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Abstract

We investigate the drivers of coal generator retirement using data on coal generator turnover, delivered
coal prices, and wholesale electricity prices. To do this we identify the impact of sunk retirement costs on
the probability of coal generator retirement. By pairing an optimal stopping model of firms’ generator
retirement decisions with the retirement timing of almost 200 coal-fired generators across the U.S., we
estimate retirement costs that are not typically disclosed by firms and are not publicly available. Because
our real options model cannot impute the retirement costs for coal generators that have not retired, we
use a machine learning algorithm to impute retirement cost amounts for active coal generators. With
this data, we used a parametric approach to estimate the impact of retirement costs on the probability of
retirement and found that a one standard deviation increase in retirement costs resulted in a 0.2 percent
reduction in the probability of retirement. We use the real-options model to predict the retirement date
for every active coal generator in the U.S. We conduct two counterfactual analyses, modelling a carbon
tax of $40 and a fuel cost subsidy. We find that a carbon tax brings forward the average retirement
age by more than six years and that a fuel cost subsidy would have to cover more than half the cost of
delivered fuel to extend the average life of a coal generator by 5 years.
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1 Introduction

Coal’s share of electricity generation in the United States has fallen from around half to a quarter over
the last decade. This shift has been driven primarily by the retirement of existing coal-fired generators.
These retirements have consequences for the economy (Hoag and Wheeler| 1996} Black, McKinnish, and
Sanders| 2005) and environment (Johnsen, LaRiviere, and Wolff, 2019} [Holladay and LaRiviere, [2017; |Fell
and Kaffine, |2018; [Linn and Muehlenbachs, 2018}, [Schiavo and Mendelsohn, |2019)). Regions of the country
that produce coal are likely to struggle economically as consumption falls. These regional economic impacts
have motivated several recent proposals to subsidize coal-fired generation and other technologies with on-site
fuel sources (CITE). Coal generators are also one of the largest sources of carbon dioxide in the country and

their exit could lead to significant reductions in U.S. carbon emissions. Carbon pricing policies are expected
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to perpetuate this shift away from coal generators (Cullen and Mansur, [2017a)). Whether such policies will
alter the trajectory of coal retirements remains an unanswered question.

In this paper, we investigate coal-fired power plant retirements in the U.S.; to understand how market
forces and environmental regulation have affected the composition of the generating fleet. We predict the
expected retirement time for every coal-fired generator in the country and then evaluate how environmental
and industrial policy would affect those retirement dates. In our no-policy baseline we find the average
remaining life expectancy at coal fired generators is around X years. We find that a $40 carbon tax reduces
the average retirement age by six years, compared to a current mean predicted retirement date of XXXX.
A coal fuel subsidy would have to be around half of fuel costs to produce a five year extension of average
retirement times.

A growing literature attempts to document the drivers of the decline in coal-fired generation. Several
studies consider the marginal effects of natural gas prices and/or environmental policies on coal-fired gener-
ation generally (Cullen and Mansur} [2017a; Holladay and LaRivierel |2017; [Fell and Kaffine), |2018; [Linn and
Muehlenbachs, 2018|). This marginal approach provides little insight on the long-run response of coal-fired
generation to the retirements seen over the past decade. For example, following a relaxation of emission
control policies or an increase in natural gas prices, reductions in coal-fired generation will only persist if
they were caused by retirements.

A second smaller group of studies focuses on retirements by accounting for the effect of both marginal and
fixed costs. |Schiavo and Mendelsohn| (2019) examine the statistical relationship among coal-fired retirement
rates, natural gas prices, and regional air pollution regulations (SO2 trading programs, Clean Air Interstate
Rule, and Cross State Air Pollution Rule). They find that air pollution regulations were a more influential
factor in coal plant retirements than low natural gas prices. [Linn and McCormack| (2019) use a structural or
computational model of the electricity system to consider the effect of a variety of market forces and policies
on the long-run composition of coal in the generation portfolio. In contrast to the reduced form approach
taken in [Schiavo and Mendelsohn| (2019), they find that market forces (i.e, natural gas prices, renewable
generation, and electricity consumption) have a much larger effect on coal retirements than regional pollution
policies (NOx caps and MATS).

Instead of a post-mortem analysis of the drivers of retirement, we consider the effect of policies that may
exacerbate or alleviate future coal retirements. Predicting the effect of policies on the timing of retirement
remains a challenge due to data limitations. In particular, retirement costs (decommissioning costs, salvage
values, and environmental remediation) are typically not disclosed by utilities but are a key unobservable

variable in modelling retirement decisions because they act as a barrier to exit (Caves and Porter) [1976;



[Siegfried and Evans, |1994[)E| Previous work on market exit attempts to proxy for the sunk costs associated
with market exit using a variety of methodsEl

We employ a novel 3-step technique to back out the retirement costs implied by retired generators and
map those costs onto active generators. Those retirement costs allow us to model retirement decisions for
active generators based on the behavior of generators that have retired during our sample. We then use this
technique to determine the effect of two key policies (carbon tax and coal fuel subsidy) on the timing of
retirement. These results illustrate the relative importance of market versus regulatory drivers of coal-fired
generator retirements and adds to the broader literature on the role of environmental regulation on plant
entry and exit (e.g., Ryan, Shapiro and Walker, Suzuki 2013).

In step 1, we develop a real options model of power plant retirement decisions. The real options approach

(Dixit and Pindyck| |1994) treats retirement as an investment option and captures the uncertainty and

irreversibility in the retirement decision. We model the evolution of fuel and electricity prices for each coal-
fired generator in the country that was active in 2010. Looking at actual retirement dates for generators
that retired between 2010 and 2017, we back out the retirement costs consistent with the observed electricity

and fuel prices. While several papers use real options to model entry and exit of electric power plants

(Kumbaroglu, Madlener, and Demirel, [2008}, [Davis and Owens), [2003} [Rothwell, [2006} [Yang, Blyth, Bradley,|

Bunn, Clarke, and Wilsonl, [2008) ] we use real options to impute unobservable retirements costs from

observable retirement decisions.

In step 2, We impute retirement costs for active coal-fired generators based on the estimated retirement
costs from the real options model using a machine learning approach. We take the estimated retirement costs
from the real options model for the plants that have retired during our sample period as well as a wealth of
data on the generators and use LASSO and Regression Forest algorithms to model the retirement costs at
our sample of retired plants. Our models explain about 90% of the variation in retirement costs. We then
take the model fit to retired plants and use it to predict the retirement costs at currently active plants. We
find that these imputed retirement costs are correlated with plant characteristics in ways that are consistent
with intuition.

In step 3, we use the real-options model and the mapped retirement costs to predict the retirement date
for every coal generator in the U.S. that was active in 2017. To test the validity of our approach, we check our

predictions out of sample. We correctly predict 48 of the 69 (70%) generators that retired in 2018 and 2019.

! The literature also suggests lower rates of exit in capital intensive industries (Dunne and Roberts| [1991} Rosenbaum and|
[Lamort} 1992} |Siegfried and Evans} [1992)) and in industries with larger average firm size (Dunne and Roberts} 1991).

“Rosenbaum and Lamort| (1992)) accounted for sunk costs of exiting a market using the ratio of rental payments to assets
and primary product specialization ratio, which measures the percentage output actually belonging to an industry.
and Evans| (1992]) used the proportion of book value of assets that had not yet been depreciated to reflect sunk costs.

JCesena, Mutale, and Rivas—Davalos| (]2013[) provides a comprehensive review of real options theory applications to investments
in electricity generation projects.




We also are able to correctly predict which plants remain online after 2020. The real options model predicts
that XXX plants would remain active given the observed fuel and electricity prices since 2018. XXXX of
those plants are still online in 2020.

We conduct two counterfactual analyses, modelling a carbon tax of $40 and a fuel cost subsidy. We find
that a carbon tax brings forward the average retirement age by more than six years and that a fuel cost
subsidy would have to cover more than half the cost of delivered fuel to extend the average life of a coal
generator by 5 years. Few papers have attempted to estimate the impact of environmental regulation and
market forces on coal-fired power plant retirements. Linn and McCormack| (2019) finds that slow demand
growth and displacement by natural gas generation had reduced coal plant profits. Our analysis supports
the findings of |[Linn and McCormack| (2019) and suggests that there is little scope for policy to change the
retirement dates of coal fired power plants.

There is a significant literature evaluating the environmental impacts of energy policy using marginal
emissions rates. These papers typically estimate marginal emissions rates over space or time and use those
rates to examine the environmental impacts of electric vehicles (zivin2014spatial), bulk energy storage (Hol-
laday and LaRiviere| (2018)), wind power (Cullen| (2013) and many others. [Linn and McCormack]| (2019)
indicate that the long-run environmental impacts may be smaller than these studies suggest. One possible
explanation is that marginal emissions rates are sensitive to the fuel mix of generators (7). This high-
lights the importance of the transitional dynamics presented in our paper when assessing the environmental

implications of prices and policies in the electricity sector.

2 Coal-Fired Generator Retirement Model

The following illustrates a case where an electricity generation firm (utility) generates electricity with an

existing coal-fired generatorﬂ The firm receives a flow payoff:

#(Pa. Pe) — (PEa)qE(t) ~ Po(t)ao(t) — VCO(gs(t) - Fc) W

where Pg(t) is the wholesale electricity price, Po(t) is the price of coal, VC(gg) is the variable operating
and maintenance costs, and F'C' is the fixed levelized capital cost of the generatorﬂ qg is the quantity of

electricity supplied by the generator with % > 0. gc¢ is the quantity of coal used to generate gp with

4A generator contains all the equipment needed to produce electricity and typically operates independently. Electric power
plants can include multiple fuel generators which can use different fuels. For that reason, we conducted our analysis at the
generator level. We use the term “generator” and “unit” interchangeably.

