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Abstract

This paper decomposes pollution releases by U.S. manufacturing establishments to
show the relative importance of four establishment-level channels: entry, exit, reallo-
cation between survivors, and within-establishment adjustment of emissions intensity.
Using a panel of establishment-level output and pollution emissions to air and water
for U.S. manufacturers, we decompose changes in pollution emissions into the three
channels typically presented in the literature: changes in scale (output), composition
(industry market share), and industry-level technique (emissions intensity). We then
decompose changes due to industry-level emissions intensity into four establishment-
level channels for three criteria air pollutants and water pollution. For volatile organic
compound emissions, nearly two-thirds of the reduction in sector-level emissions inten-
sity is due to within-establishment reductions in emissions intensity. The other third
is driven by reallocation to cleaner establishments. Though the magnitudes differ, re-
sults are broadly similar for particulate matter and sulfur dioxide. Onsite releases of
effluents to water exhibit a similar pattern, though the relative importance of reallo-
cation is greater. Additionally we find that within-establishment reductions in water
emissions are associated with increased transfers to offsite publicly owned treatment
facilities. The heterogeneous contributions across channels suggests that the cleanup
in the U.S. manufacturing sector likely has multiple sources.
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1 Introduction

Over the past fifty years pollution emissions from U.S. manufacturers have been declining
steadily, while real output has increased. Various potential drivers of the fall in emissions
have been proposed in the economics literature, with environmental regulation, international
trade and changing composition of output all considered as potential candidates. A general
consensus has emerged that reductions in industry emissions intensity, generally termed tech-
nique effects, have played the largest role in the cleanup. The question of why industry-level
emissions intensity has been falling remains difficult to answer. The cleanup could be due
to adjustment of production techniques or investment in abatement on the part of exist-
ing establishments, or to resources being reallocated, within industries, towards relatively
less emissions intense establishments, or to the exit of emissions-intense incumbents and the
entry of relatively clean establishments.

In this paper we first decompose changes in pollution emissions, to both air and water, for
a sample of U.S. manufacturers into traditional scale, industry composition and technique
effects. Copeland and Taylor (2003) develop a model that separates changes in pollution
emissions into scale, composition and technique effects.1 The scale effect is the increase in
pollution associated with increased economic activity and output. The composition effect is
the change in pollution emissions due to shifts in economic activity towards or away from
emissions-intense industries. If cleaner industries grow more quickly than dirtier industries,
the composition effect will contribute to a decline in aggregate emissions per unit of output.
Copeland and Taylor (2003) model the technique effect as the reduction in pollution that
occurs as a polluting sector employs cleaner production techniques and lowers its aggregate
emissions intensity in response to environmental regulation.2

We then extend the industry-level results by applying a method developed by Melitz
and Polanec (2015)3 to further decompose the industry-level technique effect into four
establishment-level channels. The first is a direct channel capturing changes in emissions
that are due to within-establishment changes in emissions intensity, which we term a “pro-
cess” effect, following Cherniwchan et al. (2017). The last three capture the effects of within-
industry changes in emissions intensity due to entry and exit of polluting firms (a “selection”
effect), and reallocation of output among surviving establishments (a “reallocation” effect).
The resulting decomposition permits us to directly link the four establishment-level changes

1Copeland and Taylor (2003) formally models the channels introduced in Grossman and Krueger (1993)
focusing on the relationship between trade and the environment.

2In practice, any reduction in an industry’s emissions intensity is typically referred to as a technique
effect, no matter the reason for the clean up.

3Melitz and Polanec (2015) focuses on decomposing industry productivity changes rather than emissions
intensity.
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to aggregate emissions outcomes. Cherniwchan et al. (2017) develop a similar decomposition
to discuss additional establishment-level changes that could be masked by a industry-level
technique effect, include changes in output product mix within an industry, or partial off-
shoring of intermediate aspects of production that are more emissions intense. The decom-
position approach they describe is similar to the one we employ, but they do not proceed to
empirically investigate the various hypothesized channels.

Identifying the relative importance of each establishment-level channel in relation to the
observed declines in industry-level emissions intensity requires information on output and
pollution at the establishment level. We match pollution data from the EPA’s Toxic Release
Inventory (TRI) to establishment characteristics from a sample of the National Establish-
ment Time Series (NETS). The resulting unbalanced panel consists of establishment-level
observations of polluters between 1990–2001 and facilitates identification of the relative con-
tributions of various industry and establishment-level channels to environmental cleanup over
time. Though several other papers in the literature have relied on Census of Manufacturing
data for establishment characteristics and the National Emissions Inventory (NEI) for esti-
mates of air pollution emissions of chemicals regulated under the Clean Air Act, other recent
papers have used a similar combination of NETS and TRI data to provide detailed analysis
of the environmental effects of firm exporting (see Cui et al. (2016); Holladay (2016); Cherni-
wchan (2017)). We make use of an EPA-provided cross-walk to link TRI emissions to three
criteria air pollutants (volatile organic compounds (VOCs), particulate matter (PM10), and
sulfur dioxide (SO2)), which facilitates additional policy analysis, as well as comparison of
our results to previous studies.

Identifying the channel responsible for the cleanup is important. Understanding whether
exit of polluting establishments or reduced emissions intensity at existing establishments
helps us identify potential drivers of the cleanup.4 If the cleanup is driven largely by the
exit of polluting establishments, improved environmental performance might be associated
with disruption in the manufacturing industry. If the cleanup is driven by within industry
reallocation to the cleanest establishments that might lead to market power concerns in those
industries.5 If market forces are contributing to the cleanup through multiple channels it
complicates efforts to evaluate the effectiveness of environmental regulation. If firm selec-
tion, or market share reallocation are important factors associated with observed changes in
emissions, then accurate analysis of the environmental effects of policy changes must take
into account these general equilibrium effects.

4See Jaffe et al. (1995) for a summary of the early literature and Greenstone et al. (2012).
5Ryan (2012) demonstrates how environmental regulation can lead to competitiveness inhibiting levels of

regulation for example.
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Our results suggest that the main driver of the substantial clean up in our sample of
U.S. manufacturers has varied by pollutant. For PM10 and VOCs more than two-thirds of
the cleanup has been due to the process effect, reduced emissions intensity from surviving
establishments. For SO2 and hazard (toxicity weighted emissions) more than half of the
observed cleanup has been achieved through the reallocation effect as output share within
industries has tended to shift towards less pollution intensive establishments. Firm selection
is responsible for only a very small portion of observed emissions changes, with entrants
generally contributing to a small decline in industry emissions intensity, but exiting firms
generally contributing to a small increase. Total water releases including transfers to public
treatment works decline less than either VOCs or SO2. This is consistent with recent work
by Gibson (2019),who documents a tendency of firms to substitute away from airborne
emissions towards water when subjected to Clean Air Act regulations. This contrasts with
work by Greenstone (2003) that finds no evidence of increases in emissions to other media
in response to the Clean Air Act Amendments. Comparing results for waterborne effluents
released onsite to those transferred offsite to treatment facilities reveals that establishments
have been reducing their effluent releases substantially through process improvements. These
on-site process improvements are associated with increased transfers to offsite treatment
facilities, indicated by our estimates showing that on-site-only effluent releases have fallen
much faster than total releases (including transfers to treatment facilities).

Empirical estimates of the scale, composition, and technique channels consistently find
the technique effect plays the most important role in declining emissions. Levinson (2009)
evaluates the impact of international trade and decomposes changes in U.S. manufacturer’s
emissions of four air pollutants regulated under the Clean Air Act, known as criteria pol-
lutants, into scale, composition, and technique channels. He finds that, on average, more
than three-quarters of the observed reduction in emissions can be attributed to reductions
via the technique effect.6 Similar results are found by Brunel (2017) in a study of European
manufacturers. Cross-country analysis of sulfur dioxide by Grether et al. (2009) identifies
similar declines in SO2 emissions, indicating that the declines are not restricted to the U.S.
and Europe. Levinson (2015) measures the technique effect directly, using dis-aggregated
data, and finds that the technique effect accounts for as much as ninety percent of the total
reduction in criteria air pollution emissions of U.S. manufacturers.

