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Abstract

We introduce a unifying stability concept to cooperative game

theory�the equity equilibrium. A central authority selects an outcome

of the game to enforce and evaluates its stability using a collection of

functions called a �complaint system.�These complaints are used to

identify the grievances against and the concessions to each player.

Equity equilibrium occurs when an individually rational payo¤ con-

�guration balances the grievances and concessions of each player. We

establish the existence of equity equilibrium for any valid complaint

system and under any coalition structure. Next, we show that equity

equilibrium under speci�c complaint systems characterizes the kernel,

the Shapley value, and the generalized Nash bargaining solution of

a cooperative game. We show how simplicial algorithms can be em-

ployed for computing any type of equity equilibrium. This approach

is illustrated with an example from the Tennessee Valley Authority.

Key Words: Cooperative Games, Equity Equilibrium, Kernel, Shapley
Value, Computation of Cooperative Solutions
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Only on the haughty rich,

And on their unjust store,

He�d lay his �nes of equity

For his merry men and the poor.

�from �How Robin and His Outlaws Lived in The Woods,�

by Leigh Hunt (1820).

1 Introduction

In cooperative games with transferable utility, players arrange themselves

into groups and then decide how to divide their coalition�s surplus. Solution

concepts for these games focus on outcomes that can be achieved through

stable agreements between players. A variety of solutions have been proposed

and analyzed in the literature, each with their own motivation and adherents.

In this paper, we introduce a new and unifying concept of stability�the equity

equilibrium.

A game, in our equilibrium framework, is administered by a central au-

thority that is responsible for selecting the game�s outcome. The center

evaluates the stability of all possible outcomes by anticipating the players�

objections. Formally, this forecast is given by a collection of real-valued func-

tions called a complaint system. This system speci�es, for each outcome, the

(anticipated) complaint of each player against every other player in the game.

The center uses these complaints to identify, for each player, the �total griev-

ance� against as well as the �total concession� to that player. Grievances

signal that the player�s payo¤ is too large; whereas concessions signal that

the player�s payo¤ is too small. Outcomes where the complaints against a

player are too one-sided are considered inequitable and require equity adjust-

ments. The authority�s goal is to choose an equilibrium outcome where no

equity adjustments are needed, given the forecasted objections.

2



We establish the existence of equity equilibrium for any coalition struc-

ture under general conditions.1 For each player, we de�ne an excess con-

cession function which, for each outcome, is the total amount conceded to

the player net the total grievance against them. This function is continuous

since the complaint system is assumed to be continuous. Next, we establish a

complementarity identity akin to Walras�Law in general equilibrium theory.

Proposition 1 is our basic existence result. The proof of the proposition uses

well-known �xed point methods.2 We de�ne an appropriate outcome transi-

tion function and then apply Brouwer�s �xed point theorem to establish that

this transition function has a �xed point. Next, the complementarity iden-

tity is used to show that the �xed point is indeed an equity equilibrium. The

assumptions for the basic existence of equilibrium are minimal. However,

not all complaint systems lead to interesting equity equilibria. In general,

we �nd that the complaint systems based on the primitives of games tend to

have more structure. We give two �characterization lemmas� that provide

basic properties about equity equilibria for �well-behaved� complaint sys-

tems. These lemmas are used in all of our later characterizations of classic

solutions.

Equity equilibrium is next shown to characterize several classic solutions

from cooperative game theory under speci�c complaint systems: the kernel,

the Shapley value, and the generalized (i.e., weighted) Nash bargaining so-

lution.3 Our equivalence results are found in Propositions 2, 3, and 4 for the

kernel, Shapley value, and generalized Nash bargaining solution, respectively.

These di¤erent characterizations are useful for several reasons. First, they

1For our existence result, we impose two requirements on the complaint system. First,

the complaint system needs to be continuous. Second, players�complaints about players

not in their coalition are set to zero. Complaint systems with these two features are called

�valid.�
2For example, see chapter 2 in Scarf (1973).
3The kernel was introduced in Maschler and Davis (1965); the Shapley value in Shapley

(1953); and the original Nash bargaining solution in Nash (1950).
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illustrate how disparate solution concepts can be linked under a common

equilibrium framework. This provides a cohesive interpretation for each of

these solutions. In addition, since the classic solutions are well-studied (and

linked), their characterizations relate equity equilibrium to other related so-

lution concepts (the pre-kernel, bargaining set, core, nucleolus, etc.). These

concepts are often motivated by stories of bargaining,4 where equity equilib-

rium provides an alternative arbitration-type interpretation that might be a

better �t for some applications. Second, the common characterization facili-

tates comparison of solutions. We can now directly compare these di¤erent

solution concepts by comparing their complaint systems. Third, if a general

algorithm for computing equity equilibria can be found,5 then this algorithm

can be used to compute any other cooperative solution characterized by eq-

uity equilibrium. Finally, these characterizations suggest corollary concepts.

For example, the Shapley value, while de�ned for the grand coalition, can

be extended to outcomes where more than one coalition is formed. We call

such solutions �Shapley value consistent�and provide an equity equilibrium

characterization for these outcomes. The analogous extension and the equity

equilibrium characterization are also made for the generalized Nash bargain-

ing solution.

Finally, to be applicable, we need a reliable way of computing an equity

equilibrium. While our existence proof utilizes Brouwer�s �xed point theo-

rem and is non-constructive, we can utilize simplicial algorithms (a lá Scarf)

to approximate equity equilibria. This approach provides a uni�ed compu-

4The bargaining foundations of these cooperative solutions have been explored in the

non-cooperative literature. Rubinstein (1982) is connected to the Nash bargaining solution

in Binmore (1987). Perry and Reny (1994) study a bargaining model related to the core.

Harsanyi (1977), Gul (1989), and Hart and Mas-Colell (1996) are examples that provide

non-cooperative foundations for the Shapley value. Finally, Serrano (1997) provides a

bargaining foundation for the (pre) kernel.
5We provide such an algorithm at the end of the paper. Computation is discussed later

in the introduction.
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tational method for �nding equity equilibria. We provide a brief �reader

friendly� survey of simplicial algorithms and discuss to what extent these

algorithms compute approximate economic equilibria (including equity equi-

libria). Next, we illustrate how an o¤-the-shelf simplicial algorithm can

be used to approximate an equity equilibrium. In particular, we provide

a step-by-step method for the computation of an equity equilibrium, based

on Kuhn�s arti�cial start algorithm (Kuhn 1968), in a game where players

form a grand coalition. While other algorithms have been proposed in the

literature, Kuhn�s method is perhaps the easiest one to describe and, for the

neophyte, the simplest to program.6 Finally, we illustrate this approach by

using Kuhn�s algorithm to compute both the kernel and the Shapley value

for a famous example involving the Tennessee Valley Authority.7

Literature Review

We make several contributions to the literature.

Cooperative Game Theory Solutions:

This paper proposes an equilibrium concept for cooperative games. Given

a complaint system, any associated equity equilibrium identi�es a stable out-

come. By judiciously choosing the complaint system, as we show later, the

equity equilibrium can characterize classic solutions such as the kernel, the

Shapley value, and the generalized/weighted Nash bargaining solution (as

well as partially characterize the epsilon core). Thus, the �exibility of the

complaint system allows us to use a common language to compare and con-

trast di¤erent cooperative solutions. Naturally, each classic solution has its

6Kuhn�s algorithm is used for computing equity equilibria when players form the grand

coalition. For equity equilibria involving multiple non-singular coalitions, we refer the

reader to the simplicial algorithms detailed in Doup (1988).

7See, for example, Young (1994) or Stra¢ n and Heany (1980).
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own literature and has connections with other solutions such as the core,

the bargaining set, Walrasian and Lindahl equilibria, the pre-kernel, and the

nucleolus.8 Thus, by varying the complaint system, the equity equilibrium is

shown to be related to a myriad of other classic concepts. Peleg and Sudhöl-

ter (2007) is the main reference for cooperative game theory solutions and

many of their interconnections.

