley Howard, Anne-Marie Suriano

Tennessee Tech University, Cookeville, Tennessee
Mary Kidd

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of North Carolina, Chapel Hill, North Carolina and TUNL
Padraic Finnerty, Florian Fraenkle, Graham K. Giovanetti, Matthew P. Green, Reyco Henning, Mark Howe, Sean MacMullin, Kyle Snavely, Jacqueline Strain, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Leila Mizouni

University of South Dakota, Vermillion, South Dakota
Vince Giuseppe, Kirill Pushkin, Nathan Snyder

University of Tennessee, Knoxville, Tennessee
Yuri Efremenko, Sergey Vasilyev

University of Washington, Seattle, Washington
Tom Burritt, Jason Detwiler, Peter J. Doe, Greg Harper, Jonathan Leon, David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel
SURF Chronology: 2006-2013

- **2006**: Homestake donates mine. T. Denny Sanford donates $70M.
- **2007**: NSF selects Homestake to be the DUSEL.
- **2008**: Ross Shaft reentry and underground dewatering begin.
- **2009**: Yates Shaft reentry and construction on 4850 Level begin.
- **2010**: Davis Campus excavation completed. NSB terminates DUSEL funding.
- **2011**: Davis Campus outfitting begins. DOE funds operations at $15M / year.
- **2012**: Davis Campus completed. LUX and MAJORANA experiments deploy underground for assembly. Ross Shaft refurbishment begins.
- **2013**: LUX begins dark matter search. MAJORANA begins data collection. Designs advance for LBNE and LZ experiments. DIANA site selected.
The **MAJORANA DEMONSTRATOR**

Funded by DOE Office of Nuclear Physics and NSF Particle and Nuclear Astrophysics, with additional contributions from international collaborators.

Goals:
- Demonstrate backgrounds low enough to justify building a tonne scale experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Test Klapdor-Kleingrothaus claim.
- Low-energy dark matter (light WIMPs) search.

- **Located underground at 4850’ Sanford Lab**
- **Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV)**
 - *4 counts/ROI/t/yr* (after analysis cuts)
 - scales to 1 count/ROI/t/yr for a tonne experiment
- **40-kg of Ge detectors**
 - Baseline: 20-kg of 86% enriched 76Ge crystals & 20-kg of natGe (up to 30-kg enriched 76Ge)
 - Detector Technology: P-type, point-contact.
- **2 independent cryostats**
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- **Compact Shield**
 - low-background passive Cu and Pb shield with active muon veto
Sensitivity and backgrounds

76Ge Example

$T_{1/2}^{0\nu} = \ln(2)N\varepsilon t/UL(B)$

$\langle m_{\beta\beta} \rangle$ sensitivity (90\% CL, QRPA NME) [m eV]

Inverted Hierarchy ($m_1 \rightarrow 0$ eV)

Mod. Phys. Lett. A 21 (2006), p. 1547 (3\sigma): (1.30-3.55) x 10^{25} years

TAUP, Münich, 5 Sept. 2011
MJD Schedule

MJD will proceed in 3 steps

Prototype Cryostat (Spring 2013):
above ground, commercial copper, 2-3 strings $^{\text{nat}}$Ge
Test mechanical design
Test detector performance in cryostat and
Monte Carlo models (eg. granularity)

Cryostat 1 (Early 2014):
underground, electroformed copper, 3 strings $^{\text{enr}}$Ge, 4 strings $^{\text{nat}}$Ge

Cryostat 2 (Late 2014):
underground, electroformed copper, up to 7 strings $^{\text{enr}}$Ge

Prototype cryostat

Underground cryostat
and “monolith”
Electroforming Copper

• **Status**
- For the past 18 months have been operating 16 baths, 10 at 4850L SURF and 6 at shallow UG site at PNNL.
- Mandrels with Cu pulled from baths at PNNL and TCR. Cu machined, removed, and flattened.
- Properties look good.
- Small parts fabricated from EF Cu.
- All cryostat 1 parts complete.
- Part of inner shield