Increasing availability of firm-level data has facilitated more detailed investigation of the
channels driving observed declines in industry emissions intensity. In related work, focused

6The paper acknowledges the possibility of a within-industry technique effect that could be masking up a
composition effect that cannot be identified with 4-digit Standard Industrial Classification (SIC) data. We
take advantage of more dis-aggregated data to examine this directly.
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on the carbon dioxide (CO2) emissions of Indian firms, Martin (2011) decomposes the en-
ergy use and implied CO2 emissions of Indian manufacturers and finds that reallocation of
market share to cleaner establishments and changes in energy inputs are both responsible for
substantially dampening the rise in greenhouse gas emissions in India. Barrows and Ollivier
(2018) and Barrows and Ollivier (2016) also make use of decomposition tools to study the
CO2 emissions of Indian firms. They find evidence of substantial reallocation towards cleaner
firms, but also provide evidence that changes and expansions of firm’s product mixes can
lead to higher firm-level emissions-intensity. Their results indicate that composition effects
are similar in magnitude to industry-level technique effects. Closely related to the current
paper, Najjar and Cherniwchan (2020) decompose the effects of environmental policy on the
ozone and particulate matter emissions of Canadian manufacturers. They find that within-
firm responses to Canadian environmental policy, process effects, are much more important
for the cleanup of ozone, while reallocation towards cleaner firms is more important for re-
ductions in particulate matter. Further contributing to the debate regarding the importance
of environmental regulation to observed declines in emissions, Shapiro and Walker (2018)
provide evidence that the majority of reduction in U.S. manufacturers’ criteria air pollution
emissions is driven by within-product changes in per-unit emissions intensity and the ob-
served clean up is consistent with a near doubling of the level of environmental regulation
stringency between 1990 and 2008. In contrast, Cherniwchan (2017) estimates that manufac-
turer’s responses to the U.S. entry into NAFTA accounts, on average, for nearly two-thirds of
the reductions in emissions documented by Levinson (2009) and Levinson (2015). Consensus
regarding the role of policy changes and their specific role in observed pollution outcomes
for various pollutants remains elusive.

We contribute to this literature in two ways. First, the decomposition of pollution emis-
sions of for our sample of U.S. manufacturing establishments isolates the share of reductions
in emissions intensity associated with cleanup within existing establishments, output being
reallocated from relatively dirty to relatively clean establishments, or the entry and exit of
polluting firms. One important feature of the NETS data set is the identification of the exit
year of the firm. This allows us to avoid the complication of defining market exit by estab-
lishment exit from the data set, which could also be due process changes and substantial
cleanup thus precluding the requirement for the firm to report emissions. The results provide
insights into the ways in which establishment-level activities are related to observed trends
in manufacturing emissions. Second, because of detailed reporting requirements in the TRI,
the data set includes matched establishment characteristics and pollution releases to both
the air and water. Existing literature regarding U.S. emissions largely focuses largely on
emissions of the six criteria air pollutants regulated under the Clean Air Act. We contribute
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to this literature by documenting similar declines in pollution emissions for a broad set of
chemicals released to either the air or water7 and often subject to a different regulatory
environment. In addition, using a cross-walk provided by the EPA, we are able decom-
pose emissions of volatile organic compounds (VOCs), particulate matter (PM10) and SO2,
facilitating comparison of the results to other related studies.

The cleanup in the U.S. manufacturing sector has been remarkable, but it is still not
well understood. There are multiple hypotheses regarding the drivers of this cleanup. More
detailed understanding of the channels underlying the cleanup will help economists and policy
makers as they attempt to induce further emissions reductions from U.S. manufacturing and
comparable cleanups in other industries in the U.S. and abroad.

2 Decomposing Emissions Changes

This section briefly describes the standard decomposition performed in the literature and
then lays out our additional decomposition of the aggregate technique effect into establishment-
level channels.

2.1 Within and Across Sector

To understand how much of the observed decline in aggregate emissions is due to reductions
in industry emissions intensity, we follow Levinson (2009) and decompose aggregate emis-
sions into three channels: scale, composition, and industry technique. Letting m denote an
industry, total emissions, Z, in a given year, t, are given by:

Zt =
∑
m

Zmt =
∑
m

VmtEmt = Vt ×
∑
m

ΘmtEmt (1)

where Vt represents total annual shipments, Θmt = Vmt/Vt represents the market share held
by a industry and Emt = Zmt/Vmt represents the aggregate emissions intensity of the industry.
The decomposition can also be expressed in vector notation for a given year: Z = VΘ′E,
where Θ and E are both m× 1 vectors capturing industry market share and corresponding
emissions intensity. Totally differentiating this equation and dividing by Z, percent changes
in aggregate emissions can be expressed as the sum of percent changes in economic size or
total output (a scale effect), changes in the relative market shares of cleaner and dirtier
industries (a composition effect), and changes in industry emissions intensity (a technique

7Establishments reporting pollution releases to the TRI must document the media of release for their
chemicals, whether to air, offsite incineration, direct to water, or offsite public treatment works.
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effect):
dZ
Z

= dV
V

+ dΘ
Θ + dE

E
(2)

Note that if we were to only consider a single aggregate sector, Θmt would equal one in each
year, and there would be no composition effect. In this case, changes in aggregate emissions
over time would be driven solely by the scale and technique effects.

2.2 Within and Across Establishment

To understand how establishment-level adjustment can affect aggregate emissions, working
through the industry technique effect, we extend the decomposition in (1). We add an
additional subscript, i, to denote individual establishments. We represent establishment-
level variables with lower-case letters and aggregated variables with upper-case letters.

Emissions in a given industry are the sum of the emissions from each establishment in
that industry, Zmt = ∑

i∈m zimt, we can further decompose the emissions intensity component
from (1) as follows:

Emt =
∑

i

θimt · eimt (3)

where θimt = vimt/Vmt represents an establishment’s share of industry production, and
eimt = zimt/vimt represents an establishment’s emissions intensity. Thus, θimt captures
changes in industry emissions intensity that occur as establishment market shares change
as establishments enter and exit, and as resources are systematically reallocated between
surviving establishments. The “process” effect represented by eimt captures the environ-
mental effect of adjustment in establishment’s production processes–a within-establishment
effect.8 Written in this way, industry emissions intensity in each industry and year, Emt,
is an output-share weighted-average of each establishment’s emissions intensity. Since the
establishment-level analysis is inherently a sub-industry analysis, we drop the industry sub-
scripts through the remainder of the discussion.

To understand the relative importance of reallocation, selection, and within-establishment
production process adjustment in driving aggregate emissions, our empirical approach de-
composes the percentage change in industry emissions intensity over time (e.g. from t = 1
to 2): ∆E/E = (E2 − E1)/E, where the weight E is included to express the change in
scale-independent percent-change terms.9 To accomplish this additional investigation, we

8As has been noted by several related studies (see Cherniwchan et al. (2017); Barrows and Ollivier
(2018)), this relatively narrow establishment-level effect could be due to multiple different adjustments,
including technology upgrading, changes in input mix, changes in product mix, etc.).

9E = (E1 + E2)/2
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apply an approach suggested by Melitz and Polanec (2015) to decompose changes in ag-
gregate emissions intensity into three channels–the changes due to survivors, entrants, and
exiters–and then further decompose the surviving-establishment channel into changes due to
across-establishment reallocation and within-establishment process adjustment.

Let ΘGt = ∑
i∈G θit represent the aggregate market share of a group, G, of establishments,

where the G represents either survivors (S), exiters (X), or entrants (N). Then define
EGt = ∑

i∈G (θit/ΘGt) eit as the group’s emissions intensity. Aggregate emissions intensity
in periods 1 and 2 can now be expressed as a function of the aggregate output share and
aggregate emissions intensity of the three groups of establishments (survivors, entrants, and
exiters):

E1 = ΘS1ES1 + ΘX1EX1 = ES1 + ΘX1(EX1 − ES1)

E2 = ΘS2ES2 + ΘN2EN2 = ES2 + ΘN2(EN2 − ES2) (4)

where E1 is the weighted average emission intensity, in period 1, of survivors and those which
will exit and E2 is the weighted average emissions intensity, in period 2, of those that survive
into period 2 and those that are entering.