Computation of Economic Equilibria and Cooperative Solutions:

The question of whether equity equilibria can be computed is a valid

one. Equity equilibria are shown to exist, but our proof uses Brouwer�s

�xed point theorem and is therefore non-constructive. Fortunately, there is

a large literature on using algorithms that approximate such �xed points.9

Any one of these algorithms allows us to compute any cooperative solution

concept that is characterized by equity equilibria. In the paper, we present

a simplicial algorithm to compute approximate equity equilibria, based on

Kuhn (1968). However, in the literature, there are many other simplicial

algorithms that are theoretically more e¢ cient.10

8The bargaining set was introduced in Aumann and Maschler (1964). The pre-kernel is

introduced in Maschler, Peleg, and Shapley (1979). The nucleolus by Schmeidler (1969).

Two good surveys of the bargaining set, the kernel, and the nucelolus can be found in

Maschler (1992) and Iñarra, Serrano, and Shimomura (2019). The recent paper of Gul and

Pesendorfer (2024) relates the weighted Nash bargaining solution in assignment problems

without transfers with the Lindahl equilibrium.
9This literature begins with Scarf (1967a,b). A history of the early literature and the

ideas behind these algorithms can be found in either Scarf (1973) or Scarf (1982). Books by

Doup (1988) and Yang (1999) o¤er a variety of di¤erent �xed point algorithms, extensions

of the basic algorithms to the simplotope, and applications.
10Homotopy methods described in Yang (1999) are good examples. The �sandwich

method�described in Kuhn and MacKinnon (1975) or MacKinnon (1974) is a particular

homotopy algorithm that uses much of the same machinery as Kuhn (1968). Thus, the

algorithm presented in this paper for approximating equity equilibrium can be converted

to the sandwich method if more e¢ ciency is desired.
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The alternative to simplicial methods is a speci�c algorithm for each

solution concept. The advantage of this approach is that one may take ad-

vantage of the special structure of a speci�c concept and, hopefully, generate

a more accurate and e¢ cient algorithm. However, it is unknown whether

these algorithms are more e¢ cient than simplicial methods. Algorithms for

�nding solutions in the bargaining set, the kernel, the pre-kernel, and the

Shapley value have been proposed by several authors.11 Aumann, Peleg,

and Rabinowitz (1965) provide an early algorithm for computing the kernel;

Stearns (1968) provides an iterative scheme that converges in the limit to

the kernel (and another for the bargaining set); Harsanyi (1977) provides

an algorithm for computing the Shapley value, using coalitional dividends.

Harsanyi�s coalitional dividends play an important role in our equity equi-

librium characterization of the Shapley value. Di¤erent algorithms based on

using linear programming methods at each step are known for computing

the kernel, the pre-kernel, and the nucleolus. These methods are discussed

in Peleg and Sudhölter (2007). Chalkiadakis, Elkind, and Wooldridge (2012)

provides a survey of computational methods for �nding di¤erent cooperative

solutions. Finally, Meinhardt (2014) discusses recent advances in algorithms

for the computation of the pre-kernel.

2 Cooperative Games and Equity Equilibrium

Cooperative Games and their Outcomes

A cooperative game � is a pair (N; v), where N = f1; :::; ng is the set of
players and v is the characteristic function that maps each coalition S � N
into payo¤ v(S), where v(S) � 0 for all S � N and v(fig) = 0 for all

i 2 N[f;g. An outcome in (N; v) is de�ned by the coalitions that are formed
11The pre-kernel elements and the kernel elements coincide when the game is super-

additive and players form the grand coalition.
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by the players and the distribution of each coalition�s payo¤ among their

group. An individually rational payo¤ con�guration (IRPC) is an outcome

(x;�), where x is a vector of shares, one for each i 2 N , and � = f�1; :::; �mg
is a partition of N into m � 1 disjoint coalition structures. The share vector
x in an IRPC is such that xi � 0 for all i and, for each coalition �j, we haveP

i2�j xi = 1.
12 Hence, the IRPCs are the outcomes in which each coalition

�j�s shares belong to the (j�jj � 1)-dimensional unit simplex, denoted X�j .

Finally, the Cartesian product X � �mi=1X�i.

Game Administrator

The game (N; v) is administered by a central authority, hereafter the cen-

ter, which selects an IRPC (x;�) and forecasts the stability of the outcome

using a collection of functions called a �complaint system.�A �satisfactory�

solution for the center is an IRPC that is �stable� under the given com-

plaint system (i.e., an equity equilibrium). We now work to make these ideas

precise.

Complaint Systems, Stability, and Equity Equilibrium

A complaint system C is de�ned by an n� n matrix of functions, where
each function maps an outcome (x;�) into a real number. The (k; l) element

of C, denoted ck;l (x;�), is interpreted by the center as player k�s (antici-
pated) complaint against player l at (x;�). A complaint system C is valid
under �, if for each k; l 2 N we have that ck;l (x;�) is a continuous function

in x; and if k and l are not in the same coalition under �, then ck;l (x;�)�0
for all x.

Relative complaints between pairs signal to the center whose payo¤ share

may need an equity adjustment. We divide relative complaints into two cat-

egories: �grievances against�and �concessions to�each player. A grievance

12Given (x;�), if i 2 �j , then i�s payo¤ in � is v(�j)xi �that is, i receives an xi share
of coalition j�s surplus.
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against player k occurs when another player l�s complaint about k is larger

than k�s complaint about l. We quantify l�s grievance against k under (x;�)

as xl (cl;k (x;�)�ck;l (x;�)) �that is, a weighted share of the relative com-
plaint. Analogously, concessions occur when a player l�s complaint about

player k is smaller than k�s complaint about l. We quantify l�s concession

to k under (x;�) as xl (ck;l (x;�)�cl;k (x;�)). These quantities are aggre-
gated. The total grievance against k, denoted TGk, is the sum of all of the

individual players�grievances against k. Likewise, the total concession to k,

denoted TCk, is the sum all the individual players�concessions to k.

Example 1 illustrates the computation of grievances and concessions for

a given complaint system.

Example 1: Consider the complaint system

C =

264 cAA cAB cAC

cBA cBB cBC

cCA cCB cCC

375 =
264 0 3xB � 1 3xC � 2
3xA � 3 0 3xC � 2
3xA � 3 3xB � 1 0

375
Suppose the coalition is the grand coalition and shares x =(xA; xB; xC) =

(1
3
; 1
3
; 1
3
) are proposed, then this outcome is an IRPC. The grievances against

and concessions to player A are

B C Total

Grievance vs. A: 0 0 0

Concession to A: 2
3

1
3

1

Hence, TCA > TGA at x. The grievances against and concessions to player

B are
A C Total

Grievance vs. B: 2
3

1
3

1

Concession to B: 0 0 0

Hence, TCB < TGB at x. Finally, the grievances against and concessions to
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player C are
A B Total

Grievance vs. C: 1
3

0 1
3

Concession to C: 0 1
3

1
3

Hence, TCC = TGC .

�

From the center�s perspective, grievances are a signal that a player�s payo¤

share may be too high and concessions are a signal that a player�s payo¤

may be too low. In Example 1, TCA > TGA suggests that A�s payo¤ share

is too low, TCB < TGB suggests that B�s payo¤ share is too high, whereas

TCC = TGC suggests that C�s payo¤ share is �ne. Outcomes where these

signals o¤set each other are considered stable. Speci�cally, player k�s share

xk is stable at (x;�) under C if either

1. TGk = TCk; or

2. TGk > TCk and xk = 0.

In Example 1, only player C�s payo¤ share is stable.

An IRPC (x;�) is in equity equilibrium under C if each player�s share is
stable.

Example 2: Returning to the complaint system in Example 1. If

x =(xA; xB; xC) = (
2

3
; 0;
1

3
),

we have that TGi = TCi = 0 for i = A, B, and C. Hence, each player�s

payo¤ share is stable at x. The IRPC (x;�) forms an equity equilibrium for

the grand coalition fA;B;Cg under the complaint system in Example 1.�

In Example 2, we found an equity equilibrium without knowing the game.

In general, interesting equity equilibria are generated using complaint sys-

tems derived from the primitives of an underlying cooperative game. In the
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next example, as we show later in the paper, the illustrated equity equilib-

rium coincides with the game�s Shapley value.