5Following [Baumol and Willig| (1981)), we define “sunk costs” as costs that cannot be eliminated even by total cessation
of production. In contrast, “fixed costs” are costs that are not reduced by decreases in output so long as production is not
discontinued altogether. Thus, not all sunk costs are fixed and not all fixed costs are sunk.



gg—g > 0. This relationship between q¢ and qg captures the generation technology of a specific generating

unit with newer and more fuel efficient units requiring less fuel to generate an additional unit of electricity.

2.1 Price Uncertainty

While current electricity prices and coal prices are known with certainty, future prices are unknown. For
example, prices paid for the firm’s on-site stock of coal are known, but future prices of coal paid by the firm
are unknown. Future coal price uncertainty can be somewhat mitigated by purchasing coal on long-term
contracts. Thus, firms that utilize long-term coal contracts will be less exposed to coal price uncertainty than
firms that purchase coal on the spot market. Pindyck (1999) determined that energy (coal, crude oil, and
natural gas) prices are mean-reverting by testing a century’s worth of data. Following|Pindyck! (1999)), future
coal prices were treated as random variables and assumed to evolve according to geometric mean reversion
(GMR), dPc = rp,(Pc — Pc)Pcedt + op. Podzp,.. Here, rp, is the rate of reversion to the mean coal price
level, Pc is the long-run mean coal price level, and op, is the standard deviation rate. dzp, = e(t)\/(ﬂ is
the increment of the standard Weiner process, where €(¢) is a standard normal variate. By not reaching 0
in any finite time (Karlin and Taylor, [1981]), GMR prevents any negative coal prices. The rate of reversion
to the mean, the long-run mean coal price level, and the standard deviation rate are all allowed to vary by
generator to capture differences in the types of coal used and the cost of transporting coal to different units.
The Weiner process does not vary across generators. This specification assumes coal market uncertainty is
universal but responses to coal market shocks are idiosyncratic to the generator. In short, the stochastic
differential equation above describes the time-variant coal price distribution facing a particular generator.
Unexpected shifts in supply and demand also influence the prices generators receive for the electricity
they produce. For example, electricity demand is sensitive to weather conditions since weather variations lead
to large variations in heating and cooling demand. Electricity supply is subject to uncertainty surrounding
entry of new and exit of old generating capacities. Uncertainty in both the supply and demand side of
electricity markets introduces volatility into electricity prices (Joskowl |2007). To capture this uncertainty,
electricity prices evolve randomly around a long-run mean following a geometric mean-reverting process
dPg = rp, (P_E — Pg)Pgdt + op, Prdzp,. The mean reverting process captures the flat load demand in
many parts of the country in recent years. Similar to the coal price process, the parameters that govern
the stochastic electricity price process are allowed to vary by generator to capture regional differences in

regulated and deregulated electricity markets.



2.2 The Optimal Timing of Retirement

Based on the expectations of future coal and electricity prices, a coal-fired generator will have a nonzero
probability of operating at a loss (i.e. generating negative profits for the firm). At some point in the
future, a firm may choose to retire a coal-fired generator when losses become too frequent. Retirement
instantly eliminates the flow payoff 7(Pg, Pc) at some sunk retirement cost, K. Retirement costs can vary
widely depending on the level of decommissioning. For instance, retirement costs may be minimal if the
generator can be retired while the site is maintained in its current condition with little cleanup needed to
meet environmental compliance and ensure safetyﬂ In contrast, full decommissioning requires substantial
sunk costs associated with dismantling all equipment, demolishing structures, and site clean up including wet
and dry disposal areas and coal yards. When a generator is retired, there is no legal requirement to demolish
the infrastructure. As long as environmental and safety regulations are followed, the site can remain intact
and no decommissioning is required. While the generator is operating, it produces electricity ¢z (t) > 0 using
coal qco(t) > 0 with costs VC(qg(t)) > 0 and F'C > 0, which generates a flow of profits. If the generator is
retired, it produces no electricity and uses no fuel but incurs a sunk retirement cost: gg(t) = 0, go(t) = 0,
VC(qe(t)) =0, FC =0, and K > 0.

The objective of a risk-neutral utility is to determine whether and when to retire an electricity gener-
ator, tr, to maximize the generator’s expected discounted profits net of any sunk retirement costs. Using
traditional discounted cash-flow analysis, the firm would retire the generator when the expected net present
value of generation profits is less than the cost to retire the generator. However, since the costs associated
with retirement are sunk, there is an incentive (an option value) to delay retirement longer than suggested
by discounted cash-flow analysis. This option value captures the economic value to a firm in being able to
respond to new information about coal and electricity markets. The size of this option value is key to de-
termining the timing of coal-plant retirements and will vary by generator depending on coal and electricity
market conditions, the efficiency of the coal-fired generation technology currently being utilized, and the
sunk costs required to retire.

At each instant in time, the firm must determine whether to continue operating the coal generator or
retire it given that all future retirement decisions are made optimally. Given the discount rate §, the optimal

retirement time satisfies the following:

V(Pr,, Pc,) = max Eq l/otR w(PE(t), Pc(t))e“”dt + {V(PE(tR), Pc(tR)) - K}e—“R] 2)

6Environmental compliance includes adhering to the EPA’s Interstate Air Pollution Transport Rule, National Emissions
Standards for Hazardous Air Pollutants regulations, the industrial waste rule for fossil fuel combustion waste, the Cooling
Water Intake Structures rules of the National Pollutant Discharge Elimination System, the Steam Electric Power Generating
Effluent Guidelines and Standards, and the most recent Mercury and Air Toxics Standards.



subject to dPg, dPc, Pg(0) = Pg,, and Po(0) = Pg,. The evaluation at each instant in time maximizes
the expected profits from the coal-fired generator from that point forward by making a choice to continue to
generate electricity using coal (whose payoff is defined as V') or to retire and incur K.

Following Dixit and Pindyckl (1994), the retirement decision can be specified as an optimal stopping
problem. Treating retirement as an optimal stopping problem will ensure that the retirement decision
maximizes the value of the coal-fired generation asset. While the generator is operating, it not only provides
a flow of profits m(Pg, Pc), but it also means the firm holds an option - the option to retire the generator
when market conditions deteriorate V (Pg, Pc). This option value represents the value of delaying retirement
to gain more information about the profitability of coal-fired electricity generation. When the firm retires the
generator, sunk retirement costs K are incurred and the option value is terminated - making it an additional
opportunity cost of retirement. It is this opportunity cost that causes a more cautious response by the firm
in the face of uncertainty.

The generator’s unknown value function can be found by employing stochastic dynamic programming

with the following Hamilton-Jacobi-Bellman (HJB) equation

aV (Pg, Po)
9Pp

- oV (P, P
+7p.(Po — Pc)Pcuﬁ-
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p is the correlation coefficient between the two stochastic processes Pg(t) and Po(t): p = corr(dzp,,dzp,).
In financial terms, the firm faces an obligation to a flow of profits and option value before retirement. The
obligation is treated as an asset whose value V(Pg, Po) must be optimally managed (i.e. maximized). The
left-hand side of is the return the manager would require to delay retiring the generator over the time
interval dt. The right-hand side of is the expected return from delaying retirement over the interval dt
based on expectations of future coal and electricity prices. This equation acts as an equilibrium condition
ensuring a willingness to delay prior to retirement.

The HJB equation in is a non-homogenous, second order partial differential equation necessitating
numeric methods to approximate the coal retirement value function (Miranda and Fackler, |2002)). Like any
differential equation, the HJB equation must be solved subject to a boundary condition. We approximated

the solution to the HJB equation by using the well-known value matching condition (Dixit and Pindyck,



1994)

V(Pg,Pc) =K (4)

which acts as a boundary condition between the region of the state space where it is optimal to continue
operating the coal-fired generator and the region of the state space where it is optimal to retire. We
approximated V(Pg, Pc) over a subset of the state space using piecewise linear basis functions (Marten and
Moore, 2011)). The approximation procedure solves for the 2 x n x m basis function coefficients, which satisfy
and at a set of n = 50 and m = 150 nodal points spread evenly over the two-dimensional state spacem

The combination of and ensures that the firm holds the option to retire the generator until the
value of the option to retire is equal to the cost of retirement. The solution to the HJB equation and
value matching condition (4)) can be characterized by a retirement threshold Pg,, (Pc) that separates the state
space where retirement should occur. Specifically, the retirement curve is the set of points where conditions
and are met. Based on expectations of future profits, the firm optimally retires a generator when a
decrease in electricity prices or an increase in fuel prices crosses the threshold curve Pg,(Pc).

A closed-form solution for the retirement threshold only exists in the simplest models where the HJB
equation is an ordinary differential equation. With uncertainty in both the coal and electricity prices, the

HJB equation becomes a partial differential equation.

2.3 Data and Parameter Estimation

The optimal stopping problem described in and is solved for each coal-fired generator that retired in
the U.S. between 2009 and 2017. To identify coal-fired generators that retired as of 2017, we utilized the
EIA’s 860 data on existing generators. This data identifies generators that retired each year on a cumulative
basis. Most retirements in the U.S. as of 2017 occurred in the Northeast, Southeast, and parts of the
Midwest (Figure . We targeted generators that used some form of coal as their stated main energy source
for generationﬁ

Estimates of the parameters included in and are required to approximate V(Pg, Pc) over a subset
of the state space. We started with a total of 528 retired coal generators as of 2017, restricting retired coal
generators to those that have a primary purpose North American Industry Classification System (NAICS)

code of 22: electric power generation, transmission, and distribution. For example, the U S Alliance Coosa

7"Upwind finite difference approximations were used to construct a linear spline, which approximates the unknown value
function. We used Matlab along with the CompEcon Toolbox and the smoothing-Newton root finding method to solve the
resulting complementarity problem. The approximated state space ranges from 0 to 15 in the Po dimension with n = 50 nodal
points and from 0 to 150 in the Pg dimension with m = 150 nodal points. Extending the state space in either the Pc(t) or
Pg(t) dimension or increasing the number of nodal points beyond 50 and 150 did not alter our general results.

