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CVD DIAMONDS
Is it the next great advancement in detector technology?
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CHEMICAL VAPOR DEPOSITION
• Artificial process by which a gas containing carbon is 

decomposed and the carbon atoms are deposited on the 
surface.

• Graphite is the thermodynamically stable crystalline phase of 
carbon, so it must be suppressed to allow for diamond formation. 

• The graphite sp2 bonds are usually broken by “non-carbon 
etchants” such as atomic hydrogen by mixing large amounts of 
hydrogen  with the process gas and activating it either thermally 
or by plasma.

• These diamonds have many applications.
• One of which is for detecting charged particles.
(Fraunhofer Institute IAF)
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GENERAL PROPERTIES
• Strength of material  rigidity of it’s 

lattice & relative small mass of 
carbon atom

• High melting point  4363 K
• Highest thermal conductivity of any 

known material
• Electrical properties  Bandgap of 

5.45 eV
• High resistivity  1013 – 1016 Ωcm
• Insulator and Semiconductor

• High refractive index (n=2.419)
(R J Tapper 2000) 
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Microscopic CVD Diamonds 
grown on a substrate at 100 μm



DETECTING INDIVIDUAL PARTICLES

• Determining Quality: we are concerned 
with the generation of mobile charge 
within the material

• Also, it’s consequent movement in 
response to an applied electric field (R J 
Tapper 2000)

• Deposition of energy by charged particles 
through the material is of most importance

• In our setup, the charges get trapped at 
the surface, and a certain amount of 
charge is generated, which is compared to 
a total amount of charge that should be 
collected.
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BASIC DETECTION MECHANISM
• General approach by Ramo’s Theorem (Ramo 1939)

• 	 ∙

• Where charge q moves with inst. velocity v in the vicinity of a number of 
conductors with fixed potentials by external voltages. A is a conductor 
held at potential , deliver current to voltage source as q moves, 
creating a signal.

• This signal can then be measured by our setup.
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STOPPING POWER

• In passing through matter, fast 
charged particles ionize the atoms or 
molecules which they encounter. 

• The fast particles gradually lose 
energy in many small steps. 

• Stopping power is defined as the 
retarding force acting on the particle 
during the interaction with materials.

• Picture  The stopping power of 
aluminum for protons, plotted versus 
proton energy.
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CHARGE COLLECTION EFFICIENCY

• 	 	 	 (Defined as the ratio of measured charge over the total charge 
generated)

• With CVD diamonds and charge-sensitive measurements, the charge 
collection efficiency is the main signature of whether the diamond is a good 
detector or not.

• With additional radiation damage, the charge collection efficiency is lowered.
• Also, the more Bias voltage put through the diamond detector, the more 

charges are displaced and therefore more charge is collected, raising the 
efficiency. 
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CHARGE COLLECTION DISTANCE
• CCD: The distance to collect all charge deposited
• To maximize the amount of charge collection and obtain the best possible 

signal We want a large charge collection distance (CCD) on the atomic 
scale.

• Diamonds perform so well for this because they have been shown to have a 
large charge collection distance on the atomic scale (tens to hundreds of 
μm)  Compared to silicon.

• However, charge collection distance is not what our primary focus is with this 
setup.

(R J Tapper)
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THE LHC
A look into CMS and ATLAS
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THE LARGE HADRON COLLIDER (LHC)
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 Largest accelerator in the world.
 Capable of probing energies in excess of 7 TeV, in 2015 

this will double when upgrades are finished. 
 CMS (Bottom Left) and ATLAS (Right) are the two major 

detection locations.
 Primary goal is to observe new, rare particles.
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EVENT DISPLAY
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MEASURING RADIATION HARDNESS
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SCHEMATIC OF SET-UP
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PICTURES OF SET-UP

Jared M. Smith

17

Detector (Outer View)

Detector (inside view) with Diamond and Strontium exposed



MORE PICTURES
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RADIATION DAMAGE

• NOTE: This is for PROTON irradiation.
• Affects the charge collection 

distance, lowering it.
• This weakens the signal received by 

a displaced charge in the diamond.
• Highly studied by the RD-42 

Collaboration based out of CERN
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RD42 Collaboration, Cristinziani, Markus Nucl.Instrum.Meth. 
A623 (2010) 174-176 arXiv:0910.0347
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EXPERIMENTS RUN

• Using two diamonds, S130 and S131, and a Polonium 210 alpha source, I 
used the test set-up from the previous slide to perform the following tests:

• S130 and S131:
• Standard Exposure: 

• Measure charge collection before exposure to alpha particles, then measure again 
after exposed for roughly 24 hours.