The final step of the decomposition builds on Olley and Pakes (1996) using an alternative
decomposition of aggregate emissions intensity:

Et = et +
∑

i

(θit − θt)(eit − et)

= et + cov(θt, et) (5)

where et is the unweighted average establishment emissions intensity, 1
nt

∑nt
i=1 eit, and θt =

1/nt is average market share. In this way, changes in aggregate emissions intensity can be
expressed as the sum of the change in unweighted average emissions intensity, ∆ei–this can
be thought of as a within-establishment effect that is common to all establishments–and
the change in the covariance (between market share and emissions intensity), ∆cov–which
can be thought of as a cross-establishment reallocation effect.10 As discussed by Melitz and
Polanec (2015), expressing the results in scale-independent terms when decomposing data
measured in levels, as we do, will also require a scale-independent covariance measure that
will also be invariant to proportional changes in emissions intensity. We follow their lead
in defining such a measure as c̃ov = cov(θ, e/E) = cov(θ, e)/E. Thus, c̃ov represents the

10Melitz and Polanec (2015) note that the use of the covariance operator, which would typically be multi-
plied by 1/nt, is a slight abuse of notation, but, because θnt are shares, the equation essentially incorporate
this division already.
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share of aggregate emissions intensity, E, driven by the correlation between market share
and emissions intensity, a cross-establishment share, and the remaining share, ē/E, captures
the share due to average establishment emissions intensity, independent of its correlation
with market shares.

Combining the equations in (4) with the decomposition in (5), the change in aggregate
emissions intensity is thus given by:

∆E
E

= ES2 − ES1

E
+ ΘN2(EN2 − ES2)

E
+ ΘX1(ES1 − EX1)

E

= ∆eS

(1− c̃ovS)E︸ ︷︷ ︸
Process

+ ∆covS

(1− c̃ovS)
ES

E︸ ︷︷ ︸
Reallocation

+ ΘN2(EN2 − ES2)
E

+ ΘX1(ES1 − EX1)
E︸ ︷︷ ︸

Selection

(6)

where ES = (ES2 + ES1)/2 and c̃ovS =
(
c̃ovS2 + c̃ovS1

)
/2 represent the time average over

periods 1 and 2.
The first line decomposes the percent change in aggregate emissions intensity into the

share due to survivors, entrants, and exiting establishments using (4). The second line uses
(5) to further decompose the change due to survivors into the change in the distribution of
emissions intensity (which can be thought of as a within-establishment adjustment in produc-
tion techniques that is common to all surviving establishments) and the change due to market
share reallocation between cleaner and dirtier establishments (an across-establishment real-
location of resources among survivors). This decomposition has several distinct advantages.

First, the decomposition in the second line cleanly separates changes in aggregate emis-
sions intensity into four possible channels: within-establishment adjustment to production
techniques and emissions intensity, reallocation among surviving establishments, realloca-
tion to entrants, and reallocation away from exiting establishments (the latter two jointly
capturing the environmental effects of establishment’s selection in or out of the market). By
building directly on the aggregate decomposition in equation (2) commonly used in related
literature, our additional establishment-level decomposition results can be easily linked to
changes in aggregate emissions.

Second, as noted by Melitz and Polanec (2015), this approach leverages the cross-sectional
nature of the Olley and Pakes approach. Thus the decomposition of the emissions changes
over time into three groups–survivors, exiting, and entering establishments–need not use
the same reference emissions intensity value for each group. The decomposition is only
constrained so that the sum of the three changes sum to the actual total change. Other
decomposition approaches used to examine productivity, for example Foster et al. (2001),
include a fixed reference group–either establishments from a single period, or an average from
multiple periods–and thus tend to miss trends in productivity, which Melitz and Polanec
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(2015) argues introduces bias, tending to understate the relative contribution of survivors.
Finally, as formulated, the three channels have an intuitive interpretation. For exam-

ple, the change due to survivors is the change in aggregate emissions intensity that would
have occurred if there were no entry and exit. Then, using surviving establishments as a
benchmark, the change due to entry, ΘN2(EN2 −ES2), is the change in aggregate emissions
intensity that would occur from adding or subtracting the entrants. Thus, entering estab-
lishments will contribute to a decline in aggregate emissions intensity if they have lower
aggregate emissions intensity than survivors in period two: EN2 < ES2. Conversely, exiting
establishments will contribute to a decline in aggregate emissions intensity if they have a
higher aggregate emissions intensity than the surviving establishments they leave behind:
EX1 > ES1.

3 Empirical Strategy

Our empirical analysis of the drivers of the reduction in pollution emissions from the U.S.
manufacturing sector proceeds in two steps. First, we decompose the change in pollution
emissions into the traditional scale, composition and industry technique effects. We then
further decompose the technique effect into the four establishment-level channels described
previously: changes due to reallocation among survivors, selection by entrants and exiters,
and changes within establishments in their production processes. In this section we describe
the data and the empirical approach we employ.

3.1 Data

Our approach to measuring the drivers of the fall in pollution emissions requires data on
output and emissions at the establishment level. For pollution emissions we employ the
EPA’s Risk Screening Environmental Indicators database (RSEI) based on chemical releases
reported in the Toxic Release Inventory (TRI).11 Measures of establishment output are taken
from the National Establishment Time Series (NETS). In this subsection we briefly describe
both data sets and the process used to link them. The merged data set is an unbalanced panel
of establishment-year observations of U.S. manufacturing plants over the years 1990–2001.
For each establishment we observe sales, employment, and industry, and the firm’s years of
operation. We are able to match these establishments to their reported TRI emissions of over

11In general, we refer to TRI emissions, which are the direct source of the emissions. The RSEI database
makes use of these reported TRI emissions to evaluate potential hazards to human health based on chemical
toxicity estimates.
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650 different chemicals. A version of this data set was employed to assess the relationship
between environmental performance and export orientation in Holladay (2016).

The National Establishment Time Series (NETS) is a proprietary database compiled
from Dunn and Bradstreet data on the creditworthiness of establishments. It claims to
provide data on the universe of U.S. establishments. The NETS distributes the Dun and
Bradstreet data to researchers and companies for market research. A number of papers in
the economics literature have used the NETS.12 Most notably, Neumark et al. (2011) finds
that the data in the NETS is comparable in quality to other public and private data sets,
including the U.S. Census. Our dataset consists of all TRI reporters we could successfully
match to NETS observations plus a ten percent sample of all remaining NETS observations
in the manufacturing sector.13 Dunn and Bradstreet collect data on output, employment,
location and ownership and use it to create a credit rating for establishments. The NETS
includes data on the dollar value of the establishment’s sales, employment, and the Dunn
and Bradstreet credit rating. It also records the company’s primary industry and product
(8-digit SIC) and up to five other “secondary” products.

Because we focus on the contribution of establishment entry and exit to the cleanup in
manufacturing, accurately measuring establishment churn is particularly important. The
NETS data tracks when establishments enter and exit and provides a link to their parent
firm.14 The sample contains a number of multi-establishment firms and we define entry
and exit in equation (6) as firm-level outcomes. Thus, an establishment “exits” if that
establishment’s exit corresponds with the firm’s exit. If an establishment closes, but the
parent firm does not shutdown, we classify that as a component of reallocation.15 The
environmental effects of any establishment closures within surviving firms is thus decomposed

12See Levine et al. (2012), Cui et al. (2016) and Cherniwchan (2017), for examples. Brinkman et al. (2015)
uses a different version of the Dun and Bradstreet data on which the NETS is based.

13Haltiwanger et al. (2013) provides an extensive comparison of the NETS to official U.S. government
data sets and observes that the NETS database coverage and quality is greatly improved in recent decades.
However, the annual total number of firms and establishments (those with and without employees) in the
NETS is generally fewer than is documented in the U.S. Census Longitudinal Database (LDB), and there is
particular concern regarding the NETS coverage of startups and very small firms. More recently Barnatchez
et al. (2017) conducts a detailed comparison of the NETS data with several official data sources (U.S. Census,
Quarterly Census of Employment and Wages (QCEW), and County Business Patters (CBP), providing
additional confirmation that differences between NETS and employer data sets (e.g. Census, QCEW, CBP,
etc) are “concentrated among small establishment size classes, particularly the 1-4 employee class” (p.6).
This is less of a concern for the current project given pollution reporting thresholds to the TRI (discussed
further in this section).