8Coal includes anthracite, bituminous, lignite, sub-bituminous, waste, refined, and coal-derived synthesis gas.



U.S. Coal Generators as of 2017
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Figure 1: Retired vs. Operable Coal Generators by Generating Capacity

Pines coal plant retired in 2008, but its sole purpose was to provide electricity for a paper plant. This
restriction eliminated generators that produced electricity but were never connected to the electricity grid
and dropped the total number of retired coal generators by 74 generators. Uncertainty in electricity and coal
prices would play a much smaller role in the decision to retire coal generators not connected to the grid.

A total of 454 coal generators with a primary purpose of electric power generation were reported as
retired in the EIA 860 data as of 2017. While estimating the parameters found in and , we restricted
our analysis to coal-fired generators that retired after 2005, because we did not have electricity price data for
years prior. Of those 454 coal generators, over 88% occurred after 2005 and over 38% happened after 2014.
The sample was restricted further due to lack of coal price data and operating and maintenance data. In
the end, 267 coal generators retired between 2009 and 2017. Of that total, 71 were in deregulated electricity

markets, and the other 196 were in a regulated market. We calibrated the model for each individual coal

generator. We followed [Jenkin, Feldman, Kwan, and Walker| (2019) and assumed firms used an 8.5% discount

rate, § = 0.085.



Table 1: Average Retired Coal-Fired Generator Parameters by Market Type

Description Parameter Regulated Deregulated
Coal Price Rate of Reversion TPg 9.92% 13.36%
(6.41) (16.50)

Coal Price Long-Run Mean Pc $3.05 per MMBtu $2.84 per MMBtu
(0.89) (0.60)

Coal Price Volatility O P 9.75% 12.02%
(5.23) (7.30)

Electricity Price Rate of Reversion TPy 1.83% 1.46%
(0.81) (0.39)

Electricity Price Long-Run Mean Pg $11.27 per MMBtu $14.11 per MMBtu
(2.58) (1.98)

Electricity Price Volatility opg 18.61% 25.44%
(5.87) (4.10)

Correlation Coefficient p —9.49% —12.16%
(32.20) (27.29)

Quantity of Electricity qE qe = 14,094 Pg qrg = 15,010Pg
(19,766) (20,676)

Quantity of Coal qc qc = 3.38qE qc = 3.21qE
(0.73) (0.54)

Variable Costs VC(qr) VC =0.059g VC =0.20qg
(0.08) (0.76)

Fixed Costs FC FC =9.32¢g¢c FC =9.32¢¢c
(-) ()

Discount Rate ) 8.50% 8.50%
(-) (-)

Sample Size - 196 71
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2.3.1 Electricity and Coal Prices

A critical step in solving the optimal stopping model is defining firm expectations over electricity prices
(Pg) and coal prices (Pg). Coal price and quantity data for plants in our analysis came from the EIA’s
923 database, which includes information on monthly fuel receipts such as the quantity and price of fuel
delivered to a plant. Since an electric power plant can have more than one fuel delivery per month, we used a
weighted average of the fuel-specific quantity and price delivered each month to compile monthly fuel prices
($/MMBtu). Delivered fuel quantities do not accurately describe the fuel used in electricity generation on
a monthly basis. Often plants have coal stockpiles, so the quantity of coal delivered to the plant is not all
used in the month in which it was delivered.

Real options results critically depend on choosing the correct stochastic process (Tsekrekos| [2010). That
process may be one where the price follows a random walk with drift, like geometric Brownian motion, or
one where the price reverts back to a trend line, like GMR. Prices that statistically follow GMR, would not be
consistent with geometric Brownian motion. Unit root tests provide a platform to determine whether a time
series follows a random walk. An augmented Dickey Fuller test was used to check the GMR assumptions for
coal prices. We rejected the null hypothesis that the price process follows geometric Brownian motion for
each generator in the study (see the Appendix).

With empirical support for our geometric mean reversion assumption, we follow Pachamanova and Fabozzi
(2011) to estimate rp., Pc, and op, using data from 2002—2017@ The coal-fired generators that retired in
a regulated market experienced, on average, less volatile but higher coal prices than those in deregulated
markets. The average long-run mean coal price is $3.05 per MMBtu for regulated coal generators and $2.84
for the retired coal generators in deregulated markets. Average coal price volatility is 9.75% for regulated
markets and 12.02% for deregulated markets. The average rate of reversion to the mean coal price across
regulated coal generators is 9.92% and 13.36% for deregulated coal generators. Coal generators that retired
in a deregulated market have coal prices that revert back to the long-run mean over 34% faster than their
counterparts in a regulated market.

Firm expectations of electricity prices are calculated using historic data on wholesale electricity prices
($ per MMBtu). For all other retired coal generators, we used FERC Form 714 hourly system lambda
electricity prices by balancing authority area aggregated to the monthly level to estimate parameters for
dPg. Again, we checked the GMR assumption for electricity prices with unit root tests and rejected that
they follow Brownian motion for each balancing authority in our analysis (see the Appendix). Parameters

for rp,, Pg, and op, were estimated following Pachamanova and Fabozzi (2011) for the calculations (see the

9Pa§haman0va and Fabozzi| (2011) rewrite dP as a linear function and use ordinary least squares to estimate the coeflicients
rpy, Pc, and op, (see the Appendix).
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Figure 2: Expected and Stochastic Paths for Coal and Electricity Prices. The expected and stochastic
paths are simulated using the average dPg (Panel A) parameters and dPx (Panel B) for retired regulated
generators.

Appendix). Since the electricity price data were either at the balancing authority level, the parameters for
dPpg are the same for generators within the same balancing authority. Unlike coal prices, the generators that
retired in a regulated market experienced, on average, lower but less volatile electricity prices than those
in deregulated markets. Retired coal-fired generators received average long-run electricity prices of $11.27
per MMBtu in regulated markets and $14.11 per MMBtu in deregulated markets. The average volatility of
electricity prices experienced by generators in regulated and deregulated markets is 18.61% and is 25.44%.
On average, electricity prices revert back to the long-run mean in regulated markets over 25% quicker than
their counterparts in deregulated markets.

Electricity prices are much more volatile than coal prices (Figure H The thin horizontal line represents
the expected path of electricity prices (Panel A) and coal prices (Panel B) for regulated coal generators given
the parameters described above. The dashed, dotted, and thick line represent three possible price paths over
the next 18 years (2017-2035). The real options approach captures the effect of the volatility shown in both
graphs on the retirement option value.

Coal’s major use is electricity and coal-fired generators are often the marginal producers. This creates
a clear link between coal and electricity prices. To capture the relationship between stochastic processes,
we used the cross-correlation function of the two time series to calculate the correlation between coal prices
and electricity prices. The average correlation coefficient for retired coal generators in regulated markets is

-0.09. In deregulated markets, it is -0.12.

10Using the same y-axis for both panels makes the difference between coal price volatility and electricity price volatility
appear more extreme.
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2.3.2 Electricity and Coal Quantities

The quantity of electricity generated and fuel consumed is available at the generator level from the EIA’s
923 database. Electricity and coal quantity data are reported in MMBtus. We collected monthly ETA 923
data from 2009 to 2017.

Electricity supplied by a generator gg follows a simple linear supply function: ¢ = Bp, Pr + €. We use
OLS to estimate the slope of each generator’s supply curve from the quantity and price data in ETA 923.
We suppress the constant so a generator would not supply electricity if the price of electricity is zero. The
average (p, for retired coal generators in a regulated market is 14,094, and in a deregulated market, the
average fp, is 15,010. To put those coefficients in context, it takes around 0.064 MMBtus to increase the
temperature in a 1600 square foot home with 10 feet ceilings by 50 degrees Fahrenheit. If that house were
located in Knoxville, Tennessee, during the winter, it would take only 0.064 MMBtus to heat the home to
70 degrees from 20 degrees. This means that the average quantity of electricity supplied by the retired coal
generators in our analysis is highly responsive to changes in electricity prices.

Because coal units are used to generate baseload electricity, owners of coal-fired units seek to minimize
the cost of supplying electricity. This means the quantity of electricity generated and the efficiency of the
generation technology determines the amount of fuel used. To capture generator technology and efficiency, we
used a simple ordinary least squares regression with ETA 923 data on electricity quantity and fuel quantity
(in MMBtus): gc = Bqpqe + €. Suppressing the constant eliminates the ability of a generator to create
electricity without using any coal. This relationship is representative of an inverse production function. The
higher 3,,, the less efficient is the unit. For example, a coefficient of 3 for 3,, means that a 1 MMBtu
increase in electricity requires 3 additional MMBtus of coal, whereas a coefficient of 1 describes a generator
that produces the same additional MMBtu of electricity with 2 fewer MMBtus of coal.

An important factor for coal generator retirements is the age of the generator. We were able to account
for the effect of age on retirement through §,, (Figure [3). The slope of the inverse production function
for each generator mapped against the first operational year of the generator. The negative slope shows
that more efficient generators (small 3,,) are associated with younger generators. The average efficiency
for retired coal generators in our analysis is 3.38 for those in a regulated market and 3.21 in deregulated

markets.