• Light-Tight and Voltage: 
• Measure charge collection with the detector in a “light-tight” box and by leaving 

the bias voltage  across diamond at a constant 500V during exposure periods.
• Standard Exposure occurred in December 2013 and March 2014
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CVD DIAMOND S130

• No irradiation
• Thickness: 536 microns
• Dimensions: 4.6 X 4.6 mm
• Bandgap of 5.4 eV
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CVD DIAMOND S131

• Irradiation of 0.5 X 1014 neutrons/cm2

• Thickness: ≈500 microns
• Dimensions: Roughly the same size as S130:

• ≈ 4.6 X 4.6 mm
• Bandgap of 5.4 eV
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ALPHA SOURCE
• Source is Polonium-210
• Decays into Lead-206 by alpha 

decay
• Emits alpha particles in the process
• We use this alpha source to 

generate electron-hole pairs in the 
diamond, to measure the electron 
drift within the diamond.
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CALCULATING % CHARGE 
COLLECTION

• Take into account:
• Source: Polonium-210
• 5.30438 MeV alpha particles generated by Polonium210 source
• 1 electron-hole pair generated per 13 eV

• To get the % charge collection: must divide amount of charge collected at certain 
bias voltage by total amount of charge that should be collected overall.

• However, this is difficult without knowing the specific qualities of the electronics and 
the setup; therefore, I will normalize the max collection to the saturation value given 
by the baseline of each test.

• 	
	
	 ∗ 5. 30438	 408,030	

•  Total charge that should be collected.
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FITTING METHODS

• Double Gaussian Fit:
• Employed for each data set 

containing a bin of charges 
collected and amplitude of each.

• Fermi Function:
• Employed for fitting the graphs of 

bias versus signal voltage.
• Modeled by:
• 1

• 	 	 	 	 	 , 	 	
	 	 .

• S131 Long Term Fit:
• /

• 	 	 	 	 	 	 	 	
	 	 	 	 .

• All fits done in ROOT data analysis 
framework.
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S130 STANDARD EXPOSURE
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S130 LIGHT TIGHT/VOLTAGE TEST
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S131 STANDARD EXPOSURE
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S131 STANDARD EXPOSURE TEST 2
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S131 SIGNAL DECAY VERSUS TIME
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RESULTS – S130
S130 % Charge Collection Threshold/Trigger-Level

Standard Exposure – December 2013
After 0 Days ≈100% 0.1 V

After ≈1 Day ≈100% 0.1 V

Light-Tight/Voltage – March 2014
After 0 Days 100% 0.1 V

After ≈1 Day 99.5% 0.1 V

After ≈2 Days 99.2% 0.2 V
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RESULTS – S131
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S131 % Charge Collection Threshold/Trigger-Level
Standard Exposure Test 1 – December 2013

After 0 Days 100% 0.1 V
After ≈1.1 days 99.5% 0.2 V

Standard Exposure Test 2 – March 2014
After 0 Days 100% 0.2
After ≈1.7 Days 96.2% 0.2
After ≈5.9 Days 95.3% 0.4

Light-Tight/Voltage – March 2014
After 0 Days 100% 0.25
After ≈1 Day 93.6% 0.25
After ≈2 Days 91.9% 0.3
After ≈5 Days   (500 V) 91.3% 0.1
After ≈6 Days   (500 V) 91.1% 0.1
After ≈8 Days   (500 V) 91.3% 0.1
After ≈11 Days (500 V) 91.9% 0.1



CONCLUSION

• Overall, it is clear that as a diamond is more heavily irradiated, the charge 
collection efficiency is lowered.

• Furthermore, over time that the diamond is left under constant voltage 
and exposure to radiation, the efficiency is also lowered.

• Some unknowns:
• We believe there may be a reverse field created immediately after the 

voltage is taken off the diamond where the electrons and holes are pulled in 
the opposite direction.

• What about 3D diamond detectors?
• It is clear that diamonds will not be used as the next upgrade of the 

detectors in the LHC, but they still have many other uses.
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FUTURE OUTLOOK

• 2014
• May 2014: Continue trials of diamonds on our test stand

• Continued testing of S131
• Testing of more damaged diamonds and other detector materials (e.g. silicon)

• Early June 2014: Travel to FNAL (FermiLab) to perform tests on high energy 
particle beam with current set-up (Predicted).

• Late June 2014: Analyze Data from FNAL and tests at UT-K.
• July 2014: Organize data and written report to present later in month
• Fall Semester 2014: continue work with HEPG

• 2015
• Spring Semester 2015: continue work with HEPG
• Summer 2015: REU at CERN?
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