Example 3: Consider the super-additive game13 (N; v), whereN = fA;B;Cg
and the characteristic function is

v(fA;B;Cg) = 3;

v(fA;Bg) = 1, v(fA;Cg) = v(fB;Cg) = 2;
v(fAg) = v(fBg) = v(fCg) = 0:

The shares xA = xB =
5
18
and xC = 8

18
form an equity equilibrium for the

grand coalition under the complaint system

C =

264 cAA cAB cAC

cBA cBB cBC

cCA cCB cCC

375 =
264 0 3xB � 3

2
3xC � 2

3xA � 3
2

0 3xC � 2
3xA � 3

2
3xB � 3

2
0

375 :
This follows since the outcome is an IRPC and at x we have cAB = cBA,

cAC = cCA, and cBC = cCB. Thus, TGi = TCi = 0 for i = A;B;C. �

The complaint systems used in the examples are typical and of the fol-

lowing form: If k; l 2 �j, then ck;l (x;�) = v(�j)xl � bl with bl a constant;
and ck;l (x;�) = 0 otherwise. This family of complaint systems is valid and

turns out to be useful in several of our characterizations. As such, it is useful

to classify them. Hereafter we refer to a member of this family of complaint

systems as a threshold complaint system.

13Recall that cooperative game (N; v) is super additive if for any S1; S2 � N we have

v(S1 [ S2) � v(S1) + v(S2). A super-additive game provide incentives for the players to
form the grand coalition fNg.
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3 Existence of Equity Equilibrium and its Prop-

erties

In this section, we establish the existence of equity equilibrium points for

coalitional games with valid complaint systems and include some properties

of equilibrium.

Existence of Equity Equilibrium

Fix a partition of the players into coalitions � as well as any valid

complaint system C, then for each player k 2 N , we de�ne the mapping

gk : X ! R where

gk(x) = x1 (ck;1 (x)� c1;k (x)) +
x2 (ck;2 (x)� c2;k (x)) +
:::+

xn (ck;n (x)� cn;k (x)) :
= TCk � TGk:

This is the �excess concession� function for player k. Under this notation,

an IRPC (x;�) is in equity equilibrium if, for each k, we have either xk � 0
and gk(x) = 0; or gk(x) < 0 and xk = 0.

Lemma 1: If C is a valid complaint system, then, for each k 2 N , the
mapping gk is a continuous function in x.

Next, we establish a complementarity identity that is analogous toWalras�

Law from general equilibrium theory.

Lemma 2: Suppose the complaint system C is valid, then for all (x;�) and
each coalition �j 2 � we haveX

k2�j

xkgk(x) = 0.
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The existence of equilibrium follows from the continuity of the excess

concession functions, the above complementarity identity, and an application

of Brouwer�s �xed point theorem.

Proposition 1: For any coalition structure � and any associated valid com-
plaint system C there exists an equity equilibrium.

Some Properties of Equity Equilibria

Given a complaint system C, we de�ne the out-complaints relation B on
N as follows: k B l if and only if ck;l (x;�) > cl;k (x;�) and xl > 0. In many
complaint systems of interest, as we show later, B is a strong partial order

on N (i.e., it is irre�exive, asymmetric, and transitive). The equity equi-

libria associated with such complaint systems have predictable structures.

The following lemma reports some useful properties of an equity equilibrium

associated with C whose induced relation B is transitive. These results are

used in several of our characterizations.

Lemma 3: Suppose the relation B induced by C is transitive. If (x;�) is an
equity equilibrium associated with C, then the following statements are true:
(i) If ck;l (x;�) > cl;k (x;�), then xl = 0.

(ii) For any pair k, l 2 N we have

(ck;l (x;�)� cl;k (x;�))xl � 0

and

(cl;k (x;�)� ck;l (x;�))xk � 0:

(iii) For any pair k, l 2 N such that xk > 0 and xl > 0 we have

ck;l (x;�) = cl;k (x;�) .

Threshold complaint systems, as in Example 3, always induce an out-

complaints relation B that is a strong partial order on N . The special
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structure of this complaint system provides us with some additional char-

acterization results, which are presented in Lemma 4.

Lemma 4: Suppose C (x;�;b) is a threshold complaint system with con-

stants b = (b1; :::; bn). Then the following statements are true:

(i) The out-complaints relation B induced by C is transitive.
(ii) If there exists an �x 2 X such that (�x;�) is an IRPC and, for each

coalition �j, we have

ck;l (�x;�;b) = cl;k (�x;�;b)

for all l,k 2 �j; then every equity equilibrium (x;�) under C for the parti-
tion � has

ck;l (x;�;b) = cl;k (x;�;b) = ck;l (�x;�;b)

for all l,k 2 �j. In addition, if v(�j) > 0 for coalition j, then �x identi�es
the unique payo¤ shares for members of coalition j in every equity equilibrium

under partition � .

4 Characterizations of Classical Solutions us-

ing Equity Equilibrium

Proposition 1 shows that equity equilibria exist under reasonable conditions.

However, not all complaint systems generate interesting equity equilibria

(e.g., the constant complaint system).14 In this section, we show that known

cooperative solutions can be characterized as equity equilibria.

The kernel and Equity Equilibrium

14There is probably a joke in there somewhere!
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The kernel is one of the basic solutions in cooperative game theory. In this

section, we show that the kernel is characterized by the equity equilibrium

concept under a speci�c complaint system.

Review of the Kernel

The kernel of a cooperative game is a pair-wise stability concept à la

Maschler and Davis (1965). It�s de�nition requires two concepts: the �excess�

of a coalition and the �surplus�one player has over another.

Let (x;�) be an IRPC. The excess of coalition D with respect to (x;�),

denoted eD(x;�), is de�ned by

eD(x;�) � v(D)�
mX
j=1

24 X
i2D\�j

v(�j)xi

35 .
The excess of D represents the total amount that the members D (could)

gain if they withdraw from (x;�) and formed coalition D. For player k 2 �j,
if k 2 D, then eD(x;�) represents a potential bargaining chip k could use
against another member, l 2 �j, when arguing for a higher share of v

�
�j
�
.

Of course, if l 2 �j and l 2 D, then player l could use the same eD(x;�)
against k. This motivates the de�nition of one player�s surplus over another

player.

If two distinct players k and l are in the same coalition, then we de�ne

player k�s surplus over l, denoted sk;l(x;�), to be the maximum excess player

k could gain by withdrawing from (x;�) and joining a coalition that does

not also contain player l. The surplus is de�ned to be zero in all other cases.

Thus, k�s surplus over l is given by

sk;l(x;�) =

(
maxD2Tk;l eD(x;�) if k 6= l are in the same coalition,
0 otherwise,

where

T(k;l) = fDjD � N , k 2 D, and l =2 Dg.
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Let (x;�) be an IRPC for �, and let k, l be two distinct players in a

coalition �j. Player k is said to �outweigh�player l with respect to (x;�),

denoted k � l, if

sk;l > sl;k and xl 6= 0:

If neither k � l nor l � k, then we say that k and l are balanced and we

denote it by k � l. The kernel K is the set of IRPCs (x;�) such that every

pair of players k; l 2 N is balanced.

Remark: Maschler and Davis (1965, Lemma 5.1 ) established that the out-
weigh relation � is a strict partial order.

Equity Equilibrium Characterization of the Kernel

The surplus function of Maschler and Davis de�nes a valid complaint

system. The Maschler-Davis Complaint System, denoted CMD (x;�), is de-

�ned by the n � n matrix whose (k; l)-th element cMD
k;l (x;�) � sk;l(x;�).

By inspection, this complaint system is valid and induces an out-complaint

relation B, which is identical to the outweigh relation �. Lemma 5 follows
immediately from these observations.

Lemma 5: The following statements about CMD are true:

(i) CMD is a valid complaint system.

(ii) The out-complaints relation B induced by CMD is a strict partial order.

Proposition 2 shows that the kernel elements of the coalitional game co-

incide with the equity equilibrium outcomes under CMD.

Proposition 2: The IRPC (x;�) 2 K if and only if (x;�) is an equity

equilibrium under CMD.

