Detecting the Undetectable: Neutrino Signals in the Double Chooz Detector

> UT HEP seminar Ben Rybolt

> > 4/2/2014

Outline

- What is a neutrino? Why do we want to study them?
- Building a detector to detect the undetectable
- What does a neutrino detector see?
- How do you seperate a neutrino signal from the background?

Neutrinos

"I have done a terrible thing, I have postulated a particle that cannot be detected." –Wolfgang Pauli (1930)

Why measure them?

- Most numerous particle in the Universe
- Fundamental Science
 - Neutrino Oscillation
 - Possible CP violation
 - Could account for matter/anti-matter asymmetries
- Neutrino behavior must be correctly modeled for astrophysics and cosmology
 - Supernova
 - Big Bang
- Nuclear Reactor Detector/Monitor
 - Nuclear Non-Proliferation

Why are they difficult to observe?

- Light Particle
 - Mass of $v_e < 2.2 \ eV$
 - 250,000 times lighter than electron
- Neutral Charge
- Interact only though the weak force
- Small Cross section
- $\sigma = 10^{-18} \ barns$ at reactor energies

One trillion trillion times smaller than a Uranium Nuclei!

Detection Mechanism

- Inverse Beta Decay (IBD)
 - Produces:
 - Positron
 - Energy Depends on Neutrino Energy
 - Minimum Signal -> 1.02MeV
 - Neutron
 - Low Energy
 - Thermalizes with random walk
 - Captured on nuclei
- Conservation of Energy determines threshold of interaction

$$\begin{split} E_{\bar{v}_e} + E_p &= E_{e^+} + E_n \\ E_{\bar{v}_e} &= E_{e^+} + E_n - E_p \\ &= 0.511 + 939.565 - 938.272 \\ &= 1.804 \ MeV \end{split}$$

- Neutrinos generated in two nuclear reactors
- Four Separate Volumes
 - Inner Veto
 - Scintillator
 - Optically separated
 - PMTs
 - Buffer
 - Transparent Mineral Oil
 - PMTs
 - Gamma Catcher
 - Scintillator
 - Target
 - Gadolinium doped Scintillator
 - Gadolinium has high neutron capture cross section
 - Relatively high energy gamma rays associated with neutron Capture (~8MeV)
 - Very Important!

- Neutrinos generated in two nuclear reactors
- Detected by
 - IBD inside Target
- Four Separate Volumes
 - Inner Veto
 - Scintillator
 - Optically separated
 - PMTs
 - Buffer
 - Transparent Mineral Oil
 - Gamma Catcher
 - Scintillator
 - Target
 - Gadolinium doped Scintillator
 - Gadolinium has high neutron capture cross section
 - Relatively high energy gamma rays associated with neutron Capture (~8MeV)
 - Very Important!

- Neutrinos generated in two nuclear reactors
- Detected by
 - IBD inside Target
- Four Separate Volumes
 - Inner Veto
 - Scintillator
 - Optically separated
 - Buffer
 - Transparent Mineral Oil
 - PMTs
 - Gamma Catcher
 - Scintillator
 - Target
 - Gadolinium doped Scintillator
 - Gadolinium has high neutron capture cross section
 - Relatively high energy gamma rays associated with neutron Capture (~8MeV)
 - Very Important!

- Neutrinos generated in two nuclear reactors
- Detected by
 - IBD inside Target
- Four Separate Volumes
 - Inner Veto
 - Scintillator
 - Optically separated
 - Buffer
 - Transparent Mineral Oil
 - 🧲 Gamma Catcher
 - Scintillator
 - Target
 - Gadolinium doped Scintillator
 - Gadolinium has high neutron capture cross section
 - Relatively high energy gamma rays associated with neutron Capture (~8MeV)
 - Very Important!