14The NETS includes “firstyear” and “lastyear” fields identifying the first and last year that an estab-
lishment is active, respectively. The NETS links establishments to their parent firm headquarters via an
“HQDuns” field. The Dunn and Bradstreet database uniquely identifies establishments and headquarters
using a “DUNSnumber” and “HQDuns”, respectively. All establishments in the same firm report the same
“HQDuns” number.

15Results defining all entry and exit as an establishment outcome are available in the appendix.
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according to the second line of equation (6) as their market share goes to zero, and market
share of the remaining establishments adjusts accordingly.

The TRI tracks the disposal of hundreds of different toxic chemicals regulated under
the Emergency Planning and Community Right-to-Know Act. The TRI records the annual
amount of toxic chemicals disposed by media of disposal, facility and chemical. Facilities
are required to report their toxic emissions if they: (1) have more than ten employees, (2)
“produce, process or otherwise use” more than a threshold level of any single regulated
chemical,16 and (3) are in the manufacturing sector, or a handful of other related sectors.17

Due to these reporting thresholds, the TRI does not cover the universe of polluting firms,
but analysis by the EPA has identified substantial overlap in the emissions reported to the
TRI and the establishment-level data reported to the NEI,18 indicating that TRI airborne
emissions represent the large majority of emissions reported in the NEI. The TRI has been
widely used in the economics literature,19 but they are an imperfect measure of pollution
emissions. Koehler and Spengler (2007) and de Marchi and Hamilton (2006) demonstrate
some evidence of under-reporting in the TRI.20 TRI emissions are reported by the facilities
themselves, but EPA is authorized to ensure compliance and brings a number of cases each
year against polluters who misreport.21 We are not aware of any evidence that under-
reporting or enforcement activities changed during our sample period.

Much of the literature that assesses the fall in pollution levels in the U.S. manufacturing
sector uses the National Emissions Inventory (NEI) as the source of pollution data. The
NEI claims to be a comprehensive measure of point source air polluters without any of the
reporting requirements that affect the TRI. Both the NEI and the TRI report emissions at the
establishment level. TRI emissions are reported annually, while the NEI is generally triennial.
Annual data allows us to better evaluate the impacts of entry and exit on aggregate pollution
emissions. The TRI database includes establishment DUNS numbers, rather than program

16The most common threshold is 10,000 pounds but more toxic chemicals have lower thresholds ranging
down to 0.1-grams for dioxin. The reporting threshold is defined by use, not emissions, so many facilities
report emissions far below the threshold.

17In this paper we restrict our attention to the manufacturing sector.
18According to the EPA’s report “Factors to Consider When Using Toxic Release Inventory Data” (2019),

“79 percent of hazardous air pollutant releases found in the 2002 NEI data set were also documented in TRI”
(p.11).

19See Andersen (2017), Gibson (2019), and Mastromonaco (2015) among many others.
20Koehler and Spengler (2007) conducts a case study in aluminum industry and finds evidence that emis-

sions of polycyclic aromatic hydrocarbons (PAH) are under-reported after the introduction of new regu-
lations. de Marchi and Hamilton (2006) finds that reported reductions in TRI emissions are not always
matched by reductions in pollution concentrations at air monitors and those reported emissions are not
consistent with Benford’s Law for lead and nitric acid.

21TRI compliance history for facilities is available from EPA’s Enforcement and Compliance History Online
(ECHO) database.
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specific facility IDs only. This facilitates more accurate and straightforward matching to
establishment economic data not maintained by the EPA.

TRI reports establishment emissions by chemical. These chemicals can vary tremendously
in toxicity so we aggregate them in two different ways. First, we link TRI chemical emissions
to the associated criteria air pollutant (either VOCs, PM10, or SO2) using a cross-walk
developed by the EPA (Environmental Protection Agency, 2013). This aggregation allows
us to compare measures of emissions from TRI to the pollutants reported in the NEI. We
also aggregate emissions using EPA provided toxicity weights that scale each pollutant by
its toxicity to humans by each exposure pathway (air or water). EPA’s RSEI reports these
“hazard” scores as a proxy for the total toxicity of emissions from a particular source.22 The
TRI reports emissions by media of release including: air, water, and offsite transfers.23 We
implement our decomposition for both air and water emissions to ask whether the fall in air
pollution masks shifts in pollution to water. The set of chemicals that are reported in the
TRI has changed over time. We restrict our focus to the emissions of “core” TRI chemicals
that have been regulated since the TRI began in 1988.

The initial matched dataset was constructed for (and described in) Holladay (2016). We
begin by matching as many RSEI establishments to the NETS database as possible. The
initial match was based on DUNS number, a proprietary establishment-specific identifier
created by Dunn and Bradstreet. EPA treats DUNS number as optional in TRI submissions,
so some polluter records do not have a DUNS. For these establishments we used a fuzzy
matching procedure based on common fields in the NETS and TRI: establishment name,
address, latitude-longitude and industry. We match 75 percent of TRI polluters to facilities
in the NETS database. Matched plants pollute slightly more than unmatched plants, but
the toxicity of emissions are not substantially different.24

While the TRI and NETS include data on non-manufacturing industries, we restrict our
attention to establishments that report SIC 20-39 as their primary classification. We drop
from the analysis six industries (logging and publishing sub-industries: SICs 2411, 2711,
2721, 2731, 2741 and 2771) that were fully reclassified out of manufacturing over the sample
period, because they are missing price-index data across the entire sample.

We follow Levinson (2009) in dropping observations from 9 computer-related industries
22Because different chemicals have tremendous variation in their toxicity, changes in the types of chemicals

released by a very small number of establishments generate substantial swings in the overall manufacturing
hazard score, from year to year. In light of this, we drop the observations responsible for the top and
bottom 0.0001 percent of annual-changes in recorded hazard values, similar to an approach incorporated in
Cherniwchan (2017).

23These main categories are also occasionally broken down in further detail, for example airborne emissions
are reported by whether they are “stack” or “fugitive” releases.

24See the appendix for further comparison and discussion of the matched dataset.
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whose price indices declined over the sample period.25 The NETS data contains a combi-
nation of establishment reported output, Dunn and Bradstreet imputed output and NETS
imputed output. Holladay (2016) describes in detail how the output data is imputed and
provides simple robustness checks for the imputed data.The final combined dataset is a panel
of 1,553,970 establishment-year observations covering 1990–2001 and comprised of 200,354
establishments of which 2,699 (1.3 percent) report associated emissions.26

We refer to our dataset throughout the remainder of the paper as the analysis sample
or analysis dataset. The analysis dataset is our proxy for the U.S. manufacturing sector,
the ultimate population of interest. In the appendix we provide evidence that our sample is
representative of U.S. manufacturing, by comparing annual output and trends in the analysis
sample to data reported in the NBER Manufacturing Database. The correlation between
annual 4-digit output measures in the two databases is 0.82. We also compare entry and
exit rates in the analysis sample to rates published by the U.S. Census. The entry and
exit we observe in our sample is less than that reported in the Census of Manufacturers.
If the analysis sample misses entry and exit by some manufacturing establishments then
our estimates of the relative importance of those channels in the decomposition will be
inaccurate and we will attribute the associated changes in emissions to one of the other
channels, either overstating or understating their relative contribution to observed declines
in emissions. We believe this is unlikely to materially affect our decomposition results for two
reasons. First, manufacturing is very concentrated, with large incumbent firms accounting
for the lion share of pollution emissions and output.27 Mis-measurement of entry or exit of
relatively small firms is not likely to have a substantial impact on our decomposition which
calculates changes by channel using market share weights. Secondly, any mis-measurement
of entering or exiting establishments in the NETS sample is likely to be concentrated among
very small establishments (Haltiwanger et al. (2013)). Since only plants with more than 10
employees are required to report to the TRI, the analysis sample is unlikely to miss important
sources of emissions from the TRI.28

25The nine industries are: electronic computers (3571), computer storage devices (3572), computer ter-
minals (3575), computer equipment n.e.c. (3577), calculating and accounting machines (3578), household
audio and video equipment (3651), telephone and telegraph apparatus (3661), semiconductors (3674), and
magnetic and optical media (3695).