This equivalence of equity equilibrium and the kernel under CMD has

some immediate corollaries. From Lemma 5, CMD is valid, we therefore
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know from Proposition 1 that the set of equity equilibria under CMD is non-

empty and, therefore, from Proposition 2, K is non-empty. It is known (from

Maschler and Davis) that if (x;�) 2 K, then (x;�) is in the bargaining set.
Hence, the non-emptiness of the bargaining set also follows from Proposition

1 and Proposition 2.

Corollary 1: The kernel and the bargaining set are both non-empty.

If the game is super additive and the speci�ed coalition is the grand

coalition, then the kernel is known to be the same as the pre-kernel.

Corollary 2: An IRPC (x;�) for a super-additive game is in the pre-kernel

for the grand coalition if and only if it is an equity equilibrium under CMD

for the grand coalition.

Example 4: Consider the super-additive game (N; v), from Example 3 under
the Maschler-Davis complaint system CMD =264 0 maxf�3xA; 2� 3xA � 3xCg maxf�3xA; 1� 3xA � 3xCg
maxf�3xB; 2� 3xB � 3xCg 0 maxf�3xB; 1� 3xB � 3xCg
maxf�3xC ; 2� 3xB � 3xCg maxf�3xC ; 2� 3xA � 3xCg 0

375 :
The grand coalition with payo¤ shares x =

�
2
9
; 2
9
; 5
9

�
is an equity equilibrium

under CMD. From Proposition 2, we know this outcome is in the kernel of

the game (N; v) from Example 3. From Corollaries 2 and 3 we have that this

outcome is in the bargaining set and is in the pre-kernel. �

The Shapley value and Equity Equilibrium

In this section, we construct a di¤erent complaint system that character-

izes the Shapley value as an equity equilibrium. In fact, the characterization

does more. It includes the Shapley value consistent outcomes, which are

de�ned on proper cooperative subgames of the original game.15

15We de�ne these items later in this section.

17



Review of the Shapley Value

The Shapley value is the unique solution for dividing the grand coali-

tion�s surplus that satis�es the following axioms: (i) the grand coalition�s

surplus is fully divided; (ii) symmetric players receive identical payo¤s; (iii)

dummy players receive a zero payo¤; and (iv) additivity. In addition, if the

game (N; v) is super additive, then its Shapley value is also e¢ cient and

individually rational.

Following Harsanyi (1977), the Shapley value can be computed using

�coalitional dividends�as follows: Given a cooperative game (N; v), for each

coalition R � N , there is a unique constant cR associated with it. This

constant is determined inductively by setting c; � 0 and then, for all other
R � N , cR � v(R)�

P
Q�R cQ.

16 Then, for each non-empty coalition R � N ,
the coalitional dividend for R, denoted wR, is de�ned as the constant cR
divided by the number players in the coalition�that is, wR � cR

jRj . The Shapley

value payo¤ �i(v) for each player i 2 N is then given by17

�i(v) =
X

R�N;i2R
wR:

Example 5: Suppose N = fA;B;Cg with characteristic function:

v(fA;B;Cg) = 3;

v(fA;Bg) = 1, v(fA;Cg) = v(fB;Cg) = 2;
v(fAg) = v(fBg) = v(fCg) = 0:

16We use "�" to denote a strict subset�that is, A � B is used for subsets of B that are
not equal to B. In contrast, we use "�" to denote a weak subset�that is, A � B if either

A � B or A = B.
17Equivalently, for a general characteristic function v, the Shapley value �i of player i

is

�i =
X

S�f1;:::;Ng

(jSj � 1)!(N � jSj)!
N !

[v(S)� v(Snfig)] :
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The coalitional dividends for each coalition are

wfAg = 0 wfBg = 0 wfCg = 0

wfA;Bg =
1
2
wfA;Cg = 1 wfB;Cg = 1

wfA;B;Cg = �2
3

The Shapley value shares are given by
P

R�N;i2R
wR

v(fA;B;Cg) for each i, or xA =

xB =
5
18
and xC = 8

18
. �

Cooperative Subgames and Shapley Value Consistent Outcomes

In some games, players have no incentive to form the grand coalition.

However, Shapley�s idea can be extended to these coalitional games by look-

ing at the cooperative subgames induced by �. Given a coalition S of players,

the cooperative subgame induced by S is the game de�ned by the player set S

and characteristic function vjS, which is the restriction of the original char-
acteristic function v to coalitions only involving the players in S. A coalition

structure � is a partition of the players into coalitions. If, for each S 2 �,
the cooperative subgame induced by S is super additive, then we say that

the coalition structure � satis�es subgame super additivity.

Since a cooperative subgame is a game, all solution concepts that apply

to cooperative games continue to hold for cooperative subgames. Given a

cooperative subgame (S; vjS), we can compute the Shapley value for that
subgame and it can be computed independently of other subgames by using

the same coalitional dividends we would use to compute the Shapley value

for the original game. We say that an IRPC (x;�) is Shapley consistent, if x

prescribes the Shapley value division of surplus for each cooperative subgame

induced by the coalitions in �.

Example 6: Consider the following �Decreasing Returns�cooperative game.
Suppose N = fA;B;C;Dg, where the value of a one player coalition is 0,
the value of a two player coalition is 3, the value of a three player coalitions

is 2, and the value of the four player coalitions is 1. This game is not super
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additive. However, players may want to form two-player coalitions. For

example, the cooperative subgame induced by coalition fA;Bg is the one
with player set fA;Bg and the following restricted characteristic function

vjfA;Bg (fA;Bg) = 3

vjfA;Bg (fAg) = 0

vjfA;Bg (fBg) = 0

Suppose players form coalitions � = ffA;Bg; fC;Dgg. This coalition struc-
ture satis�es subgame super additivity. The payo¤ shares x corresponding

to the unique Shapley value consistent outcome for � are

x = (xA; xB; xC ; xD) = (
1

2
;
1

2
;
1

2
;
1

2
).

Since the two cooperative subgames induced by � are super-additive, the

Shapley consistent outcomes are e¢ cient (within their subgame) and indi-

vidually rational.�

Equity Equilibrium Characterization of Shapley Value Consistent Outcomes

In this section, we use equity equilibrium to characterize the Shapley

value consistent outcomes of the game. The complaint system is de�ned

using Harsanyi�s coalitional dividends.

The Shapley Complaint System, denoted CS (x;�), is the n � n matrix
whose (k; l)-th element is de�ned as follows:

cSk;l (x;�) =

(
v(�j)xl �

P
l2R;R��j wR - if k 6= l are in the same coalition, and

0 - otherwise.

Proposition 3: Suppose (N; v) is subgame super additive under �, then
(x;�) is Shapley value consistent for � if and only if (x;�) is an equity

equilibrium under CS.
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If � is the grand coalition, then Proposition 3 connects equity equilibrium

with the standard Shapley value.

Corollary 3: Suppose (N; v) is super additive, then (x; fNg) is the Shapley
value outcome if and only if (x; fNg) is an equity equilibrium under CS.

The reader may check that the complaint system used in Example 3

is a Shapley complaint system (using the coalitional dividends obtained in

Example 6) and that the equity equilibrium shares for Example 3 coincide

with the Shapley value of the game (also given in Example 6).

A su¢ cient condition for the game to be super additive is for it to be

convex.18 When a cooperative game is convex, the core is non-empty and

contains the Shapley value.19 Thus, when the game is convex, the equity

equilibria for the grand coalition under CS are contained in the core.

Example 7: The Shapley Complaint System for the Decreasing Returns

Game (Example 6) for � = ffA;Bg; fC;Dgg is

CS =

266664
cAA cAB cAC cAD

cBA cBB cBC cBD

cCA cCB cCC cCD

cDA cDB cDC cDD

377775 =
266664

0 3xB 0 0

3xA 0 0 0

0 0 0 3xD

0 0 3xC 0

377775 :
The payo¤ shares

x = (xA; xB; xC ; xD) = (
1

2
;
1

2
;
1

2
;
1

2
)

are clearly an equity equilibrium under CS and correspond to the unique
Shapley value consistent outcome for �. �
18Recall: A game (N; v) is convex if

v(S) + v(T ) � v(S [ T ) + v(S \ T )

for all S, T � N .
19See Shapley (1971).
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The N-Person Generalized Nash Bargaining Solution and the

Equity Equilibrium

In this section we provide a short equity equilibrium characterization

of the generalized Nash bargaining solution with weights � =(�1; :::; �n),

hereafter GNBS-�.