2.3.3 Fixed and Variable Costs

Electricity producers face fixed costs (e.g., capital costs, financing costs) and variable or O&M costs (e.g.,

fuel, labor, maintenance). The EIA’s 923 database contains financial information at the plant level. Specif-
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Figure 3: Retired Coal Generator Technological Efficiency by Operational Year.

ically, O&M expenses associated with environmental abatement are reported by yearE] We combine this
information with the electricity generation data mentioned above from 2009-2017 to calculate a measure
of O&M expenditures in dollars per MMBtu of electricity generation. We use the average O&M cost at a
plant for each coal generator housed there, meaning two different coal generators at the same plant will have
the same O&M costs. The average O&M costs for regulated generators is $0.05 per MMBtu and $0.20 for
deregulated generators. The total variable costs associated with regulated generators is VC = 0.05¢g and
VC = 0.20gg for deregulated generators in our model.

We assume that fixed costs are equal to the levelized capital costs. Levelized capital costs are calculated
by taking the total capital costs and dividing by the total life of the generator in terms of megawatts of
electricity generated. A coal-fired generator that is still operating incurs these levelized capital costs over its
productive life.

According to [Logan, Marcy, McCall, Flores-Espino, Bloom, Aabakken, Cole, Jenkin, Porro, Liu, Ganda,
Boardman, Tarka, Brewer, and Schultz| (2017)), the fixed O&M for coal generators that utilize pulverized
coal averages $9.32 per MMBtu. Each generator’s fixed costs are found by multiplying the per unit fixed

O&M cost by the average quantity of coal (in MMBtus) used in electricity generation from the ETA 923 data

M There are additional variable costs faced by a generator other than those related to environmental abatement (e.g., labor
and maintenance). Thus, our measure of O&M costs are a lower bound that vary by plant.
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described above: F'C' = 9.32¢¢.

3 Retirement Cost Analysis: Retired Coal-Fired Generators

In this section we describe our procedure for backing out retirement costs at coal-fired generators that have
exited the market.

We are not aware of any systematic data on the financial costs of retiring a coal-fired generator (K).
That data is proprietary and neither deregulated nor regulated utilities are required to report it. More
importantly, retirement costs will vary with the level of decommissioning the firm chooses for a site (U.S.
Environmental Protection Agency}|2016a; Henson, 2004). News articles and technical reports have published
estimates of retirement costs ranging from $4.1 million (Henson} 2004) to $150 million (Gearinol 2013).

If a single generator is being retired at a plant that will remain active, then decommissioning costs will
relatively small. If the land is being released for other uses, full remediation is necessary. The cost and
extent of cleanup of hazardous materials will vary with the anticipated new use of the site and the type and
location of hazardous materials stored or disposed on the property. If this is the only or last coal generator
at the plant, then plants with onsite coal ash ponds or solid waste landfills must follow federal and state
permit requirements for closure. The firm can also choose to leave the generator intact and simply maintain
environmental permits. Retired generators can be removed and used at other locations the firm owns or sold
as scrap.

If a firm’s retirement decisions are consistent with real options theory, we can back out an estimate of
the retirement costs that justified retiring each generator in our analysis. To do this, we find the electricity
price and coal price for the month in which each generator retired (or from the last fuel delivery made to
the plant) and compare it to retirement thresholds representative of different retirement costsE Because
coal prices do not vary considerably over our time frame, it is unlikely that using the last coal price for each
generator will lead to unreliable estimates of K.

The retirement thresholds, Pg,(Pc), for two randomly selected coal-fired generators are the solution
to the optimal stopping problem in and with specific parameter values (Figure [4f Table . These
thresholds represent retirement rules for each coal generator in our analysis whose retirement costs are fully

sunk and expectations of electricity prices and coal prices are based on historic data. If the current electricity

120ne drawback in using the month and year in which a generator retired for coal prices is that plants often receive their last
coal delivery months before the generator is technically considered retired. Therefore, it may not be possible to observe the
coal price for the month in which a generator retires. If a plant operates multiple coal generators and only a subset of these
retire, this problem is moot; that plant still receives coal deliveries after the retired generator(s) drops out, meaning the coal
price for coal delivered to the plant for use in the remaining operational generators, including the month in which the retired
generator(s) leaves the sample. We can use either the coal price from the last delivery made to a plant or the coal price for the
month in which a generator retired.
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Figure 4: Retirement Thresholds for Two Random Retired Generators with and without Electricity and
Coal Price Volatility

and coal prices are below a retirement threshold, it is optimal for a firm to retire that generator. Every
combination of prices above the threshold is in the continuation region, that is the point at which it is
optimal for the generator to remain operational. As expected, retirement becomes optimal when electricity
prices fall. How far electricity prices must fall to trigger retirement depends on how much the firm is paying
for coal at that generator. Firms will choose to retire a unit at a higher electricity price if they are faced
with higher coal prices (a rightward movement along the x-axis); thus, retirement thresholds are upward
sloping. A critical retirement cost, K = K*, is found when a retirement threshold goes from being below
the electricity-coal price pair from the month-year in which a generator retired (where the firm would find
it optimal to continue operating the generator) to just above the electricity-coal price pair (where the firm
would find it optimal to retire the unit). To identify K* for each generator, we varied retirement costs from
$0 to $400 million in $500 thousand increments.

The lines in Figure [f] represent retirement thresholds when electricity and coal price volatility is present.
The dashed lines are the retirement thresholds without any volatility. The points identify the prevailing
electricity prices and coal prices for the month in which each generator retired. Accounting for electricity and
coal price uncertainty is important in determining the optimal retirement decision (Figure . Eliminating
the two sources of uncertainty that generators face (the dashed line), a firm would retire the right generator
at electricity and coal prices much higher than is prescribed by real options theory (the solid line). Because
there is a positive benefit to delaying retirement (the option value) due to price uncertainty, the solid line
lies below the dashed line. Real options theory tells us that larger drops in electricity prices are necessary to

drive a generator into retirement when those prices are uncertain. The estimates of implied retirement costs
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Table 2: Parameter Values for Two Randomly Selected Retired Generators

Description Parameter Left Graph Right Graph
Coal Price Rate of Reversion T Pg 97.73% 12.18%
Coal Price Long-Run Mean Pc $2.38 per MMBtu  $3.19 per MMBtu
Coal Price Volatility o 34.50% 12.54%
Electricity Price Rate of Reversion TPy 2.72% 1.18%
Electricity Price Long-Run Mean Pp $8.94 per MMBtu  $18.45 per MMBtu
Electricity Price Volatility Py 12.74% 30.89%
Correlation Coefficient p 20.83% —51.27%
Quantity of Electricity qE qrg = 7,419Pg qeg = 17,226 Pg
Quantity of Coal qc qc = 2.23qg qc = 2.95qg
Discount Rate ) 8.50% 8.50%
Variable Costs VCl(qg) VC = 0.0595 VC = 0.06gg
Fixed Costs e FC =9.32¢¢ FC =9.32¢¢
Critical Sunk Cost K* $19 million $70.5 million

are inclusive of the retirement option value. If we did not consider electricity and coal price uncertainty in
our analysis, we would over-estimate the implied critical retirement costs. Electricity and coal price volatility
have heterogeneous effects across generators (Figure ). The generator’s retirement thresholds on the left
show minimal changes in the presence of price volatility compared to no volatility.

Figure [5] shows the frequency distribution of implied retirement costs across the 267 retired coal-fired
generators in our study. The gray (black) bars show the number of deregulated (regulated) coal generators
that have retirement costs in each bin. Almost 85% of the 267 retired coal generators have critical K values
less than $100 million. One coal generator has critical retirement costs equal to $0. The barriers to retirement
were the lowest for this coal generator; plant managers had to pay nothing to pull this generator out of the
market. For the most part, coal generators that retired in a regulated market have the highest retirement
costs. We estimated that the two coal generators with the largest retirement costs in our sample, totaling
$335 million when they retired, were part of the Paradise coal plant in Kentucky that has since transitioned
to a combined cycle natural gas plant.

The distribution of critical K values is skewed to the left and takes the general shape of a logistic distri-
bution for generators that retired in either market type. The K* distribution for regulated coal generators
that retired between 2009 and 2017 appears to have a long right tail, and a large mass at $0-$60 million.
The retirement cost distribution for coal generators that retired in a deregulated electricity market is similar
to that of their counterparts, but the highest frequency of retirement costs occurs between $0-$80 million.
The weighted average of retirement costs for all coal generators in our analysis is $61.63 million. The retire-
ment costs are a barrier to exit for coal-fired generators and hold potentially informative signals about the
likelihood of coal-fired generator retirements (Figure . In the following section, we estimate the retirement

costs for active coal generators utilizing the retirement cost estimates for retired coal generators.
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Figure 5: Retirement Cost Distribution for Retired Coal Generators by Market Type

4 Predicting Retirement Costs for Active Generators

In this section we introduce a machine learning approach to estimate the retirement costs at active coal-fired
generators based on the imputed retirement costs from the real options model described above. Machine
learning algorithms are well suited for this task. We want to produce the most accurate possible predicted
retirement costs, but we will not be interpreting the relationships between our explanatory variables and
retirement costs. Machine learning techniques essentially provide lower variance in the fitted values for the
ability to interpret unbiased coefficients on the relationship between explanatory variables and the dependent
variable.

In this section we briefly describe the data needed to estimate retirement costs, then the machine learning
algorithms we use to produce the estimates. We use LASSO and Regression Forest algorithms on our
generator level dataset using a cross-validation approach to pick the appropriate parameters. We then
demonstrate that the estimated retirement costs are reasonable and that those retirement costs can be an

important input in to the analysis which plants are likely to retire.