26We drop all releases to off-site incinerators since these can include chemicals that were produced or
released in previous years and then stored onsite before being transferred off-site.

27All major industries have been experiencing increased concentration since 1990, as documented by Autor
et al. (2017), but manufacturing is particularly concentrated, with over 70-percent of sales accounted for by
the 20 largest firms, on average across our sample period.

28This conclusion is further supported by comparison of emissions in the matched analysis sample to the
EPA’s full TRI dataset. Details of this comparison are provided in the appendix.
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3.2 Decomposing the trend in pollution emissions

TRI pollution emissions have been falling consistently since the EPA began tracking them
via the TRI in 1988, while U.S. manufacturing output has risen substantially. To better
understand the drivers of the improved environmental performance, we decompose changes
in aggregate emissions into multiple industry and establishment channels. Figure 1 presents
the decomposed results for VOC emissions reported in the TRI. Values are scaled to equal
100 in 1990.

Line (1) represents changes in deflated industry output, from 1990–2001. Line (1) iden-
tifies the scale effect, indicating that in the absence of any changes to production techniques
or market share, VOC emissions in our sample would have risen 17 percent.29

To understand the role of the composition effect, we first measure emissions intensity by
SIC4 industry in 1990.30 We then calculate the change in emissions implied by changes in
cross-industry output shares by multiplying the fixed 1990 emissions intensity measure by
industry output in each year. This identifies the combined scale and composition effect, hold-
ing industry-level aggregate emissions intensities fixed at their 1990 levels, and is captured
in line (2). If the emissions intensity of plants in our sample had remained constant over
the sample period, emissions would have increased by 19 percent. The additional change
in emissions due to the composition effect alone is identified by the difference between lines
(1) and (2). The two percentage point increase, compared to line (1), indicates that there
has been a small “brown shift” in production towards industries with a relatively high VOC
emissions intensity. Line (3) captures the combined scale, composition, and process effects.
Recall that the process effect is a within-establishment component of the industry-level tech-
nique effect, identified in equation (6). Adding in the process effect, emissions would have
declined 43 percent from their 1990 level. Taking the difference between lines (2) and (3) re-
veals that within-establishment reductions in VOC emissions intensity account for a decline
in emissions of 62 percentage points.

Finally, line (4) reports the change in total VOC emissions by adding in the the combined
reallocation and selection effects, as output shares shift among surviving establishments and
as establishments enter and exit. Cross-establishment reallocation and selection represents
an additional important cleanup channel, driving down emissions by an additional 39 per-
centage points over the period. The sum of the process effect and the reallocation and
selection effects yields the changes due to the industry-level technique effect reported in re-

29This is slightly smaller than the 21 percent increase in manufacturing output, using constant prices,
reported in the NBER-CES industry database over the same period.

30We measure emissions intensity by industry in 1990, as shown in equation (1), using data from our
sample.
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Figure 1: Volatile Organic Compounds (VOCs) Emissions from U.S. Manufacturing
Notes: This figure plots the percent-change in onsite emissions of Volatile Organic Compounds (VOCs) released into the air by
plants in our analysis sample, collected in the Toxic Release Inventory. The releases are decomposed into the channels identified
in equations (2) and (6). The fourth line is the percent-change in reported VOC emissions relative to the base year of 1990,
and represents the sum of all of the constituent channels.

lated literature. Taken altogether the sum of the constituent channels (scale, composition,
process, reallocation, and selection) yields the actual decline in emissions over the sample
period. From 1990–2001, total VOC airborne emissions among manufacturing plants in our
analysis sample declined by 82 percent.

We implement our decomposition across several types of emissions calculated from the
TRI. We aggregate air emissions reported in the TRI into three criteria air pollutants (VOCs,
PM10 and SO2) as well as hazard score which sums all TRI emissions weighted by toxicity.
For water releases, again using the hazard score, we decompose total TRI effluent releases and
TRI on-site effluent releases. Total water discharges includes toxic chemicals transported to
publicly owned treatment works (POTWs) which are typically treated before release. Table
1 presents the decomposition for each of these subsets of emissions.31 Column (1) presents
the scale effect, column (2) presents the combined scale and composition effects, column
(3) adds in the process effect, and column (4) adds in the selection and reallocation effects.

31In this sample, 48 percent of TRI observations for airborne releases can be linked to VOC emissions,
18 percent to PM10, and 5 percent to SO2. The remaining TRI chemical releases do not link directly to a
specific criteria pollutant.
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The sum of the process, selection, and reallocation effects is the industry-level technique
effect and can be calculated from the difference between columns (4) and (2). Columns (5)
and (6) report the fraction of the total cleanup attributable to within firm reductions in
emissions intensity through the process effect, and the fraction due to changes in the market
share and composition of firms in the industry through the reallocation and selection effects,
respectively.

The scale, composition and industry technique effects for VOCs, PM10, and SO2 found
in Table 1 are similar to the results presented in Shapiro and Walker (2018), estimated using
National Emissions Inventory (NEI) and Census of Manufactures data, though their sample
runs through 2008. The signs of the three industry-level effects are consistent across the
three pollutants, and the relative magnitudes of the composition and technique effects for
VOC emissions are nearly identical to those reported in Shapiro and Walker (2018). The
negative composition effects estimated for PM10 and SO2 are larger in the NEI data than in
our sample, suggesting that the relative contraction of point sources and industries emitting
these two pollutants is larger when emissions from combustion are considered.32 Comparing
the aggregate decomposition results across the two emissions databases, our results provide
support for the notion that the TRI is an accurate measure of airborne emissions for these
pollutants.

Table 1: Change in Aggregate Emissions by Channel: 1990–2001
Fraction of

Scale, Composition, Fraction of cleanup due
Scale, and Scale, Composition, Process, and cleanup due to Reallocation

Scale Composition and Process Reallocation & Selection to Process & Selection
Pollutant (1) (2) (3) (4) (5) (6)

Airborne releases
VOC 0.17 0.19 -0.43 -0.82 0.63 0.40
PM10 0.17 0.13 -0.36 -0.35 0.93 -0.01
SO2 0.17 0.11 -0.25 -0.72 0.40 0.53
Hazard 0.17 0.3 0.05 -0.52 0.37 0.83

Water releases
Total (Hazard) 0.17 0.09 -0.71 -0.54 1.14 -0.25
On-site (Hazard) 0.17 0.13 -0.51 -1.4 0.41 0.57

Notes: This table reports the decomposition of aggregate emissions defined in equation 6 over the sample period (1990-2001).
The top three rows report the decomposition for criteria pollutants estimated using EPA’s crosswalk from TRI to criteria pollu-
tants. The “Hazard” row reports the decomposition for the toxicity-weighted sum of all chemicals reported in the TRI. Column
(5) is given by [(2)-(3)]/[(1)-(4)], and Column (6) is given by [(3)-(4)]/[(1)-(4)].