- Neutrinos generated in two nuclear reactors
- Detected by
 - IBD inside Target
- Four Separate Volumes
 - Inner Veto
 - Scintillator
 - Optically separated
 - Buffer
 - Transparent Mineral Oil
 - Gamma Catcher
 - Scintillator
 - Target
 - Gadolinium doped Scintillator
 - Gadolinium has high neutron capture cross section
 - High energy gamma rays associated with neutron Capture (~8MeV)
 - Very Important!

- Trigger System
 - Divide Detector PMTs into two groups
 - Sum the groups
 - Sum the Inner Veto PMTs
 - If any group has a readout value above threshold the Detector is Triggered and information from all PMTs is stored
 - 350 keV Threshold for the Inner
 Detector is well below the 1.02 MeV
 minimum neutrino signal from
 positron annihilation

- 317829 Events/hour = 88Hz
- Any charged particle moving through scintillator will create light
- Possible Sources of Charged Particles
 - Radioactive Decay
 - Particles from Cosmic Ray Showers
 - Positrons from neutrino IBD
 - Gammas from Nuclear Capture of Neutrons (i.e. on Gd and others)

- 317829 Events/hour = 88Hz
- Any charged particle moving through scintillator will create light
- Possible Sources of Charged Particles
 - Radioactive Decay
 - Particles from Cosmic Ray Showers
 - Positrons from neutrino IBD
 - Gammas from Nuclear Capture of Neutrons (i.e. on Gd and others)
- Most numerous charged particles come from muons or muon induced reactions

- Muons 45 (Hz)
- Double Chooz Detector Far is under 300 MWE rock overburden
 - Near Detector is only 120 MWE
- Veto Muons and 1 ms after Muons

An Unexpected Background

- Possible <u>Sources of Light</u>
 - Light Noise (20Hz)
 - Radioactive Decay
 - Particles from Cosmic Ray Showers
 - Positrons from neutrino IBD
 - Gammas from Nuclear Capture of Neutrons (i.e. on Gd and others)
- Tagged by looking for events where >12% of charge is collected by a single PMT

OR

- When RMS of PMT start times > 40 ns
 - Events starting in center will have similar start times
 - Events localized by one PMT will have varied start times
- What is the source of these events?

Glowing PMTs

- Voltage discharge across PMT base creates light inside the detector
- Increases with higher temperature
- Increases with higher Voltage

- Veto Muons and 1 ms after Muons and Veto Light Noise
- Remaining Events = **12Hz**
- Possible Sources of Light
 - Radioactive Decay
 - Light noise
 - Particles from Cosmic Ray Showers-
 - Positrons from neutrino IBD
 - Gammas from Nuclear Capture of Neutrons (i.e. on Gd and others)
- What about low energy events?

- Possible Sources of Charged Particles
 - Radioactive Decay
 - K 40 -> 1.46 MeV γ 10%
 - Tl 208 -> 2.6MeV γ 99.75%
 - Bi 214 ->
 - 0.6 MeV γ 45%
 - 1.75 MeV γ 14%

- Neutrino Signal Coincidence
 - Positron scintillation and annihilation
 - Neutron capture on Gd
 - ~8MeV γ
 - Delayed by ~ 30 microseconds

Finding Neutrinos: Summary

- 1 hour of data
 - 300,000 Triggered Events
 - 160,000 Muons
 - 75,000 Light Noise Events
 - 46,000 possible Neutrinos
 - 200 with correct time coincidence of prompt and delay Energy
 - 30 with correct Delay Energy
 - 1 Neutrino

Pauli has not done such a terrible thing

Detecting Neutrinos: Now What?

Nuclear Reactor Monitor

Detecting Neutrinos: Now What?

Conclusion

- Neutrino detection has gone from an impossibility to a precision measurement in the last 80 years
- Neutrino Detectors see much more than neutrinos
- Looking for Prompt-Delay pairs is an extremely powerful tool for identifying Neutrinos
- Gd doped scintillator gives a huge background suppression