An IRPC (x;�) is consistent with the GNBS-� if, for each coalition

�j 2 � such that v(�j) > 0, the payo¤ shares maximize the generalized Nash
product �i2�jx

�i
i , where �i > 0 for all i.

20

Let the Nash complaint system, denoted CN (x;�), be an n � n matrix
whose (k; l)-th element is

cNk;l (x;�) =

8<: v(�j)

�
xl � �lP

m2�j
�m

�
-if l & k are in the same coalition �j, and

0 -otherwise.

Clearly, CN is a valid threshold complaint system. Proposition 4 provides

the equity equilibrium characterization.

Proposition 4: The IRPC (x;�) is consistent with the generalized Nash

bargaining solution with weights � =(�1; :::; �n), if and only if (x;�) is an

equity equilibrium under CN .

Example 8: Consider the super-additive game (N; v), where N = fA;B;Cg
and the characteristic function is

v(fA;B;Cg) = 3;

v(fA;Bg) = 1, v(fA;Cg) = v(fB;Cg) = 2;
v(fAg) = v(fBg) = v(fCg) = 0:

20We normalized the payo¤s in the game so that v(fig) = 0 for all i. We take this to be
i�s disagreement point.
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The shares xA = xB =
1
6
and xC = 2

3
form an equity equilibrium for the

grand coalition under the complaint system

CN =

264 0 3xB � 1
2
3xC � 2

3xA � 1
2

0 3xC � 2
3xA � 1

2
3xB � 1

2
0

375 :
The outcome is consistent with the generalized Nash bargaining problem

with weights � =(�1; �2; �3) = (1; 1; 4). �

5 Computation of Equity Equilibrium

Proposition 1 provides a non-constructive proof for the existence of equity

equilibrium. However, to apply equity equilibrium, we need a reliable method

of computation. In this section, we illustrate how simplicial algorithms can

be employed to �nd approximate equity equilibria when players form the

grand coalition. This is an expositional choice. When players are in the

grand coalition, the task of �nding an equity equilibrium is analogous to

�nding prices that form a Walrasian equilibrium in a general equilibrium

problem. In particular, the payo¤ shares of the players are drawn from the

unit simplex. As computing a Walrasian equilibrium was one of the primary

motivations for the development of simplicial algorithms, we thus have a

large inventory of algorithms from which to choose. Here, we describe how

Kuhn�s arti�cial start algorithm can be used to �nd an approximate equity

equilibrium.21

First, we provide the key de�nitions, terminology, and background theo-

rems used by this algorithm.

21When players belong to several coalitions, players�shares x are no longer found on the

unit simplex but rather belong to a simplotope (i.e., a Cartesian product of unit simplices).

There are simplicial algorithms for approximating �xed points on a simplotope. We refer

the reader to Doup (1988) for a book length treatment of the subject, including several

e¢ cient algorithms.
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Preliminaries

When players form the grand coalition, their payo¤shares are (x1; :::; xn) 2
XN , where XN is the (n � 1) dimensional unit simplex. For the algo-

rithm, we need only consider points ~x 2 XN that can be expressed as

~x = 1
D
(z1; z2; :::; zn), where D is the grid denominator (a positive integer),

and z1; z2; :::; zn are non-negative integers that sum toD (i.e., 1D
Pn

i=1 zi = 1).

This collection of points, known as the regular simplicial subdivision of XN ,

chops up XN into a sequence of smaller (n � 1) dimensional sub-simplices
whose union is XN . By choosing a su¢ ciently large grid denominator, we

can make this grid arbitrarily �ne. Kuhn�s algorithm moves along points in

a regular subdivision of XN .

We can assign each point in our regular subdivision with an integer label

from the set f1; :::; ng. The labeling rule L we use is de�ned by the function
L : XN ! f1; :::; ng such that

L(x) = k - if gk(x) � 0 and xk > 0,

with the proviso that if a vertex quali�es for more than one label, then we

choose the label l with the most negative gl(x) � 0.

Remark: From Kuhn and MacKinnon (1975) we know the label rule L

is both well-de�ned on XN and proper�that is, each point x 2 XN can be

assigned a label and can only receive label k when xk > 0.22

Why is this label rule interesting? The answer has to do with Sperner�s

famous combinatorial lemma, which can be used to prove Brouwer�s �xed

22A proof of the remark is as follows: Suppose L was not well-de�ned for some x. Since

x 2XN , there must be at least one index k such that xk > 0, and, for each such k; we

must have gk(x) > 0 (otherwise L is well-de�ned). However, if this is the case, we haveP
k xkgk(x) >0, which contradicts the conclusion of Lemma 2. The proof that L is proper

follows from the de�nition of L, since vertex x can only receive label k if xk > 0. �
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point theorem.23 A sub-simplex of XN is said to be completely labeled if the

n vertices that de�ne the sub-simplex carry all n distinct labels. Sperner�s

Lemma states that every properly labeled simplicial subdivision of a simplex

must contain an odd number of completely labeled sub-simplices.24

From the remark, we know that any simplicial subdivision of XN coupled

with a labeling from L is a proper labeling. From Sperner�s Lemma, since

the labeling is proper, there exists a sub-simplex in the subdivision with

a complete set of labels. Thus, in our problem, in the grid there are n

vertices x1;x2; :::;xn 2 XN that de�ne a completely labeled sub-simplex in

the subdivision such that

g1(x
1) � 0 and x11 > 0

g2(x
2) � 0 and x22 > 0

...

gn(x
n) � 0 and xnn > 0.

If the grid of the subdivision is su¢ ciently �ne, then the vertices x1 � x2 �
� � � � xn are near one another and the barycenter of this sub-simplex provides
us with our approximate equilibrium point.

Main Idea Behind Simplicial Algorithms

Imagine the simplex XN is a house and each sub-simplex of the subdivi-

sion is a room. We classify a facet of a sub-simplex as a �door� if it bears

n� 1 distinct labels�say labels f1; :::; n� 1g. Thus, every room in the house

will have either 0, 1, or 2 doors.

We are going to describe a procedure to walk through the house and �nd

a room with only a single door. The walk starts by locating a door on the

23An interesting primer on Sperner�s lemma, Brouwer�s �xed point theorem, and sim-

plicial algorithms can be found in Su (1999).
24The basic idea of the constructive approach is latent in the work of Cohen (1967) and

explicit in the work of Kuhn (1968).
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Figure 1: Walking through the House
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boundary of the house. This boundary is a facet ofXN associated with labels

1 through n� 1. By Sperner�s lemma we know there are an odd number of
doors on this facet. We walk through one of these boundary doors and adopt

the rule that we only go through doors that we have not already passed

through. By following this rule in each room, we either stop (if there are no

more new doors) or we have a unique door left for us to walk through.

There are two ways for such a walk to end: (1) we walk into a room with

only 1 door; (2) we walk out of the house. In the �rst case, we are done.

We have found a completely labeled sub-simplex. In the second case, we

can simply start again by walking into the house using a di¤erent door on

the boundary (the existence of such a door is again guaranteed by Sperner�s

lemma�there are an odd number of such doors and we have only used two!).

Following this heuristic, we must eventually go through a boundary door that

leads us to a room with only a single door.

Kuhn�s algorithm operationalizes this idea into an e¤ective algorithm. A

sub-simplex in XN (i.e., a room in the house) is described by a matrix R.

Given a grid size D, the matrix R consists of integers where each column

represents a vertex of XN and sums to D. We use the label rule to assign

each vertex in XN with a label.