4.1 Data

We make use of several different data sets to estimate the probability of retirement for active coal plants. We
take generator characteristics from EIA-860 data, local area information from the Census, pollution emissions
from EPA CEMS data and fuel prices from the EIA to build an electric generator by month panelF_B-] The

EIA-860 data contains unique identifiers that can be used to link EIA and EPA generator records. Both

13Most coal-fired power plants are made up of multiple electric generators. The mean plant in our sample has 3.4 coal-fired
generators. Generators can be retired separately or taken down in groups as part of a plant retirement.
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data sets include the geographic location of the generator which allows us to combine generator characteristic
data with data from the 2000 Census on the socioeconomic characteristics of the communities where the
generators are located. We use the 2000 Census, rather than contemporaneous data, so that we do not
conflate the impacts of a generator retirement on the socio-demographic status of a county with the impact

of the county’s socio-demographics on the retirement decision.

4.2 Estimating retirement costs for active plants

In this section we describe the machine learning algorithm we use to estimate retirement costs for active
generators from the real option model’s imputed retirement cost for retired plants. We employ two different
methodologies: LASSO and regression forest.

Least absolute shrinkage and selection operator (LASSO) is a regression algorithm that shrinks coefficients
in a regression model towards zero. Coeflicients that are small in magnitude are set to zero and the remaining
coefficients are closer to zero than in OLS. LASSO selects a subset of variables for inclusion in the model
and estimates the coefficients for those variables jointly. The researcher chooses a shrinkage parameter, A
that governs how much coefficients are reduced.

LASSO produces improved precision of the fitted values, particularly in the presence of correlated in-
dependent variables. LASSO produces biased coefficients on the variables selected into the model, but our
focus is only on the estimated retirement costs so this is an acceptable trade off in this application.

We take the dataset set described in section [4.] and create polynomial and interaction terms for each
variable. That produces a dataset with 368 variables and 1064 observations. We include all of those variables
in the analysis and allow LASSO to select the subset which best predicts retirement costs on retired coal-fired
generators. We choose the A through cross-validation. We split the dataset of retired plants into a training
sample consisting of 80% of the observations and a testing sample of the remaining 20%. We step through
potential A values randomly sampling 80% of the observations each time to estimate the model. We evaluate
the model fit on the testing sample that was not used in estimating the model and choose the A with the
best out of sample fit.

To assess the robustness of our results to the LASSO method, we also use a regression forest algorithm
to predict retirement costs for active generators. Regression forests are an ensemble method that work by
randomly choosing a subset of the variables and creating multiple decision trees. Each tree works by splitting
the sample into two groups using the splits that minimize the variance in each sub-sample. This process is
repeated up to the maximum tree depth, a parameter specified by the researcher. The sample mean at each

leaf at the bottom of the repeated split sample is the fitted value for observations in that bin. Averaging
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over multiple trees reduces the tendency to overfit in a single tree.

The researcher must choose the max tree depth. This parameter governs how many times the sample is
split before sample means are calculated. Deeper trees provide more accurate fitted values in sample, but
have a tendency to overfit and predict poorly out of sample. We choose the maximum tree depth through
cross validation, following a pattern similar to the one to used to select the optimal A.

We find that both machine learning algorithms give qualitatively similar fits. The mean square error of
the out of sample fit of the models ranges from 8.8% to 11.1% of a standard deviation across algorithms and
ranges of A and tree depths. The estimated retirement costs produced using these algorithms are also highly
correlated with each other, with correlation coefficients ranging from X to Y.

The LASSO model’s out of sample residual prediction error is 8% of a standard deviation or around $127
thousand dollars. We select this as our baseline algorithm and re-run it for the full sample of both active and

retired generators. We will use these predicted retirement costs in our counterfactual analysis in section]

4.3 Analysis of Retirement Costs

We have two sets of retirement costs. For generators that have retired we have estimated retirement costs
backed of the real options model. For active generators we have predicted retirement costs based on the
machine learning algorithm described in the previous section. We conduct a simple analysis to confirm that
those estimated and predicted retirement costs are reasonable and consistent with intuition.

We began by estimating the probability of retirement for each generator in the sample as a function of

imputed retirement costs, generator and local area characteristics. The estimating equation is:

Logit[Prob(Retire;s; = 1)] = aRetireCost; + fGenChar;, + yCensus; + 0Gas; + 05 + G + 1y + €35t (D)

The dependent variable is an indicator for whether a specific generator (%) is retired in time period t.
RetireCost; is the imputed retirement cost described above, and the parameter o measures how changes
in retirement cost affect the probability of retirement all else equal. GenChar is a matrix of generator
characteristics including the efficiency of the generator and the nameplate capacity. The GenChar matrix
also includes separate indicators for whether the generator is in a regulated wholesale electricity market, has
an ash impoundment, has mercury controls, and is in a county that is in non-attainment for any criteria
pollution for any year during the sample period. Local sociodemographic conditions may play a role in an
operator’s decision to retire a generator. For that reason we also included a matrix of variables from the census

measured at the county level. The variables include median income, population density, unemployment rate,
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and the percentage of males and females with bachelor’s degrees or higher. We also included lagged natural
gas prices to measure competition from other fuel types. Last, we included state (ds), month of year ((,),
and year of sample (n,) fixed ePfectsE

The results of this estimation are presented in Table 4| Column 1 reports a univariate regression of our
imputed retirement costs on the probability of retirement. We found that increases in retirement cost are
associated with a reduced probability of retirement, which is evidence that the imputed retirement costs
are good proxies for actual retirement costs. In Column 2 state, month, and year fixed effects add to the
specification to control for unobserved spatial, seasonal, and time confounds. The estimated impact of re-
tirement costs on the probability of retirement does not change. Column 3 adds generator characteristics;
larger generators with ash impoundments are less likely to be retired. Including these generator characteris-
tics moderates the relationship between the imputed retirement cost measure and the probability of retiring
somewhat. Column 4 adds county level sociodemographics to the estimation. We found no strong relation-
ship between county characteristics and the probability of generator retirement. Finally, Column 5 adds
natural gas prices lagged six months to the estimation. The coefficient is negative, statistically significant,
and large in magnitude, suggesting that low natural gas prices increase the probability of retirement.

The impact of estimated retirement costs on the probability of retirement are consistently negative and
statistically significant, which holds true even after including a number of the controls used in the estimation
of the retirement costs at active generators. This can be considered to be reassuring suggestive evidence that
the estimated retirement costs are a good proxy for the actual retirement costs faced by the owners of coal-
fired electric generators. Including logit coefficients means the marginal effects of changes in retirement costs
are not obvious. To facilitate interpretation of these coefficients, the estimated marginal effect of retirement
costs on the probability a coal-fired generator retires is reported across the support of estimated retirement
costs (Figure @ The marginal effects of increases in retirement costs are negative across the distribution,
but less precisely estimated at low levels of retirement costs. There is a small reduction in the magnitude
of the marginal effect of increases in retirement costs on the probability of retirement, but any single ten
million increase is not significantly different from the previous. The mean retirement cost across the sample
is $71.6 million and the standard deviation is $45 million. A one standard deviation increase in retirement
cost from the mean is associated with an increase in retirement probability of 0.2%.

The logit estimation described above can generate a predicted probability of generator retirement for
all the remaining active generators in the sample. We captured predicted values from the logit estimation

presented in Column 3, which includes generator characteristics and fixed effects but not county sociode-

MWe did not include the same variables used in the propensity score matching procedure due to multicollinearity issues.
For example, the total cost of existing abatement technology and the indicator for having an ash impoundment measure a
generator’s level of abatement and are highly correlated.
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Table 4: Estimates of the Probability of Retirement

1 2 3 4 )
Retirement Costs -0.02%FF  _0.02%%F  _0.01**  -0.01**  -0.01**
(0.00) (0.00) (0.00) (0.00) (0.00)
Efficiency (100%) 16.60 13.05 13.11
(13.57) (14.92) (14.94)
Nameplate Cap (MW) -0.01%**%  _0.01%**  -0.01***
(0.00) (0.00) (0.00)
Regulated -0.59 -0.76 -0.76
(0.61) (0.61) (0.61)
Ash Impoundment S2.41FFF 1 QKK 1 RYFHH
(0.58) (0.55) (0.55)
Nonattainment 0.29 -0.05 -0.05
(0.43) (0.47) (0.47)
Mercury Control 0.42 0.78* 0.78*
(0.47) (0.47) (0.47)
Median Income 0.00 0.00
(0.00) (0.00)
Pop. Density -142.13  -139.82
(877.47)  (878.27)
Unemployment Rate 17.18 17.12
(46.43) (46.45)
Male Higher Ed. 0.00 0.00
(0.00) (0.00)
Female Higher Ed. -0.00 -0.00
(0.00) (0.00)
Lagged Gas Price -0.15%*
(0.06)
Constant -1.12%%* -0.93 -11.55 -10.62 -9.76
(0.19) (0.85) (11.73) (12.70) (12.68)
Month FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
State FE No Yes Yes Yes Yes
Pseudo R? 0.086 0.342 0.462 0.470 0.471
Observations 43,056 43,056 43,056 43,056 43,056

Note: The dependent variable in each regression is an indicator equal to 1 if the coal fired generator was retired in that
month. Retirement costs were imputed from a real options model as described above. Nameplate capacity through mercury
control are generator characteristics collected from EIA 860 data. Median income through female higher education are for the
generator’s county collected from the 2000 census. Lagged gas prices are monthly national average electric power prices for
natural gas as reported by EIA lagged by one year. Standard errors, clustered at the plant level are reported in parentheses
below the coefficients. * p<.10, ** p<.05, *** p<.01.
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Figure 6: Marginal Effect of Retirement Costs

Note: This figure reports the marginal effect of an increase in estimated retirement costs on the probability of retirement as
estimated from the logit reported in Column 5 of Table |44 The vertical lines represent the 95% confidence interval for that
marginal effect estimate. The horizontal axis is measured in millions of dollars. The vertical axis is the marginal effect of
retirement costs on the probability of retirement. This is estimated at every $10 million interval from $0 to $150 million.
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Figure 7: Predicted Retirement Density

Note: This figure reports two separate density regressions of the predicted value of retirement: one for generators that retired
during our sample period, and a second for generators that survived throughout the sample. All generators that retired during
the sample are included in the density of the probability of retirement for retired generators. The operating generators are
limited to those that match across observables to generators that retired during the sample period described above.
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mographics or fuel prices. The density for retired generators includes all generators that retire during our
sample period (Figure . The operating generator density was estimated on a sample of generators identified
as similar to the retired generators across the observable generator and county characteristics reported in
the previous section. The operating generators’ retirement probabilities are clustered at low probabilities.
The distribution of retired plants is much more even with a tail of probabilities that are beyond the highest
estimated probability for active generators.