• **Major remaining activities** - 12 months of electroforming remain - cryo 2 parts, inner shield.
MJD Progress in FY13

0νββ-decay
Wednesday, February 6, 13

NuMass, Feb. 6, 2013
Enriched germanium processing

Enrichment to >86% at Electro-Chemical Plant (ECP) in Russia

Reduction to Ge metal at Electrochemical Systems Inc. (ESI)

Zone-refinement by commercial vendor

Pull crystal by commercial vendor

Detector fabrication by commercial detector vendor
P-type Point Contact Detectors

- P-type Point Contact HPGe detectors
- “Novel” technology
- Small point contact to readout charge, low capacitance
- Thick outer contact (n+, lithium diffused), strongly attenuates alphas

E. Aguayo et al. [The Majorana Collaboration],
(Left top) A typical charge pulse of an ordinary semi-coaxial high-purity germanium detector.
(Left lower) The corresponding current pulse from differentiating the above pulse.
(Right upper) A typical charge pulse from a point contact detector.
(Right lower) the current pulse from differentiating the charging pulse above.
A gamma-ray spectrum taken with a point-contact detector using a 232Th calibration source (Black fitted line). The lines at 1581, 1588, 1621, 1625, 1631, and 1638 keV are full-energy peaks corresponding to gamma rays of those energies, and are dominantly multi-site. The peak at 1592-keV is the double-escape peak from the 2615-keV line in the daughter 208Tl and serves as a proxy for the 0-decay signal. The red spectrum shows the events remaining after the application of PSA cuts to remove multi-site events. A fit to the remnant peaks and background is also shown (red line).
P-type Point Contact Detectors

Low capacitance results in greatly reduced series noise
- opportunity for dark matter search
Discovery of $0\nu\beta\beta$-decay

- **Evidence**: a combination of
 - Correct peak energy
 - Single-site energy deposit
 - Proper detector distributions (spatial, temporal)
 - Rate scales with isotope fraction
 - Good signal to background
 - Full energy spectrum (backgrounds) understood.
Reducing Backgrounds - Two Basic Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non “source” materials
 - Clean passive shield
 - Fabricate ultra-clean materials underground
 - Go deep — reduced μ’s & related induced activities

- Utilize background rejection techniques

 $0\nu\beta\beta$ is a single site phenomenon, many backgrounds have multiple site interactions

 - Energy resolution
 - Active veto detector
 - Tracking
 - Energy & Angular correlations
 - Ion Identification
 - Granularity [multiple detectors]
 - Pulse shape discrimination (PSD)
 - Segmentation
 - Single Site Time Correlated events (SSTC)
counts in the 0νββ region of interest
[counts / 4 keV / tonne-year]

- Electroformed Cu: 0.888
- OFHC Cu shielding: 0.288
- Lead shielding: 0.195
- Cables: 0.222
- Front ends: 0.187
- Ge (U/Th): 0.067
- Plastics + other: 0.030
- 68Ge, 60Co (enrGe): 0.176
- 60Co (Cu): 0.110
- External γ, (α,ν): 0.100
- Rn, surface α: 0.054
- Ge, Cu, Pb (n, ng): 0.210
- Ge(n,n): 0.170
- Ge(n,γ): 0.130
- Direct μ + other: 0.030
- ν backgrounds: 0.011

Total:
2.9 cts / 4 keV / t-y

Notes:
- Primordial contamination of the DEMONSTRATOR
- Long-lived cosmogenic activation
- Environmental backgrounds at Sanford
- In-situ μ-induced
- Neutrino backgrounds
Background mitigation techniques

Granularity

Pulse-shape analysis

Time correlation
Majorana Active Veto System (Contribution part from UT)

32 veto panels

- Dimensions of individual panels from $0.6 \, \text{m}^2$ to $2.0 \, \text{m}^2$.
- Veto should be 99% hermetic.
- Panels should be highly efficient for muons (>99%) and other penetrating particles but blind for gammas.
- False veto signals should not introduce large dead time.
• All 32 Veto Panels were assembled and tested at SERF (UT, Knoxville)
• All 32 Veto panels are shipped to SD
• 12 Veto panels are operated permanently at SURF in Davis campus since October 2013.
International Program in $0\nu\beta\beta$

- Previous Expts.
 - ~ 1 eV
 - \sim kg scale

- Quasi-degenerate
 - \sim 100’s meV
 - 30 - 200 kg
 - \sim 8 - 10 expts

- Inverted hierarchy
 - \sim 30 - 40 meV
 - 1 tonne (phased/scaled)
 - \sim 3 expts (?)