The algorithm provides two essential tricks. First, we add an arti�cial

layer (a facet) to the boundary of the house; and then we use a special label

rule for those vertices on this arti�cial facet. The label rule is chosen so that:

(1) no completely labeled sub-simplex will appear on the arti�cial layer of

the simplex; and (2) there is precisely 1 door on the boundary of the arti�cial

facet. Thus, there is now a single start to the walking algorithm and it is

impossible to exit the house. The algorithm must �nish in a room with only

a single door�a completely labeled sub-simplex. The second trick is that by

using a regular subdivision of XN , the mathematical operation of walking

from one room in the house to another (or by removing one vertex of R and

adding a new vertex to arrive in the adjacent sub-simplex R0) is captured
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with a simple algebraic operation involving only 3 columns in R!

In the next section, we provide a detailed step-by-step description of

Kuhn�s algorithm. We illustrate its use by computing the kernel and the

Shapley value of a well-known example, involving the Tennessee Valley Au-

thority.

Kuhn�s Arti�cial Start Algorithm for Finding an Approximate Equity Equi-

librium:

We now describe an algorithm for �nding a completely labeled sub-simplex.

1. Pick the positive integer D (grid denominator) and identify an integer

base vertex b = (0; b2; ::; bn), where the sum of the coordinates are

equal to D. The base vertex is our initial �entry�vector.

2. Given b, compute the starting sub-simplex whose columns represent

the n vertices of the sub-simplex �R = [b x2 � � � xn], where

�R =

266666664

0 �1 � � � �1 �1
b2 b2 + 1 b2 b2

b3 b3
...

...
...

... bn�1 + 1 bn�1

bn bn � � � bn bn + 1

377777775
:

The n � 1 vertices x2 � � � xn are not in the unit simplex XN . We

generate labels for each vertex using the rule

~L (x) =

(
L(x) - if x 2 XN

La(x) - if x =2 XN ,

where L(x) is de�ned as earlier and La(x) is the labeling rule that

assigns x =2 XN the smallest integer j such that xj > bj. For the initial

sub-simplex, this rule gives

Vertex: b x2 x3 � � � xn

Label: L(b) 2 3 � � � n
:
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The starting sub-simplex is thus always ��almost completely labeled�

(i.e., has exactly n� 1 distinct labels).

3. Remove the vector xj whose label is the same as the entry vector. The

replacement and new entering vector, ~xj is given by

~xj = xj�1 + xj+1 � xj (mod n).

4. Compute the label for the entering variable, using ~L. If its label

is 1, then stop. A completely labeled sub-simplex has been found.

Otherwise, the new sub-simplex is again almost completely labeled and

we return to step 3.

Example: Cost Attribution Problem for the Tennessee Valley

Authority

In this section, we use Kuhn�s algorithm to numerically compute vari-

ous equity equilibria for the cost attribution problem faced by the Tennessee

Valley Authority (TVA) during the 1930s. The TVA project, part of the

New Deal, was tasked with improving navigation, controlling �ooding, gen-

erating electricity, and fostering economic development in the seven states

spanned by the Tennessee River Basin. The TVA�s goal was to stimulate

growth, create jobs, and improve the quality of life for the residents of the

area. Economists performing the cost-bene�t analysis for the project faced

the problem of how much cost should be attributed to each service in the

project. They estimated the cost of providing each service by itself, the cost

of providing any two services, and the cost of providing all three services. The

result was essentially a cooperative game and various methods of assigning

costs to services were explored.25

25Young (1994), pg. 86, provides more details. In particular, he reports that the core

of the cooperative game was suggested as a method of cost sharing for the TVA project.
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We will use the estimated costs in order to compute cooperative game

theory solutions for the TVA problem.

The TVA Cost Attribution Game:

The following table gives the costs c for each subset S of services (i.e.,

c(S) for services in S) and, in the row below, the associated savings v, where

v(S) =
P

i2S c(i)� c(S).

Services ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
Costs c(S) 0 163,520 140,826 250,096 301,607 378,370 367,370 412,584

Savings v(S) 0 0 0 0 2,739 34,795 23,552 141,858

The cost savings version of the TVA game �ts the framework we have

used in this paper. We will therefore use it for our computations and then

convert the answer into the associated solution for the cost problem. In

particular, choosing a vector of savings (x1; x2; x3) is equivalent to choosing

costs (c1; c2; c3), where

ci = c(i)� xi.

We call the game (f1; 2; 3g; v) the TVA Game.

The Kernel/Pre-kernel/Nucleolus of the TVA Game:

We begin with the kernel. Since the TVA game is convex, it is also super

additive. Thus, when the coalition formed is the grand coalition, the kernel

is identical to the pre-kernel and the nucleolus.26 To compute the complaint

26See Corollary 5.7.9 of Peleg and Sudhölter (2007).
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system we need to �rst identify the excess functions for each coalition:

e1 (x) = �141858x1
e2 (x) = �141858x2
e3 (x) = �141858x3
e12 (x) = 2739� 141858 (x1 + x2)
e13 (x) = 34795� 141858(x1 + x3)
e23 (x) = 23552� 141858(x2 + x3)

The Maschler-Davis complaint system is then

cMD
(i;i) (x) = 0, for i = 1; 2; 3

cMD
(1;2) (x) = maxf�141858x1; 34795� 141858x1 � 141858x3g
cMD
(1;3) (x) = maxf�141858x1; 2739� 141858x1 � 141858x2g
cMD
(2;1) (x) = maxf�141858x2; 23552� 141858x2 � 141858x3g
cMD
(2;3) (x) = maxf�141858x2; 2739� 141858x1 � 141858x2g
cMD
(3;1) (x) = maxf�141858x3; 23552� 141858x2 � 141858x3g
cMD
(3;2) (x) = maxf�141858x3; 34795� 141858x1 � 141858x3g

This complaint system de�nes the excess concession functions:

g1 (x) = (cMD
(1;2) (x)� cMD

(2;1) (x))x2 + (c
MD
(1;3) (x)� cMD

(3;1) (x))x3

g2 (x) = (cMD
(2;1) (x)� cMD

(1;2) (x))x1 + (c
MD
(2;3) (x)� cMD

(3;2) (x))x3

g3 (x) = (cMD
(3;1) (x)� cMD

(1;3) (x))x1 + (c
MD
(3;2) (x)� cMD

(2;3) (x))x2

The table below describes the results of Kuhn�s algorithm for grid denomi-
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nator D = 10; 100; 1000; 10000, and 100000.27

Approx. Equity Eq. (CMD)

Grid D Flips x1 x2 x3

10 12 0:3333 0:2333 0:4333

100 132 0:3333 0:3233 0:3433

1000 1332 0:3333 0:3323 0:3343

10000 13334 0:3333 0:3332 0:3334

100000 133350 0:3333 0:3333 0:3333

Direct computation veri�es that (x1; x2; x3) =
�
1
3
; 1
3
; 1
3

�
is indeed in the

kernel/pre-kernel/nucleolus of the TVA Game. We can convert this solution

to the cost attribution game as follows:

c1 = 163520� 141858
3

= 116 234

c2 = 140826� 141858
3

= 93 540

c3 = 250096� 141858
3

= 202 810.

By construction these costs add up to the total cost of the joint project

116 234 + 93 540 + 202 810 = 412 584 and yield the following cost shares

associated with the kernel

1 2 3

Cost Share (kernel) 0:281 7 0:226 7 0:491 6

These cost shares numbers are identical to those found in Stra¢ n and Heaney�s

computation of the nucleolus.

The Shapley Value of the TVA Game:

Next, we compute the Shapley value of the TVA game. For the three

player game, it is easy to directly compute the Shapley value using the mar-

ginal bene�t method of adding a player to the grand coalition. Speci�cally,
27In each case, the program spent less than a second to run on the author�s laptop.
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for each of the jN j! possible permutations of players, we compute the mar-
ginal value of adding each player to the coalition (in the given order). The

Shapley value is the average of these marginal bene�ts taken over all pos-

sible orderings of the players. The table below computes the Shapley value

in this manner. The numbers given in the last row are the averages of their

respective columns.

1 2 3

123 0 2739 139 119

132 0 107 063 34795

213 2739 0 139 119

231 118 306 0 23552

312 34795 107 063 0

321 118 306 23552 0

Shapley: 45691 40069:5 56097:5

The Shapley value shares are therefore

x1 =
45691

141858
= 0:32209

x2 =
40069:5

141858
= 0:28246

x3 =
56097:5

141858
= 0:39545

for players 1, 2, and 3, respectively.