The “Total releases to water” row in Table 1 reports changes in total hazard associated
32Emissions from stationary combustion are reported to the NEI, but not to the TRI. In addition, the EPA

estimates that stationary combustion, by manufacturing, electric utilities, and other sectors, is responsible
for roughly 46 percent of PM10 pollution, and 74 percent of SO2 pollution (Environmental Protection Agency
(2012)).
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with effluent releases by TRI reporting establishments, both onsite and transfers to publicly
owned treatment works (POTWs). As shown in column (4), total releases to water have
declined by about half, broadly consistent with Keiser and Shapiro (2018) findings that
broad measures of water pollution (such as fishability) improved during this time frame.
The relative decline in total water releases is smaller than the decline in some airborne
emissions. The relatively larger decline in airborne emissions is consistent with the concern
that regulation may merely induce firms to switch to an alternative release channel, an idea
supported by Gibson (2019). In addition, results reveal that there has been a “green shift”
towards industries releasing fewer chemical effluents, identified by the negative composition
effect.33 Reallocation of output and market share towards dirtier establishments, however,
has served to moderate the overall reduction in total water pollution.34

Table 1 also presents results for onsite water releases.35 Comparing the onsite releases
to those including transfers to POTWs, the estimated process effect is somewhat different.
In particular, when transfers to POTWs are included, within-establishment effluent inten-
sity falls more, accounting for a decline of 80 percentage points,36 and when transfers to
POTWs are omitted, within-establishment effluent intensity declines an estimated 64 per-
centage points via the process effect. Comparing results for the two release channels together
reveals that the decline in establishments’ onsite effluent intensity has been accompanied by
an increase in their transfers to offsite processors.37 In addition, reallocation and selection
effects are notably different when transfers to offsite POTWs are included. The estimates
indicate that reallocation and selection channels have contributed to reductions on on-site re-
leases. However, reallocation and selection effects appear to have contributed to an increase
in total releases as market shares of dirtier establishments expand when transfers to POTWs
are included. This difference could be due to increased use of offsite processing facilities by
larger and dirtier establishments who have otherwise been slower to reduce effluents, since
these releases are omitted in the on-site estimates.

To the extent that these overall trends in water releases reflect reductions in groundwater
and river pollution, they suggest improved environmental quality. However, as affected
POTWs are subjected to increases in waterborne pollutants, it could result in additional
processing costs or new capital investment requirements, and potentially an inability to

33Column (2) minus column (1).
34Column (4) minus column (3).
35From 1990 to 2001, the aggregate effluent emissions intensity hazard score associated with on-site releases

fell from roughly 9 trillion to roughly 2 trillion. Using the mid-point formula following from the use of the
methods developed by Melitz and Polanec (2015), results in the decline of 1.4 given in column (4).

36Column (3) minus column (2).
37This is indicated by the much larger measured decline in effluent releases when transfers to POTWs are

omitted, compared to the estimated decline when they are included.
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adequately treat all water received. If the increased costs associated with processing are not
linked to the establishments responsible for the releases, the resulting outcome is likely to
be inefficient.38

In general, the similar overall declines in water pollution and airborne emissions could
be due to direct regulations contained in the Clean Air Act and Clean Water Act,39 or
spillovers of technological innovation and investment, or a reallocation response of markets
to other economic changes. Meaningful differences in the sign and magnitude of various
underlying channels identified by these results provide additional insights that improve our
understanding of the ways in which establishment decisions and activities have contributed
to observed declines in pollution, and can help to inform more detailed policy analysis.

These results are generally consistent with aggregate findings in existing literature. For
example, Levinson (2009) finds that between 1987–2001 the emissions of SO2 and VOCs
declined, on average, by 32 percent, and the technique effect accounted for more than three
quarters of the decline. Shapiro and Walker (2018) examine NEI emissions of several cri-
teria pollutants, including VOCs, PM10, and SO2 and estimate similar scale, composition,
and technique effects to those presented in Table 1. Our analysis provides the additional
insight that observed reductions in emissions due to changes in industry-level techniques are
generally driven by both within-establishment process changes, and also by reallocation of
market activity towards cleaner firms and establishments, and that the relative importance
of these channels varies, in some cases substantially, depending on the pollutant in question,
and media of release.

3.3 Decomposing the technique effect

We decompose the industry-level technique effect, as detailed in equation (6), to examine rel-
ative importance of four underlying channels: reallocation among surviving establishments,
entry and exit of establishments, and within-establishment process changes. To better un-
derstand the relative importance of each of the process, reallocation, and selection channels
underlying the Figure 1 result, we present the full decomposition of the industry technique
effect for VOC emissions in Table 2. The table reports annual changes in scale-independent
terms and can be interpreted as percentage point changes. Column (1) reports the total
change in industry emissions intensity due to changes among survivors. Columns (2) and
(3) further break these changes into a within-establishment process effect and a between-

38Sewer waste regulations vary by state and municipality, as do the abilities of POTWs to obtain financing
and engage in new capital projects (Rahm et al. (2018)).

39The 1972 Clean Water Act (CWA) tasked the EPA with regulating the untreated discharge of chemical
emissions to rivers and lakes by municipalities, industrial customers, and other point-sources.
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establishment reallocation effect. Columns (4) and (5) present the selection effects of firm
entry and exit. Column (6) presents the sum of columns (2), (3), (4), and (5), which corre-
sponds to the industry-level technique effect.

Table 2: Change in Industry Airborne-Emissions Intensity by Channel

Establishments at Entering Exiting Total
Surviving Firms Firms Firms (All Firms)

Year Total Within Between

1991 -18.0 4.2 -22.2 -0.6 6.2 -12.4
1992 -0.3 -11.2 10.8 -0.8 -0.5 -1.6
1993 -10.5 -1.5 -9.0 -1.0 0.3 -11.2
1994 -2.3 3.1 -5.4 -0.1 0.7 -1.7
1995 -6.8 1.3 -8.1 -0.6 1.3 -6.1
1996 -12.6 -18.1 5.5 0.0 2.2 -10.4
1997 -18.8 -22.4 3.6 -0.6 3.2 -16.2
1998 -16.0 -1.4 -14.6 -0.6 2.0 -14.6
1999 -7.3 -1.2 -6.2 -0.6 1.8 -6.2
2000 -2.7 1.2 -3.9 -0.7 -0.3 -3.7
2001 -15.9 -13.5 -2.5 0.3 0.7 -14.9

Notes: Percentage change in industry emission intensity attributable to establish-
ments at surviving, entering and exiting firms. Emissions are total VOCs released
on-site to the air. Changes in emission intensities among surviving establishments
are further decomposed into changes within establishments in column (2), which we
term a process effect, and reallocation among survivors in column (3). Entry and
Exit are identified at the firm level. Establishments are considered to have exited
if their parent firm also exits, similarly for entry.

Examining the contribution of each channel in Table 2, several trends emerge. First, the
cleanup among surviving establishments, shown in column (1), is the most important factor
driving observed declines in industry VOC emissions intensity. Entering and exiting firms
sometimes contribute to the cleanup and sometimes increase emissions, but surviving firms
reduce emissions in every year of the sample consistent with the total change in emissions
across all firms. Among survivors, cleanup within establishments as well as reallocation
of productive activity towards cleaner establishments are both important channels driving
down emissions. However, both channels do not contribute to reductions in every year. For
example, in 1992 reallocation of market share toward dirtier establishments was a drag on
the cleanup among survivors that would otherwise have occurred if driven solely by the
within-establishment process effect. In the last four years of the panel both within-firm
process changes and between-firm reallocation contribute consistently to the clean up.
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Second, though not representing a large share of emissions activity,40 entering firms are
typically cleaner than the average existing establishment, indicated by the negative effect
their entry has on industry emissions intensity in each year (except 2001). Finally, exiting
firms are also usually cleaner than the surviving establishments they leave behind, on average,
as is indicated by the positive signs in column (5) in most years. Recall from equation (3) that
exiting establishments will contribute to a decline in aggregate emissions intensity if exiting
establishments have a higher emissions intensity than the establishments they leave behind.
The positive values in the exiting establishments column raise aggregate emissions intensity,
thus indicating that exiting establishments, on average, have a lower emissions intensity than
incumbents they leave behind in those years. Overall, the the environmental effects of firm
selection are generally smaller than the effects due to changes among surviving firms. Our
results demonstrate that, while important, entry and exit exhibit a smaller relative effect on
emissions outcomes.