As a test of the model’s predictive power, we estimated a logit regression using all the variables included
in the propensity score matching analysis, as well as retirement costs, and captured the residuals. The
residuals represent the predicted probability of retirement for each generator in our analysis. As expected,
the generators with the highest predicted probability of retirement are those that in fact retired. More
important are the active coal generators with the highest predicted probability of retirement. We compared
the top 20 active coal generators with the highest predicted probability of retirement to EIA Form 860’s
preliminary data on electricity generator retirements for 2016. Of the top 20 retirements predicted based on
this analysis, almost half of them did in fact retire in 2016.

To isolate the predictive power of retirement costs, we estimated the same logit regression without
retirement costs and collected the residuals. Using those predicted probabilities of retirement, we found the
top 20 active coal generators with the highest predicted probability of retirement. They are not the same as
those when we included retirement costs, which leads to the conclusion that predicted retirements for active

coal generators predicts even fewer actual retirements that occurred in 2016.

5 Counterfactual Analysis

Using the estimated retirement costs for active coal generators, we can conduct counterfactual policy analysis
to simulate how different policy options affect the retirement date of the remaining active coal generators.
We consider two policies. First, a carbon tax imposed on coal generators through a fuel-used or electricity-
generated surcharge. Second, we model how different levels of a fuel reliability subsidy alter retirement

time.

5.1 Benchmark

Before we examine the impact of either policy, we must find the benchmark retirement time for each active
coal generator utilizing the coal-fired generator retirement model in Section 2 and the estimated retirement
costs found in Section 4. The parameters for active coal generators used in the retirement model were

estimated using the same data and method as those found for retired coal generators in Section 2. Table
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Table 5: Average Active Coal-Fired Generator Parameters by Market Type

Description Parameter Regulated Deregulated
Coal Price Rate of Reversion TPg 8.52% 9.12%
(7.37) (9.12)

Coal Price Long-Run Mean Pc $2.50 per MMBtu $2.66 per MMBtu
(0.70) (0.78)

Coal Price Volatility P 7.34% 7.48%
(4.51) (3.78)

Electricity Price Rate of Reversion TPy 2.22% 1.61%
(1.07) (0.57)

Electricity Price Long-Run Mean Pg $10.39 per MMBtu $13.15 per MMBtu
(2.79) (2.22)

Electricity Price Volatility opg 17.09% 23.42%
(5.22) (5.54)

Correlation Coefficient p 1.26% —12.75%
(29.71) (29.78)

Quantity of Electricity qE qr = 66,510Pg qr = 57,287Pg
(50,531) (41,089)

Quantity of Coal qc qc = 3.13qE qc = 3.19qE
(0.64) (0.60)

Variable Costs VC(gr) VC = 0.05q VC =0.07qg
(0.05) (0.08)

Fixed Costs FC FC =9.32¢g¢c FC =9.32¢¢c
(-) )

Discount Rate ) 8.50% 8.50%
(-) )

Retirement Costs K $189 Million $191 Million
(144) (143)

Sample Size - 396 96

[] displays the average parameters by market type for active coal generators. The differences between the
model parameters of active generators by market type are similar to those for retired generators. Active
coal generators that operate in a regulated electricity markets face lower and less volatile coal and electricity
prices on average than those that operate in deregulated electricity markets. The estimated retirement costs
for regulated generators average $189 million compared to the $191 million paid by deregulated generators
at the time of retirement.

With this information, we can find the retirement threshold Pg,, (P¢) for all 492 active coal generators.
As of 2017, the firms that manage those coal generators found it optimal to continue operating them.
However, as coal and electricity prices change over time, that retirement threshold remains the same. If
electricity prices drop low enough or if coal prices get high enough, the combination of electricity and coal
prices will cross the retirement threshold, making it optimal for the firm to retire the generator. Future
electricity and coal prices are unknown. However, firms form expectations over the price processes. Recall,

firm expectations of electricity prices and coal prices are found to follow geometric mean reversion (Section
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2.3.1): dPg = rp,(Pg — Pg)Pgdt + op, Ppdzp, and dPc = rp,(Pc — Pc)Podt + op, Podzp,.

We jointly simulate electricity and coal prices out 50 years on a monthly time step (January 2018 -
December 2067), for a total of 600 time steps, utilizing the parameters estimated in dPg and dP¢ for each
generator. We then compare the simulated electricity and coal price combination against the retirement
threshold. The month that the electricity-coal price combination first crosses the retirement threshold
determines the retirement time for a generator. Figure [§|shows the retirement threshold for a random active
coal generator in our sample. Each dot on the graph represents an electricity-coal price combination that
was part of the first simulation. This graph only shows the initial 51 time steps instead of the total 600
time steps, because this particular run of the simulated prices determined that the generator would retire
in the 51st month, which translates to March 2021. Notice that the price combination on the far right of
the graph lies below the threshold curve. This is the price combination that occurred in the 51st month of
the simulation. This is the first price combination that was below the retirement threshold, which signals
to the firm to optimally retire the coal generator. The remaining price combinations that were simulated
after March 2021 do not matter for this round of the simulation - the generator already retired. This process
is completed 10,000 times for each generator. The average retirement time over the 10,000 simulations is
recorded as the benchmark retirement time for the generator.

The predicted retirement time for the 492 active coal generators is shown in Figure[9} We found that over
200 (41.1%) coal generators have a predicted retirement time in 2018. Around 80% of active coal generators
in our sample are predicted to retire by the end of 2027. That is a total of 190.5 thousand megawatts of
generating capacity expected to retire within a ten year window. The remaining generators expected to be
operating after 2027 can produce 29.9 thousand megawatts of electricity, which is an 84% reduction in the
current coal generating fleet. Figure [10| shows the geographic dispersion of the predicted retirement for the
existing active coal generators in our sample.

The benchmark results assume there are no changes in federal regulation that impact the electric power
sector during a 50 year period. Further, price expectations are fixed at 2017. As coal generators retire, coal
and electricity prices can not be expected to remain the same. Factors like the existing mix of generating
capacity and reduced demand for coal will influence these prices. The current model does not account for
such feedback. However, the stochastic nature of coal prices plays a very small role in the model. In addition,
it is not clear whether the feedback will increase or decrease electricity prices, which play a larger role in our
model. To determine how electricity prices would change due to retirements, we would need to expand the
current model to account for the entire electricity market a generator operates in. We leave that analysis to
future work.

Assuming this feedback between retirement and prices is a long-term issue (greater than 15 years) and
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Figure 9: Benchmark Predicted Retirement Time for Active Coal Generators: January 2018-December 2067

that coal demand decreases due to coal generator retirements, we examine the impact of this feedback on
coal generators that retire after 15 years by 1. Reducing the long-run mean coal price level by 20% for each
generator continuing with the assumption of a GMR, price process and 2. Changing the price process to
GBM, which represents a market that is in the process of updating better than GMR, and lowering the
drift parameter by 20% (see Appendix for details). Completing 1., we find that PUT THAT SENSITIVITY
ANALYSIS HERE! Completing 2., we find that PUT THAT SENSITIVITY ANALYSIS HERE!

5.2 Carbon Tax

The EPA lists carbon dioxide as one of the greenhouse gases that traps heat in the Earth’s atmosphere, which
is a leading cause of global warming (U.S. Environmental Protection Agency, |2020)). Carbon emissions are
externalities that require government intervention to correct spillover costs. One such intervention is a carbon
tax that would force emitters to internalize the full cost associated with carbon dioxide emissions. Currently,

there is no federal carbon tax in the U.S. However, eleven states have active carbon-pricing programsp—_gl Ten

15Those eleven states are California, Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey,
New York, Rhode Island, and Vermont. Washington state has a market-based climate policy that is currently suspended as it
progresses in the court system (Ye, |2020)).
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of those states participate in the Regional Greenhouse Gas Initiative (RGGI), which is a cap-and-trade
program that limits carbon dioxide from the power sector (Ye, 2020). Since its establishment, the RGGI
carbon dioxide allowances have sold at prices less than $2 to prices over $10. However, we would like to
consider a carbon tax policy that covers the entire U.S. electric power sector, instead of one region.

In 2019, three carbon tax bills were introduced in Congress: the Climate Action Rebate Act of 2019
(CAR Act), the Stemming Warming and Augmenting Pay Act (SWAP Act), and the Raise Wages, Cut
Carbon Act of 2019 (RWCC Act) (Qian, 2019). The SWAP Act and the RWCC Act propose a $30 and $40
per metric ton of carbon dioxide tax. These two acts then increase the tax by 5% and 2.5% each year. By
contrast, the CAR Act imposes a $15 per metric ton of carbon dioxide tax and doubles every year until a
certain level. For the purposes of this study, a fixed rate tax is the simplest to model, and it provides a
general understanding of the impact of a carbon tax on retirement time for active coal generators.

According to the [U.S. Environmental Protection Agency| (2016b), the social cost of carbon dioxide is
$42 per metric ton of COs, assuming a 3 percent average discount rate in 2020. This is most similar to the
RWCC Act that imposes a large tax initially and increases it at a slow rate. For simplicity, we prefer to
use the social cost of carbon dioxide and a fixed rate tax to understand the implications on the active coal
generating fleet.