Next, we use the Kuhn algorithm to compute the Shapley value as a check

on our process. The Shapley dividend for each subcoalition is the equity

equilibrium complaint for that subgame. As a consequence, the dividends

can be computed recursively, using Kuhn�s algorithm in each step. The

dividends, for coalitions smaller than the grand coalition, in the TVA Game

are
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w1 = w2 = w3 = 0

w12 = 1369: 5

w13 = 17397:5

w23 = 11776

The Shapley complaint system for the grand coalition is therefore

cS(i;i) (x) = 0, for i = 1; 2; 3

cS(1;2) (x) = 141858x2 � 13145:5
cS(1;3) (x) = 141; 858x3 � 29173:5
cS(2;1) (x) = 141; 858x1 � 18767
cS(2;3) (x) = 141; 858x3 � 29173:5
cS(3;1) (x) = 141; 858x1 � 18767
cS(3;2) (x) = 141; 858x2 � 13145:5

The table below gives the approximate equity equilibrium for this complaint

system for grid sizes D = 10; 100; 1000; 10000; and 100000. Again, each

iteration of the algorithm took less than a second on the author�s laptop.

The accuracy of the approximation is already correct to two decimal points

at D = 100.

Approx. Equity Eq. (CS)
Grid D Flips x1 x2 x3

10 16 0:3333 0:2333 0:4333

100 154 0:3233 0:2833 0:3933

1000 1532 0:3223 0:2823 0:3953

10000 15312 0:3220 0:2824 0:3955

100000 153120 0:3221 0:2825 0:3954
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The implied costs of the Shapley value are

c1 = 163520� (0:3221)141858 = 117827:5382
c2 = 140826� (0:2825) 141858 = 100751:115
c3 = 250096� (0:3954) 141858 = 194005:3468

By construction, these costs add up to the total cost of the joint project and

yield the following cost shares associated with the Shapley value:

1 2 3

Cost Share (Shapley) 0:2855 0:2442 0:4702

These cost shares match those we computed earlier and those computed by

Stra¢ n and Heany (1980) for the TVA Cost Sharing game.

6 Discussion

Equity equilibria are a useful way to think about solutions in cooperative

games. They exist. They can be used to characterize disparate classic solu-

tions. And they are straightforward to compute using simplicial algorithms.

However, our results only scratch the surface as it is clear that many addi-

tional relationships between equity equilibria and classic cooperative solution

concepts are possible. As an example, we obtained the following equity equi-

librium, which is always contained in the epsilon core.

Consider a game (N; v) where the coalition of interest is the grand coali-

tion. Then de�ne a complaint system C�, where k�s complaint against each
other player l is given by

c�(k;l) (x;N) = min � such that:

� � v(S)�
X
i2S
xiv(N) for all S � N such that k 2 S:

� � 0
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In other words, c�(k;l) (x;N) is the amount that k needs so that they have no

pro�table coalitional deviations.

The out-complaints relationB induced by C� is transitive. Thus, from the
characterization lemma (i.e., Lemma 3), if (x; N) is an equity equilibrium,

we have: that if ck;l (x; N) > cl;k (x; N), then xl = 0; and, for any pair k,

l 2 N such that xk > 0 and xl > 0, we have

ck;l (x; N) = cl;k (x; N) .

It follows that, for any k such that xk > 0, the complaint c�(k;j) (x;�) = ��

de�nes an ���core and the equity equilibrium (x;N) belongs to this set.

Thus, all equity equilibria under C� belong to an epsilon core de�ned by the
magnitudes of the complaints of the players receiving positive shares.

This result, while interesting, has two shortcomings: First, it is not a full

characterization of the epsilon core. It is not clear whether all epsilon core

outcomes can be supported as an equity equilibrium under C�. Thus, we only
know that equity equilibria are found in an epsilon core. Second, the epsilon

core outcome identi�ed by an equity equilibrium has a unique structure (all

players receiving positive shares have the same complaint �). However, at this

time, we do not know whether the equity equilibria under C� are otherwise
special. For example, do equity equilibria under this complaint system select

a core outcome (if available), or a least core outcome. Resolving this open

question would be interesting for future research.
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A. Appendix
In this appendix we provide the formal proofs for the results presented in

the body of the paper.

Proof of Lemma 2: We need to show, for each coalition �j 2 �,X
l2�j

xlgl(x) = 0:

Choosing l 2 �j and writing out xlgl(x), we have

xlgl(x) = xlx1 (cl;1(x)� c1;l(x)) + xlx2 (cl;2(x)� c2;l(x)) + :::
+xlxn (cl;n(x)� cn;l(x)) .

In the expression xlgl(x), for pairs l; k 2 �j, we have the term xlxk (cl;k(x)� ck;l(x)).
Also, in the expression xkgk(x), we have the term xkxl (ck;l(x)� cl;k(x)); and
these terms o¤set each other when added together, since

xlxk (cl;k(x)� ck;l(x)) + xkxl (ck;l(x)� cl;k(x)) = 0.

Hence, in the sum
P

l2�j xlgl(x) all the terms corresponding to pairs of players

in �j o¤set each other. Next, since the complaint system is valid, for each

term corresponding to l 2 �j and k =2 �j,

xlxk (cl;k(x)� ck;l(x)) = 0.

Finally, for each l 2 �j, the term xlxl (cl;l(x)� cl;l(x)) = 0. It followsP
l2�j xlgl(x) = 0. �

Proof of Proposition 1: Suppose � = f�1; :::; �mg, where each coalition
�j�s payo¤shares (xji)i2�j belong to the appropriate unit simplexX

�j . De�ne

the transition function F : �mj=1X�j ! �mj=1X�j , where F (x) = (f1 (x) ; :::; fm (x))

and fj (x) =
�
fj1 (x) ; :::; fjj�j j (x)

�
, where for each l 2 �j,

fjl (x) =
xjl +maxf0; gl(x)g

1 +
P

k2�j maxf0; gk(x)g
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for j = 1; :::;m. From Lemma 1, the function F is continuous. It is routine

to check that F maps a non-empty, compact, and convex set �mj=1X�j back

into itself and is continuous. Hence, by Brouwer�s �xed point theorem there

exists an x� 2 �mj=1X�j such that F (x�) = x�.

At this �xed point, for each coalition j and player l we have

x�jl =
x�jl +maxf0; gl(x�)g

1 +
P

k2�j maxf0; gk(x
�)g .

Simplifying the above expression gives

maxf0; gl(x�)g =x�jl

0@X
k2�j

maxf0; gk(x�)g

1A :
Next, we multiply both sides by gl(x�) and sum over l 2 �j

X
l2�j

gl(x
�)maxf0; gl(x�)g =

0@X
k2�j

maxf0; gk(x�)g

1A0@X
l2�j

x�jlgl(x
�)

1A :
From Lemma 2, since the complaint system is valid, the above simpli�es toX

l2�j

gl(x
�)maxf0; gl(x�)g =0.

Since each addend is non-negative, for each l 2 �j we must have that

gl(x
�) �0.
From Lemma 2, since each x�jl � 0 and each gl(x�) �0, we have that

x�jlgl(x
�) =0. Since this is true for all players and all coalitions, (x�;�) is an

equity equilibrium. �

Proof of Lemma 3: Proof of Part (i): Suppose the out-complaints rela-
tion B induced by C is transitive and that (x;�) is an equity equilibrium
associated with C. Let k and l belong to the same coalition �j with

ck;l (x;�) > cl;k (x;�) .
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We need to show that xl = 0.

Suppose not. If j�jj = 2 and xl > 0, then k�s total concession function is

gk (x;�) = (ck;l (x;�)� cl;k (x;�))xl.

However, gk > 0 contradicts that we are in an equity equilibrium.

Suppose, j�jj � 3 and xl > 0. Since ck;l > cl;k and xl > 0, we have

that k B l. However, we are in an equity equilibrium. The concession to k
in the amount (ck;l (x;�)� cl;k (x;�))xl > 0 must be o¤set by grievances.