Table 3: Change in Industry Emissions Intensity - All Pollutants

Establishments at Entering Exiting Total
Surviving Firms Firms Firms (All Firms)

Total Within Between
Pollutant (1) (2) (3) (4) (5) (6)

Airborne releases
VOC -111.3 -59.4 -51.9 -5.2 17.7 -98.8
PM10 -94.0 -52.2 -41.8 -5.0 47.1 -51.9
SO2 -59.4 -41.9 -17.5 -4.8 -24.5 -88.7
Hazard -52.7 -12.0 -40.7 -5.9 -3.2 -61.8

Water releases
Total (Hazard) -43.9 -87.4 43.6 -7.6 -18.7 -70.2
On-site (Hazard) -117.7 -67.9 -49.7 8.0 -46.7 -156.4

Notes: Each row decomposes the industry technique effect across the full sample period for dif-
ferent pollutants. Units are percentages of 1990 emissions for that pollutant. Column (1) reports
the total change in emissions intensity at plants that survive in each period. Columns (2) and
(3) decompose that change in emissions intensity into within plant changes and changes in out-
put respectively. Columns (4) and (5) report changes in emissions intensity due to entering and
exiting firms. Column (6) reports the total change in emissions intensity across the all firms for
the entire sample period.

Finally we report the decomposition of the technique effect for all pollutants aggregated
across the entire sample period in Table 3. The columns are the same as in Table 2, but each

40Recall from equation (6) that emissions measures for surviving, entering, and exiting firms are weighted
by the market share of each group. Relatively small market share of entrants means that differences in their
emission intensity have smaller effects on aggregate outcomes. See appendix for further discussion of the
market shares of entrants and exiters.
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row represents a single pollutant.41 The results again illustrate the variation in the sources
of the cleanup across pollutant types. For the air pollutants, within surviving establishment
reductions in emissions intensity (the process effect) contribute between 23 and 71 percent
of the total clean up due surviving establishments, but for water effluents they account for
more than one-hundred percent of on-site reductions. Entering establishments contribute
to the cleanup for all pollutants except on-site water effluent. Exiting firms are actually
cleaner than average survivors in terms of VOC and PM10 emissions, but dirtier for SO2,
airborne hazard, and both measures of water pollution. The heterogeneous contributions
across channels suggests that the broad based cleanup across manufacturing plants in our
analysis sample likely has multiple sources. It is difficult to suggest a single policy change or
market force that would lead to a cleanup through different channels for different pollutants.

4 Conclusion

The rapid decrease in pollution emissions from U.S. manufacturers has been the subject of
a great deal of attention. The existing economics literature has found that the majority of
industry pollution emissions reductions have come from reduction in emissions per unit of
output, rather than changes in the quantity or categories of goods produced. In this paper,
we employ a data set that matches establishment characteristics and pollution emissions to
corroborate and extend this work. We provide evidence that the fall in criteria air pollution
is mirrored by a fall in toxicity weighted emissions and water pollution. The primary driver
of the aggregate decline in toxic pollution emissions is reduced emissions intensity within
industries. Using a cross-walk developed by the EPA, we are able to link our estimates
of scale, composition and industry technique effects to three criteria air pollutants: VOCs,
SO2, and PM10. The criteria-air pollutant estimates for these three aggregate effects are
similar to those found in related studies using triennial NEI data. Leveraging the data-set’s
identification of establishment and parent-firm entry and exit and establishment production
measures, we are able to decompose the decline in within-industry emissions intensity into
four channels: reallocation among surviving establishments, selection by entering and exiting
establishments, and a within-establishment process effect.

Our results show that the industry composition effect is generally responsible for only
a relatively small portion of observed changes, and its effects vary depending on the pol-
lutant in question. As with previous studies, nearly all of the documented environmental
improvements across all air and water emissions we decompose are due to reductions in

41The total decline in industry emissions intensity for VOCs (-99) differs slightly from the implied decline
in Figure 1 (-101), seen by subtracting line (2) from line (4), due to rounding.
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the pollution intensity of a sample of U.S. manufacturers. Underlying this technique ef-
fect, roughly two-thirds the reduction in VOC pollution emissions from plants in our sample
comes from reduced emissions intensity at surviving establishments. The remaining portion
is driven by reallocation of output from relatively dirty to cleaner establishments in the same
industry. In most years, the selection of firms in and out of our sample is responsible for
a very small increase in emissions. These general results are generally similar for the other
criteria pollutants and toxicity weighted emissions though with variation in the magnitudes.

Our analysis of effluent releases to water indicates that as with airborne emissions, total
hazardous releases to water have fallen (both for on-site only releases, and when transfers to
treatment facilities (POTWs) are incorporated), and more pollution is being transported to
POTWs. Our decomposition results indicate that for both groupings, within establishment
process effects are very important. However, reallocation and selection effects are of greater
importance than process improvements when evaluating on-site water pollution and, when
transfers to POTWs are considered, reallocation has actually been toward dirtier establish-
ments, thus serving to moderate the reduction in total water releases.

The differences in the contribution of the various channels across disposal media provide
suggestive evidence that direct regulation of air and water pollution may have played a broad
role, but it is possible that the cleanup was influenced indirectly by other environmental
policies, increased competition (either domestic or foreign), or other channels either alone or
in conjunction with environmental regulations.

Our result unpacks the primary channels underlying the fall in pollution emissions, but
does not explain why there has been a remarkable improvement in within establishment
environmental performance or a general reallocation of market activity towards less air-
pollution intensive establishments. Across pollutants the cleanup of existing firms has played
a major role in reducing emissions intensity. The cleanup is not being driven by the exit of
the dirtiest plants, the average exiting plant is cleaner than survivors. These results have
implications for our understanding of the impact of environmental regulation on polluters
and the design of environmental policy.
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Appendix

5 Comparing the analysis sample to other data sources

In this section we provide evidence that the analysis sample used in this paper is representa-
tive of output and emissions of the U.S. manufacturing sector. The first comparison indicates
that the NETS extract used in the analysis dataset correlates well with output data from
the NBER. Next, we compare entry and exit rates in the analysis dataset to the Census of
Manufacturers. Finally, we compare the emissions characteristics of the matched polluting
establishments in the analysis sample to the full TRI database, and discuss EPA analy-
sis comparing overlap between emissions reported to the TRI and the National Emissions
Inventory (NEI).

We start by comparing output measures from the NETS data to data reported in the
NBER-CES Manufacturing Industry Database (Becker et al. (2013), each measured in bil-
lions of dollars. Using 4-digit prices indices from the NBER to maintain constant prices,
Figure 2 shows the trends in NETS sales value (right axis) and the shipment value from
the NBER database (left axis). Recall that the analysis dataset uses a roughly 10-percent
extract of manufacturing establishments from the NETS, so the NBER and analysis sample
output levels are different. The trends are remarkably similar. In addition, correlation be-
tween 4-digit industry output (with constant prices) in the NBER and analysis sample is 0.82
(correlation of the nominal annual sales values is even higher, at 0.94). These comparisons
provide further evidence that changes in the output of plants in the analysis dataset used in
the main decomposition are a good proxy for changes in overall manufacturing output.
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Figure 2: Comparing NETS and NBER output

Table 4 compares entry and exit rates of firms in the matched TRI-NETS analysis sample
to the Census of Manufactures. We observe lower rates of entry and exit in the NETS than is
reported in the Census data. Haltiwanger et al. (2013) makes a similar observation for a larger
extract from the NETS, and suggests that this may be due to the NETS database having
less coverage of very small establishments, particularly those with one or zero employees.

Although our focus is the role of entry and exit on emissions outcomes, the fact that
entry and exit in our sample may not exactly match the broader economy is unlikely to
materially effect our decomposition for two reasons. First, comparing sales of polluters to
sales of all establishments in our sample, results in Table 5 indicate that establishments that
report emissions tend to be larger.42 While the matched observations appear to over-sample
large establishments relative to the broader economy, these establishments are more likely
to meet the reporting thresholds established by the TRI. Reported emissions are likely to
cover the majority of actual U.S. toxic pollution emissions even if small polluters are exempt.
Second, the distribution of emissions in the matched TRI-NETS analysis sample is consistent
with the pollution measures in the complete TRI data set (see Figure 4 below and related
discussion), lending further confidence that the results we report are representative of the
channels driving aggregate emissions for all TRI reporters.