- Normal hierarchy
 - \sim 5 meV
 - \geq 10’s ton scale

0νββ-decay Summary

- The observation of 0νββ-decay would demonstrate Lepton number violation and indicate that neutrinos are Majorana particles - constituting a major discovery.
 - Needs to be confirmed from independent experiments using different isotopes and measurement techniques.

- If 0νββ-decay is observed then it opens an exquisitely sensitive window to search for physics beyond the Standard model.
 - Measurements in different isotopes may provide insights into the underlying physics process(es) (η).
 - Extraction of $<m_{\beta\beta}>$ will be challenging.
Thanks for your attention!
Backup slides
Sensitivity from now onwards

Sensitivity of 0nbb Experiments

![Graph showing sensitivity of 0nbb experiments over time, with data points for CUORE, EXO-200, GERDA, KL-Zen, MJD, and SNO+ experiments.](image-url)
MPLA 16(2001)2409:
5 HP Ge, 1990.08-2000.05,
55.0 kg·xy, no PSA, 2.2-3.1σ effect

PLB 586(2004)198:
5 HP Ge, 1990.08-2003.05,
71.7 kg·xy, no PSA, 4.2σ effect

MPLA 21(2006)1547:
4 HP Ge, 1995-2003,
? kg·xy, PSA – 2 methods, 6.2σ effect
2β0ν decay of 76Ge in the H-M experiment

Heidelberg-Moscow experiment:
5 HP Ge detectors (11 kg), 86-88% enriched in 76Ge, Gran Sasso Underground Laboratory (3600 m w.e.), passive shielding, many years of measurements (start in 1990)

There are few articles on this subject:

0) H.V. Klapdor-Kleingrothaus et al. (HM collaboration, 14 persons), Eur. Phys. J. A 12 (2001) 147 (received 2001.08.22)
53.9 kg\timesy full statistics (35.5 kg\timesy with PSA for single site events): $T_{1/2}(0\nu) > 1.3(1.9)\times10^{25}$ yr at 90% C.L.

55.0 kg\timesy full statistics (no PSA), $T_{1/2}(0\nu) = 1.6\times10^{25}$ yr [(0.8-35.1)$\times10^{25}$ yr at 95% C.L.]
46.5 kg\timesy part of statistics (no PSA), $T_{1/2}(0\nu) = 1.5\times10^{25}$ yr [(0.8-18.3)$\times10^{25}$ yr]
2.2-3.1σ effect

Criticized in number of works:
Yu.G. Zdesenko et al., Phys. Lett. B 546 (2002) 206 no effect or $\sim1.5\sigma$ effect
Also, Moscow part of the H-M collaboration derived only limit:

\[T_{1/2}(0\nu) > 1.6 \times 10^{25} \text{ yr at 90\% C.L.} \]

2) H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets,

71.7 kg\times\text{y full statistics (no PSA)}, \(T_{1/2}(0\nu) = 1.2 \times 10^{25} \text{ yr} \) \([0.7-4.2] \times 10^{25} \text{ yr at 95\% C.L.} \]

\[4.2\sigma \text{ effect} \]

Not only statistics was bigger; \textbf{also summing procedure was improved:}

\text{Final spectrum = sum of 9570 individual spectra}
\text{360 calibration spectra for each of 5 detectors, FWHM(2615 keV)=3.27 keV for sum of 1800 calibration spectra}

? kg\times\text{y, PSA – 2 methods (pulse shapes were written since 1995)}

\[T_{1/2}(0\nu) = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ yr – final result} \]

\[6.2\sigma \text{ effect} \]