Thus, there must be at least one other player j1 6= l; k such that

ck;j1(x;�) < cj1;k(x;�)

and xj1 > 0. Since cj1;k > ck;j1 and xj1 > 0, we have that j1 B k. From

transitivity of B relation, j1 B l.
Next j1 B l and xl > 0 imply that lmakes a concession to j1 in the amount

(cj1;l (x;�)� cl;j1 (x;�))xl > 0. Since we are in an equity equilibrium this

concession must be o¤set by grievances against j1. Thus, there needs to be

at least one other player j2 6= l; k; j1 such that

cj1;j2(x;�) < cj2;j1(x;�)

and xj2 > 0. So, j2 B j1. By the transitivity of B, we have j2 B k and j2 B l.
We continue this process. At the end of step m � 1, we conclude that

jm�1 B l and xl > 0. In step m, since we are in equilibrium, we must have
another player jm distinct from l; k and ; j1; :::; jm�1 with jm B jm�1 and

xjm > 0. By transitivity, we conclude that jm B l with xl > 0.
This process continues until eventually we run out of people in �j. This

contradicts the claim that we are in an equity equilibrium. Hence, ck;l(x;�) >

cl;k(x;�) implies xl = 0. �
The proofs of parts (ii) and (iii) follow immediately from part (i). �

Proof of Lemma 4:

43



(Proof of 4.i): First, B is not re�exive. By de�nition of C, ck;k (x;�) = 0
for all k. So, we can�t have k B k.
Second, if k B l, then ck;l (x;�) > cl;k (x;�) and xl > 0. Clearly, we can-

not also have l B k, since then ck;l (x;�) < cl;k (x;�), which is not possible.
Finally, we establish transitivity. Choose a; b; c 2 �. Suppose a B b and

b B c. We need to show that a B c.
Since a B b and b B c, we have

ca;b � cb;a > 0

cb;c � cc;b > 0

with xb > 0 and xc > 0. Since C is a threshold complaint system, we have
cb;c = ca;c and cb;a = cc;a. Further, since cc;b = ca;b > cb;a = cc;a, we have

cb;c � cc;b = ca;c � cc;b > ca;c � cc;a > 0:

Thus, we have ca;c � cc;a > 0 and xc > 0 so a B c. �
(Proof of 4.ii) Assume v(�j) > 0 for each coalition j. The result is trivial

for j�jj = 1. Therefore assume j�jj � 2. Suppose IRPC (x;�) is an equity
equilibrium under C (x;�;b), where there exists an IRPC (�x;�) such that,
for each coalition �j, we have ck;l (�x;�;b) = cl;k (�x;�;b) for all l,k 2 �j.
Suppose player l�s equilibrium share xl is di¤erent from �xl. Without loss,

assume xl < �xl. Since the shares of the coalition need to add to one, this

implies that there is a player k with xk > �xk. Since v(�j) > 0, we have

cl;k (x;�;b) = v(�j)xk � bk
> v(�j)�xk � bk
= v(�j)�xl � bl
> v(�j)xl � bl = ck;l (x;�;b) :

But then

xk (cl;k (x;�)� ck;l (x;�)) > 0:
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This is a contradiction since the inequality violates Lemma 3:ii:

Now suppose v(�j) = 0. Again suppose player l�s equilibrium share xl
is di¤erent from �xl. Without loss, assume xl < �xl. Since the shares of the

coalition need to add to one, this implies that there is a player k with xk > �xk.

cl;k (x;�;b) = v(�j)xk � bk
= �bk
= v(�j)�xk � bk
= v(�j)�xl � bl
= �bl
= v(�j)xl � bl = ck;l (x;�;b) :

It follows that cl;k (x;�;b) = ck;l (x;�;b) = ck;l (�x;�;b) at all equity equi-

libria.

�

Proof of Proposition 2: Suppose (x;�) 2 K. We �rst need to show that,
for each k, we have either gk(x) = 0, or gk(x) < 0 and xk = 0.

Since (x;�) 2 K and suppose k 2 �j, then since (x;�) 2 K, we have

(cMD
(k;l) (x;�)� cMD

(l;k) (x;�))xl � 0

for all l 2 �j. Also, since CMD is a valid complaint system, cMD
(k;l) (x;�) =

cMD
(l;k) (x;�) = 0 for all l =2 �j. Adding up these inequalities gives us

gk(x) = x1
�
cMD
(k;1) (x;�)� cMD

(1;k) (x;�)
�
+

x2
�
cMD
(k;2) (x;�)� cMD

(2;k) (x;�)
�
+

:::+

xn
�
cMD
(k;n) (x;�)� cMD

(n;k) (x;�)
�
:

� 0:

From Lemma 2, X
k2�j

xkgk(x) = 0:
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Since each gk(x�) � 0 and each x�k � 0, we must have (1) if x�k > 0, then

gl(x
�) = 0; and (2) if gk(x�) < 0, then xk = 0. Thus, (x;�) is an equity

equilibrium.

Now suppose (x;�) is an equity equilibrium under CMD. Since CMD

induces a transitive out-complaints relation B (Maschler-Davis), Lemma 3.1
(the characterization lemma) implies that if cMD

k;l (x;�) > cMD
l;k (x;�), then

xl = 0. Thus, (x;�) 2 K. �

Proof of Proposition 3: Suppose (x;�) is Shapley consistent for �. First,
since the game is subgame super-additive under �, the outcome (x;�) is

individually rational. Also, since Shapley consistent shares sum to one

within their coalition, we have that (x;�) is an IRPC. Now, consider player

k 2 �j. Since �l(vj�j) = v(�j)xl and �l(vj�j) =
P

l2R;R��j w
R, we have

cSk;l (x;�) = w�j for l 2 �j. Also, by the same argument, for l 2 �j, we have
cSl;k (x;�) = w�j . It follows that c

S
l;k (x;�) = c

S
k;l (x;�) for all l; k 2 �j. Since

the complaint system is valid, all other complaints are zero. Hence, (x;�) is

an equity equilibrium under CS.
Next, suppose (x;�) is an equity equilibrium under CS. Since CS is

a threshold complaint system, the results from Lemma 4 apply. The game

(N; v) is subgame super-additive under �. There are Shapley value consistent

shares �x 2 X such that (�x;�) is an IRPC and, for each coalition �j, we have

cSk;l (�x;�;b) = cSl;k (�x;�;b) for all l,k 2 �j. Thus, from Lemma 4.ii, every

equity equilibrium (x;�) under CS for the partition � has cSk;l (x;�;b) =
cSl;k (x;�;b) = c

S
k;l (�x;�;b) = w�j for all l,k 2 �j. We therefore have

v(�j)xl = cSk;l (x;�) +
X

l2R;R��j

wR

= w�j +
X

l2R;R��j

wR

= �l(vj�j):

for each l 2 �j. The equilibrium payo¤ is their Shapley value consistent
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payo¤. �

Proof of Proposition 4: Suppose (x;�) is consistent with the generalized
Nash bargaining problem under � for �. Then

xl =
�lP

m2�j �m

for all l 2 �j. Hence, cNl;k (x;�) = cNk;l (x;�) = 0 for all l; k 2 �j. Since the
complaint system is valid, all other complaints are zero. Hence, (x;�) is an

equity equilibrium under CN .
Next, suppose (x;�) is an equity equilibrium under CN . Since CN is

a valid threshold complaint system, the results from Lemma 4 apply. The

generalized Nash bargaining shares �x 2 X such that (�x;�) is an IRPC and,

for each coalition �j, we have c
N
k;l (�x;�;b) = cNl;k (�x;�;b) for all l,k 2 �j.

Thus, from Lemma 4.ii, every equity equilibrium (x;�) under CN for the

partition � has cNk;l (x;�) = cNl;k (x;�) = cNk;l (�x;�) = 0 for all l,k 2 �j.

Moreover, for each coalition where v(�j) > 0; the solution is unique and

precisely the solution to the generalized Nash bargaining problem. Hence,

the equity equilibrium under CN is consistent with the generalized Nash

bargaining solution under �. �
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