The total carbon tax amount paid by each coal generator depends on the amount of carbon dioxide
emitted while generating electricity. Depending on the technology of the coal generator, the amount of
carbon dioxide created in the generation process varies. Thus, we converted $42 per metric ton of CO4 to
$4.11 per MMBtu using the EIA’s assessment that the average of all coal types contains 210.20 pounds of
CO3 per MMBtu (U.S. Energy Information Administration), 2016&)@ A carbon tax of $4.11 per MMBtu
can be imposed on either the amount of coal (input) used to generate electricity or the amount of electricity

(output) generated.

5.2.1 Carbon Tax: Input

The coal-fired generator retirement model in Section 2 can be altered to accommodate a carbon tax. The
main change to the model occurs in the profit function, Equation [I} The carbon tax, Pr, adds a total cost

of Prqc(t) when imposed on fuel (input) used, making the profit function the following:

w(Pp, Pe) = (PE<t>qE<t> —(Polt) + Pr)ac(t) - VC(ga(t)) - FC) (6)

where Pr =$4.11 per MMBtu. As seen in @, the input carbon tax is an additional cost associated with

16Coal types include anthracite, bituminous, subbituminous, lignite, and coke.
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operating the coal generator. In turn, the retirement threshold Pg,, (P¢) shifts up, meaning the firm optimally
retires a generator at higher electricity prices than in the benchmark scenario where the generator does not
incur the extra cost of the carbon tax. Figure [L1| contains three retirement thresholds for a random active
generator. The solid line is the benchmark retirement threshold, the dotted line is the retirement threshold
when an input carbon tax is imposed, and the dashed line is the retirement threshold when an output
carbon tax is enacted. At every coal price, the corresponding electricity price must be higher to keep the
coal generator operating under the input carbon tax scenario compared to the benchmarkm Another way
of saying this is that there are more combinations of coal and electricity prices that can occur where the firm
would find it optimal to retire the generator if there is an input carbon tax imposed.

How does this impact the predicted retirement time for active coal generators? The counterfactual policy
analysis requires two steps for completion for each policy. First, we find the retirement thresholds Pg, (Pc)
for all 492 active coal generators when there is an input carbon tax. Then, we simulate stochastic electricity
and coal prices out and see at what time the electricity-coal price combination crosses the new retirement
threshold. The price simulation is identical to the process described in the benchmark scenario - prices are
simulated out based on the GMR parameters for each generator for 600 months (or 50 years). The only
difference is that the retirement threshold has changed. Theoretically, a carbon tax increases the cost of
operating a coal generator. Thus, drops in the price of electricity or spikes in the cost of coal are more likely
to push a firm to optimally retire the generator.

As expected, imposing an input carbon tax hastens the time to retirement for active coal generators.
If such a carbon tax was implemented in January 2018, almost 87% of active coal generators would retire
within the first year. A total of 33 generators would remain active over the entire 50 year time horizon,
generating over 6 thousand megawatts of electricity. By contrast, if none of the coal generators in our
sample retired, they could produce over 220 thousand megawatts of electricity. Figure compares the
predicted retirement time distribution under the benchmark, the input carbon tax, and the output carbon
tax scenarios. The input carbon tax reduces the predicted life of the coal generators significantly, regardless

of generator capacity (Figure .

5.2.2 Carbon Tax: Output

What if a carbon tax was imposed on the amount of electricity generated instead of the amount of coal
used to generate that electricity? Does that change the tax incidence compared to an input carbon tax? Do
generators retire quicker under an output tax or an input tax? Similar to the method used to include an

input carbon tax in the coal generator retirement model, we can attach the carbon tax Pr to the quantity

17Discussion of the output carbon tax retirement threshold is in the next section.
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of electricity generated qg(t). The profit function in Equation 1 becomes

#(Pp, Pe) = ((PE@ = Pr)as(t) - Pe(tae(t) — VC(ga(t)) — FC) )

where Pr =$4.11 per MMBtu. The output carbon tax increases the cost of operating the coal generator,
which alters the retirement threshold Pg,(Pc). Again, there are more electricity-coal price combinations
where the firm would optimally retire the coal generator when an output carbon tax exists, though the
impact on the retirement threshold is much smaller using an output carbon tax versus an input carbon tax
(Figure [L1)).

Equipped with the retirement thresholds that account for an output carbon tax, we simulate electricity
and coal prices exactly as described in the benchmark and input carbon tax scenarios. The simulated
electricity-coal price combination that triggers retirement is recorded as the predicted retirement time. After
10,000 simulations, we find the average predicted retirement time for each generator. Just over 61% of coal
generators would retire in the first year if an output carbon tax is enforced (Figure . That would be a
total of over 140 thousand megawatts of electricity generation potential retired. There are 64 generators (or
13%) with almost 16 thousand megawatts of generating capacity that would not retire in a 50 year time
frame, regardless of an output carbon tax imposition. Interestingly, the coal generators that are pushed to
retire the quickest are not necessarily the largest capacity generators (Figure .

Notice in Figure [12| that there is an even higher percentage of coal generators that would retire within
the first year of a carbon tax enacted if it is imposed on coal (87%) instead of electricity (61%). The per
unit dollar value of the carbon tax ($4.11 per MMBtu) is the same in both scenarios. The reason for the
differences in predicted retirement times between the two policies arises from the need for coal generators to
use more than 1 MMBtu of coal to generate 1 MMBtu of electricity. The coal to electricity conversion is not
one-for-one. Coal generators must use several MMBtus of coal to produce just one MMBtu of electricity.
This is reflected in the quantity of coal equation, which captures the generator’s technology and efficiency.
On average, active coal generators require over 3 MMBtus of coal to generate 1 MMBtu of electricity (Table
. A carbon tax imposed on the quantity of coal will impact the profit function and the resulting retirement
threshold more than if that same per unit dollar value carbon tax was imposed on the quantity of electricity

due to the technological nature of coal generators.

5.3 Fuel Reliability Subsidy

While coal generators are a significant polluter for the electric power sector, an argument has been made in

their defense. In 2017, the Secretary of Energy, Rick Perry, wrote a letter to the Federal Energy Regulatory
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Commission explaining that coal and nuclear generating resources were under-valued. This under-valuation
stems from distorted price signals that do not reflect the reliability and resiliency benefits of coal and nuclear
generators, which keep fuel supplies on-site and have fuel storage capabilities (Department of Energy, 2017)).
Secretary Perry’s proposed rule would allow “for the full recovery of costs of certain eligible units physically
located within the Commission-approved organized markets.” FERC rejected the proposed rule by stating,
“There is no evidence in the record to suggest that temporarily delaying the retirement of coal and nuclear
generators would meaningfully improve the resilience of the grid” (Duke SciPol, [2018). While a federal level
reliability subsidy for coal does not seem likely given FERC’s response, one state agreed with Secretary Perry
and took action.

The Creates Ohio Clean Air Program was signed into law July 2019 and became effective in October 2019.
The program ensures FirstEnergy Solution’s Davis-Besse and Perry nuclear power plants an estimated $150
million a year from 2021-2027 to keep the reactors in service (The Ohio Legislature] 2019). It also provides
around $50 million a year through 2030 to keep two Ohio Valley Electric Corp. (OVEC) coal plants (Kyger
Creek plant in Ohio and Clifty Creek plant in Indiana) operating while simultaneously scaling back Ohio’s
renewable-energy goal from a maximum of 12.5 percent by 2027 to 8.5 percent by 2026. Specifically, the
subsidy for OVEC’s coal plants is not a fixed credit; instead, it is a rider that passes a pro-rated percentage of
the financial losses onto Ohio utilities and thus ratepayers (Seryak and Worley} 2020). This type of subsidy
is quite specific to these two Ohio coal plants, making it difficult to model across all active coal generators.

The Brattle Group published a study in response to Secretary Perry’s letter to FERC. They explore the
costs associated with preventing the retirement of coal and nuclear plants across the U.S. and the potential
policies that would qualify as a “fair rate of return” for such generators (Celebi, Chupka, Oh, and Sweet],
2018). First, they examine a uniform capacity payment of $50 per kW applied to all coal and nuclear
generators. The annual payment was scaled to the size of each generator. With this subsidy, between
128 GW and 154 GW of electricity generating capacity would switch from an operating margin deficit to
surplus, though the authors mention that these numbers do not “represent this as the estimated effect of
the payments on deterring retirements” (Celebi et al.l|2018). The second policy option only targets coal and
nuclear generators that were experiencing operating deficits in 2017. The policy would see generators receive
payments equal to the annual operating loss minus going-forward costs. This equates to an average annual
subsidy payment between $43 per kW and $58 per kW (Celebi et all [2018). A uniform capacity payment is
the simplest reliability subsidy to model and implement. We chose to administer a subsidy similar to The
Brattle Group’s first policy.

We investigate the impact on predicted retirement time when coal generators receive $5, $20, or $50 per
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MWh of electricity generationﬁ These subsidy values encompass those explored by The Brattle Group.
The total subsidy amount paid to each coal generator depends on the amount of electricity generated. We
convert $5, $20, and $50 per MWh to $1.47, $5.86, and $14.65 per MMBtuE The per unit subsidy is then
attached to the quantity of electricity generated by each generator.