Table 5 reports the sample statistics for sales (and log sales) for the the sub-sample of
polluting establishments and for the entire analysis sample. Just over five percent of NETS

42Relatively large establishments tend to enter and exit at lower rates than their smaller counterparts, but
without access to the establishment level Census of Manufacturers data we cannot confirm whether the entry
and exit rates in the NETS are consistent with broader measures for large manufacturing establishments.
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Table 4: Market Share, Entry and Exit Rates by Firms (NETS)
Market Share Entry and Exit Rates

NETS NETS U.S. Census

Year Entrants Exiters Entry Exit Entry Exit

1991 0.2 14.3 0.7 10.8 7.8 7.8
1992 0.3 5.1 0.8 5.6 7.1 8.1
1993 0.4 4.5 2.3 5.5 8.3 7.6
1994 0.6 1.4 1.3 3.1 8 7.6
1995 0.2 5 1.4 6.7 8.2 7.4
1996 0.3 3.9 1.5 7 7.8 7.5
1997 0.4 2.5 1.6 4.4 7.4 7.5
1998 0.4 3.6 1.2 5.2 7.1 7.5
1999 0.4 1.7 1.4 2.6 6.2 7.6

Mean 0.4 4.7 1.4 5.7 7.5 7.6

Entrants and Exiters are identified by a firstyear and lastyear indicator (re-
spectively) in the NETS database and their HQDuns number. Market Share
is the ratio of total output by establishments in each group (Entrants or Ex-
iters) to total output in each year. Entry Rates are the ratio of the number
of entering firms to the total number of firms. Exit Rates are the ratio of the
number of exiting firms to the total number of firms in the previous year.

establishment observations are matched to TRI reporters. The full analysis sample contains
a large number of establishments that do not report emissions because they do not pollute
or do not meet the reporting requirements. Because establishments with fewer than 10
employees are not required to report to the TRI we expect to see fewer small establishments
in the matched sample and that is consistent with the statistics reported in Table 5.

Figure 3 compares sales statistics of all firms in the analysis dataset to the subset of
polluters. The top panel presents the distribution for polluters and the bottom panel presents
the full analysis sample. The shape of the distributions is quite similar, but, consistent with
the summary statistics reported above, the sales distribution for polluting establishments
only is shifted roughly three log points to the right.

As reported in Holladay (2016), the matched data set contains around two-thirds of the
full set of TRI reporting manufacturers. Figure 4 presents the distribution of log pounds
of toxic emissions for the analysis dataset (top panel) and the EPA’s full TRI data set
(bottom panel), for the years 1990–2001. The distributions are very similar. The sample
mean, standard deviation and median are within rounding error of each other. This gives us
confidence that the matched sample is a good representation of the full TRI data set.
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Figure 3: Sample Comparison: NETS (Sales)
Note: The top panel shows the distribution of establishment log-sales of polluting establishments from the NETS database
that also report emissions to the TRI. The lower panel shows the distribution of log-sales for the larger analysis sample,
including establishments that do not report emissions to the TRI. Both distributions are restricted to manufacturing (SIC2
20-39) establishments operating from 1990 - 2001. The establishment sales data prices are held constant using sector-specific
NBER-CES price indices.
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Figure 4: Sample Comparison: TRI (Pounds)
Note: The log-emissions data for the top panel of this figure are taken from matched TRI-NETS establishment-level analysis
data set described in the text. The distribution in the lower panel is based on the log-pounds of manufacturing establishments
(SIC2 20-39) from the full RSEI database.
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Table 5: Sample Comparison: NETS (Sales)

Sales Log Sales

Polluters Full NETS Polluters Full NETS

Mean 37,000,000 7,603,683 16.4 14.1
Std. Dev. 105,000,000 47,300,000 1.4 1.6
Median 13,500,000 1,055,600 16.4 13.9
Min 5,336 1 8.6 0
Max 4,330,000,000 8,490,000,000 22.2 22.9

Obs. 91,787 1,295,027 91,787 1,295,027

The first two columns compare the sample Sales statistics for polluting estab-
lishments, matched from the RSEI to the NETS database, to the larger 10-
percent NETS sample including both polluters and non-polluters. The second
two columns compare the sample Log-Sales statistics.

EPA has published a comparison and analysis of establishments and emissions reported in
both the TRI and National Emissions Inventory (NEI). The EPA analysis indicates that while
a larger number of stationary sources report emissions to the NEI than the TRI, the TRI
captures 79 percent of the hazardous emissions reported in the NEI,43 thus providing evidence
that the decomposition analysis is broadly identifying the major drivers of documented
emissions declines.

6 Defining entry and exit

As noted in the main text, the definition of entry and exit has important implications for the
estimation of the impacts of entry, exit and reallocation. In this section we briefly present
decomposition results when we define entry and exit as occurring at the establishment level,
without regard to the status of the parent firm. Table 6 reports the reallocation and within
establishment technique effects for VOCs using the establishment level definitions of entry
and exit. These results indicate that, on net, plants in our sample are reallocating production
towards dirtier establishments, and that an even larger share of the observed cleanup in toxic
pollution emissions is due to the within establishment cleanup, the technique effect. The
finding of a positive reallocation effect is reversed using our preferred approach which defines
entry and exit as occurring at the firm level, suggesting that a substantial amount of the
establishment closures are a within-firm phenomena.

Using an establishment-only definition of entry and exit, selection within industries tends
43EPA report “Factors to Consider When Using Toxic Release Inventory Data” (2019).
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Table 6: Change in Aggregate Emissions Intensity by Channel

Entering Exiting Total
Surviving Establishments Establishments Establishments (All Establishments)

Total Within Between
Year (1) (2) (3) (4) (5) (6)

1991 -14.5 -17.9 3.4 -0.8 3.0 -12.4
1992 -3.1 -17.3 14.2 -1.4 2.9 -1.6
1993 -11.5 -10.0 -1.5 -3.3 3.6 -11.2
1994 -5.1 2.1 -7.2 -0.3 3.6 -1.7
1995 -6.6 -6.5 -0.1 -1.7 2.3 -6.1
1996 -13.2 -20.6 7.4 -0.4 3.3 -10.4
1997 -19.0 -24.8 5.7 -1.2 4.0 -16.2
1998 -15.5 -5.0 -10.5 -1.8 2.7 -14.6
1999 -7.9 -3.8 -4.1 -1.2 2.9 -6.2
2000 -5.0 -11.3 6.3 -1.5 2.9 -3.7
2001 -20.8 -16.1 -4.8 1.6 4.2 -14.9

Note: Percentage change in industry pollution emissions intensity attributable to surviving, entering and ex-
iting establishments. Change in emissions in surviving establishments are further decomposed into changes
within establishments in column 2, which we term a process effect, and reallocation among survivors in
column 3.

to be towards dirtier establishments, driven primarily by the exit of relatively clean estab-
lishments. This is offset by the relentless cleanup in surviving establishments which drives
the overall cleanup from plants in the analysis sample. The results based on this approach
support the conclusion that the cleanup is not being driven by environmental regulation
forcing old, pollution intensive manufacturing establishments out of business.

As is the case when entry and exit are defined at the firm level, exiting establishments
tend, on average, to be cleaner than the incumbents they leave behind. As a result, selection
continues to contribute to higher emissions with exit defined at the establishment level.
The decline in the aggregate technique effect masks the fact that exit of relatively clean
establishment appears to contribute a 2.3 to 4.2 percent increase in emissions, depending
on the year--similar to the results estimated when exit is defined at the firm level. To
better understand this result we aggregated the effect of exiting establishments on total
emissions from our sample by industry and year. Industrial organic chemicals (SIC 2869)
experiences the most exit from relatively clean establishments, but paper mills (SIC 2611)
and pulp mills (SIC 2621) are not far behind. Using this approach, only a handful of
manufacturing industries (29 out of 450 in our sample) get cleaner due to exit of relatively
dirty establishments. Only for wet corn milling (SIC 2046) and household cooking equipment
(SIC 3631) does exit of relatively dirty establishments contribute more than 0.1 percent to
the overall clean up.

Comparing the results from the two alternative entry-exit definitions together the findings
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give some additional insight into the operations of manufacturing firms and their environ-
mental consequences. In particular, our results indicate that a substantial portion of the
aggregate technique effect is due to firms merging cleaner operations with dirtier (a within
firm reallocation effect), and not merely from the installation or adjustment of production
technologies at the dirtier establishments.
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