Similar to the carbon tax policies, a subsidy changes the profit function (Equation 1) of the coal-fired
generator retirement model. The subsidy, Ps, adds a total cost of Psqg(t), making the profit function the

following:

#(Pp. Pe) = ((PE<t> T P)as(t) - Pe(t)ac(t) - VO(qu(t)) - Fc) (®)

where Ps=$5, $20, or $50 per MWh ($1.47, $5.86, or $14.65 per MMBtu). The subsidy increases the
price received for operating the coal generator, which puts downward pressure on the retirement threshold
Pg (Pc). In this case, there would be less electricity-coal price combinations where the firm would optimally
retire the coal generator. Figure [15] contains four retirement thresholds for a random active generator. The
solid line is the benchmark retirement threshold, the dotted line is the retirement threshold when the subsidy
is $5 per MWh, the dashed line is the retirement threshold when the subsidy is $20 per MWh, and the dash-
dot line is the retirement threshold when the subsidy is $50 per MWh. At every coal price, the corresponding
electricity price can be even lower than the benchmark and the firm would still find it optimal to keep the
coal generator operational.

Using these retirement thresholds that include the different levels of the subsidy, we simulate electricity
and coal prices out 50 years on a monthly time step for a total of 600 simulated price combination months.
The month that the simulated electricity-coal price combination first crosses the retirement threshold from
the continuation region to the retirement region is recorded as the predicted retirement time. This simulation
is completed 10,000 times, and we find the average predicted retirement time for each generator. A subsidy
increases the revenue a generator receives from producing, which means electricity prices would have to drop
very low or coal prices would have to become very high for a firm to find it optimal to retire a coal generator
compared to the benchmark case.

As theory predicts, subsidizing coal generators for their reliability benefits extends the life of active
generators. Compared to the benchmark, there are almost 22% fewer coal generators predicted to retire
by the end of 2018 if a $5 per MWh subsidy is provided to operating coal generators. The generators that

retire within the first year even with a $5 per MWh subsidy remove 67 thousand megawatts of generating

18For reference, $43 per kW-year is the same as $4.9 per MWh if we assume the generator operated 24 hours a day for 365
days a year.
YFor simplicity, we will refer to the different subsidy levels using MWh units instead of MMBtu units.
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capacity. However, in the benchmark scenario, over 89 thousand megawatts retire within the first year of
the simulation, meaning the $5 per MWh subsidy prolongs the life of 22 thousand megawatts of generating
capacity past the first simulated year. If the subsidy is increased to $20 per MWh or even $50 per MWh,
over 61% or 90% fewer coal generators are predicted to retire within the first simulated year compared to the
benchmark, keeping 64 or 85 thousand megawatts of capacity online at least an additional year. Figure
compares the predicted retirement time distribution under the benchmark scenario and the three reliability
subsidies of differing amounts. A total of 97 (20%), 110 (22%), or 188 (38%) coal generators do not retire
in the 50 year time frame given a $5, $20, or $50 per MWh subsidy. Without a subsidy, 86 (17%) coal
generators remain operational. Figure [17] shows the impact of varying reliability subsidies on the change in
predicted retirement time by generating capacity. Notice the subsidies affect generators relatively the same
regardless of generating capacity.

A reliability subsidy aimed at extending the life of the remaining active coal generating fleet would need
to pay owners more than $5 per MWh of generation. Increasing the subsidy to $20 per MWh or more
drastically stretches the predicted retirement time.

This counterfactual analysis provides insight into the effects of carbon taxes as well as reliability subsidies
on the predicted retirement time of the operating coal generating fleet as of December 2017. A carbon tax
equivalent to the social cost of carbon hastens the retirement time while a reliability subsidy extends the life

of these coal generators.

6 Conclusion

Coal-fired generators have been retiring at an increasing rate since 2009. These retirements have shifted
the electricity generation portfolio across the country. In 2015, natural gas surpassed coal as the primary
fuel source for electricity generation. This shift has multiple consequences for the economy (increases in
unemployment in part of the country reliant on coal production) and the environment (reduction in carbon
dioxide emissions produced by the electricity sector). Given the impacts of these shifts in electricity gen-
eration, economic analyses are needed to understand the drivers of these retirement decisions. This study
explored how the sunk costs associated with retiring a coal generator impact the probability of retirement.

The costs associated with retiring electricity generators are scarcely reported and not publicly available.
Instead of proxying for retiring costs with variables used in the past, like the amount of non-depreciated
capital, we estimated the retirement costs for almost 200 coal generators that retired between 2009 and 2015
by using a real options model. We matched imputed retirement costs for retired coal generators to active

generators using propensity score matching on observable generator and sociodemographic characteristics
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and then estimated a logistic regression to determine the impact of sunk retirement costs on the probability
of retirement. Our results indicate the significant impact retirement costs have in determining market exit for
coal generators in the U.S. Furthermore, accounting for retirement costs improves our ability to accurately
predict coal generator retirements that occurred in 2016.

To the best of our knowledge, this is the first study to back out estimates of sunk costs of market exit.
The retirement decision of the average generator in our study is consistent with retirement costs greater than
$37 million. Retirement costs vary across regulated and deregulated markets, across plants within the same
market, and within plants. Matching retirement costs of retired generators to active generators indicates
that the existing coal fleet still operating in the U.S. have retirement costs greater than $100 million.

Future applications of our real options model and subsequent empirical analysis include incorporating
changes in environmental regulation. For example, our framework provides us the opportunity to add
environmental regulation like a carbon tax and determine the set of existing coal generators that have
the highest risk of being pushed out of the electricity market. Another application would be to create a
counterfactual world in which the hydraulic fracturing boom never happened in order to determine whether
the coal generators that have already retired would still be operating today. We leave these topics to future

research.
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Table A.1 : Unit Root Test for Delivered Coal Prices at a Random Retired Plant
Unrestricted regression

Coeflicient Estimate Std. Error
Bo 0.588 0.209
51 0.065 0.090
Ba -0.001 0.000
B3 -0.185 0.047
Restricted regression

Bo 0.004 0.010
B1 0.006 0.093
N =117 F =28.219

Prob > F = 0.000

A Appendix

A.1 Unit Root Tests

Given that real options results critically depend on choosing the correct stochastic process, we tested data for
consistency with Brownian motion instead of the assumption of mean reversion. This is typically completed
using an augmented Dickey Fuller test (Conrad) |1997; Forsythl 2000; [Insley, [2002; [Pindyck and Rubinfeld,
1998). Geometric Brownian motion (GBM) assumes P is log-normally distributedﬂ The logged price level
p = In(P) is normally distributed and follows an arithmetic Brownian motion (ABM) dp = pdt 4+ sdz. If p
is consistent with ABM, Ito’s Lemma ensures P must be consistent with GBM. To test that p are consistent

with ABM, we ran a restricted regression

(pt — pe—1) = Bo + P1(pt—1 — pr—2) + €& (A1)

and an unrestricted regression

(pt — pe—1) = Bo + B1(pt—1 — pr—2) + Bat + Bspr—1 + € (A.2)

The null hypothesis that corresponds with p being ABM is Hg : 2 = 83 = 0. This null hypothesis is rejected
at the 1% or 5% level for all coal generators in the analysis, retired or active. This is true for coal prices
and electricity prices. Tables and provide an example of the augmented Dickey Fuller tests for a

random retired coal generator.

1P is for either Pg or Po
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Table A.2 : Unit Root Test for Wholesale Electricity Prices at a Random Retired Generator
Unrestricted regression

Coefficient Estimate Std. Error
Bo 1.512 0.423
51 -0.157 0.084
Ba -0.001 0.000
B3 -0.264 0.067
Restricted regression

Bo -0.006 0.012
B1 -0.290 0.081
N =142 F = 17.868

Prob > F = 0.001

A.2 Geometric Mean Reversion Parameter Estimation

After determining that Brownian motion is inappropriate for modeling both coal prices and electricity prices,
we turned to geometric mean reversion (GMR) dP = rp(P—P)Pdt+opPdzp. The geometric mean reversion

model can be written as the following:

Pi1 =P +rp(P—P)P, +opPe (A.3)

Here, ¢; is a standard normal random variable. To estimate the parameters rp, P, and op, we used the
data described in Section 2.3.1. We assumed that the parameters of the geometric mean reversion remain

constant during the time period of estimation to rewrite the equation for GMR as

Py — P _
e :Tppr’th + opé€y (A4)
Py
This equation bears characteristics of a linear regression model, with the percentage price change P"%t_Pt

as the dependent variable and P; as the explanatory variable.

According to [Pachamanova and Fabozzi| (2011), the estimate of rp is obtained as the negative of the
coefficient in front of P,. One way to check whether GMR is a consistent assumption for prices is to
determine whether the coefficient in front of P; is positive since the rate of reversion rp cannot be a negative
number. The estimate for the long-run mean of prices P is obtained as the ratio of the intercept term
estimated from the regression and the negative of the slope coefficient in front of P;. The last estimate for
volatility op is obtained as the standard error of the regression.

Two other methods for determining if GMR is suitable are the following: (a) the p-value for the coefficient
in front of P, should be small, preferably less than 0.05, and (b) the points in a scatter plot of P; versus
Pt%t_P‘ should vary around a straight line with no visible cyclical or other patterns. Tables and
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Table A.3 : Geometric Mean Reversion Estimates for Delivered Coal Prices at a Random Retired Plant
Coefficient Estimate  Std. Error

rpP 0.172 0.052
rp -0.043 0.013
N =118 rp = 0.043
P =$4.03 op =0.118

Table A.4 : Geometric Mean Reversion Estimates for Wholesale Electricity Prices at a Random Retired
Generator

Coefficient  Estimate  Std. Error

rpP 0.123 0.045
rp -0.011 0.004
N =143 rp = 0.011
P =$11.60 op = 0.163

display the results of the regressions that determine the parameter estimates for coal and electricity prices
for a random coal generator in our analysis. Coal and electricity prices satisfied all three checks described
by |Pachamanova and Fabozzil (2011) for all generators. Our results were simulated under the assumption

that coal and electricity prices follow GMR.
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