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Abstract

We develop a decomposition to show how aggregate pollution emission intensity
is driven by four establishment-level channels: entry, exit, reallocation of resources
between survivors, and within-establishment adjustment of emissions intensity. Us-
ing a panel of establishment-level output and toxic pollution emissions data for U.S.
manufacturers, we first empirically decompose changes in the three channels typically
presented in the literature: scale (output), composition (sector market share), and ag-
gregate technique (emissions intensity). We find that toxic pollution emissions from
U.S. manufacturing have fallen by more than fifty percent driven largely by reductions
in emissions intensity. We then decompose the aggregate emissions intensity chan-
nel into the four constituent channels. Our results show that reallocation towards
cleaner firms and establishments as well as cleanup with surviving establishments are
both important channels driving down aggregate emissions. Roughly three-quarters of
the reduction in aggregate emissions intensity is driven by reduced emissions intensity
within surviving establishments and the remaining quarter due to reallocation of pro-
duction towards cleaner establishments. The cleanup occurs across all media (air and
water) of emissions.
JEL Classification: C10, N50, Q56
Keywords: Emissions Decomposition, Establishment Entry and Exit, Aggregate Emis-
sions, Emissions Intensity

1 Introduction

Over the past fifty years pollution emissions from U.S. manufacturers have been declining
steadily, while real output has increased. Various factors driving this fall in emissions have
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been debated in the economics literature, with environmental regulation, international trade
and changing composition of output all considered as potential candidates. A general con-
sensus has emerged that within sector reductions in pollution emissions intensity, termed
technique effects, have played the largest role in the cleanup. The question of why emis-
sions intensity has been falling remains difficult to answer. The cleanup could be due to
adjustment of production techniques and investment in abatement on the part of existing
establishments, or resources being reallocated, within sectors, to relatively less emissions
intense establishments, or due to the exit of emissions-intense incumbents and the entry of
relatively clean establishments.1

In this paper we apply a theoretical approach to decompose changes in within sector
emissions intensity, the aggregate technique effect, into four within-sector channels. The first
three: entry, exit, and relative changes in output by surviving establishments, can be com-
bined into what we term the “reallocation effect.” The fourth channel driving within-sector
changes in emissions intensity that we identify is the change due to within-establishment
reductions in emissions intensity, which is the “technique effect.” We then use matched data
on manufacturing establishment characteristics and toxic pollution emissions to identify the
relative contributions of each of those four channels to the cleanup. The results indicate
that the reallocation effect has been an important factor driving down emissions as output
share within sectors has tended to shift towards less pollution intensive establishments. In
addition, large declines in within-establishment pollution intensity, the technique effect, have
also contributed to substantial declines in manufacturing emissions.

Copeland and Taylor (2003) develops a model that separates changes in pollution emis-
sions into scale, composition and technique effects.2 The scale effect is the increase in pol-
lution associated with increased output. The composition effect is the change in pollution
emissions due to shifts in economic activity towards or away from emissions-intense sectors.
If cleaner sectors grow more quickly than dirtier sectors, the composition effect will drive
down aggregate emissions per unit of output. Copeland and Taylor (2003) model the tech-
nique effect as the reduction in pollution that occurs as a polluting sector employs cleaner
production techniques and lowers its aggregate emissions intensity in response to environ-
mental regulation. In practice, any reduction in within sector emissions intensity is typically
referred to as a technique effect, no matter the reason for the clean up.

Empirical estimates of these channels consistently find the technique effect plays the
most important role in declining emissions. Levinson (2009) evaluates the impact of interna-

1Other possibilities, discussed by Cherniwchan et al. (2017), include changes in output product mix within
an industry, or partial offshoring of intermediate aspects of production that are more emissions intense.

2Copeland and Taylor (2003) formally models the channels introduced in Grossman and Krueger (1993)
focusing on the relationship between trade and the environment.
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tional trade and decomposes changes in emissions of four air pollutants regulated under the
Clean Air Act, known as criteria pollutants, into scale, composition, and aggregate technique
channels. He finds that more than three-quarters of the observed reduction in emissions is
attributable to the aggregate technique effect.3 Levinson (2015) measures the technique ef-
fect directly, using dis-aggregated data, and finds that the technique effect accounts for as
much as ninety percent of the total reduction in criteria air pollution emissions. Shapiro and
Walker (2016) find that the majority of reduction in criteria air pollution emissions is driven
by within product changes in pollution emissions and the observed clean up is consistent
with a near doubling of the level of environmental regulation stringency between 1990 and
2008.4

We contribute to this literature in two ways. First, we apply a theoretical framework to
decompose changes in the aggregate technique effect to cleanly identify the channels that
drive observed reductions in sector emissions intensity. The decomposition allows us to
isolate reductions in emissions intensity driven by existing establishments becoming cleaner,
or output being reallocated from relatively dirty to relatively clean sub-industries, products,
or firms. Second, we implement the decomposition using a new data set that includes
matched establishment characteristics and toxic pollution emissions.5 The existing literature
focuses largely on emissions of criteria air pollutants, the six chemicals regulated under the
Clean Air Act. We contribute to this literature by documenting a similar decline in pollution
emissions for a broad set of toxic chemicals released across multiple release channels6 and
often subject to a different regulatory environment.

We begin by laying out a decomposition of aggregate manufacturing emissions into the
three channels reported in the existing literature: scale, composition and technique. We
extend this decomposition by modifying a method developed by Melitz and Polanec (2015)7

to show how the aggregate technique effect is driven by four establishment-level channels:
reallocation of resources among entering, exiting, and surviving establishments, and within-
establishment adjustment to production techniques and emissions intensity. This permits us

3The paper acknowledges the possibility of a within-sector technique effect that could be covering up a
composition effect that cannot be identified with 4-digit Standard Industrial Classification (SIC) data. We
take advantage of more dis-aggregated data to examine this directly.

4They perform and updated version of the decomposition developed in Levinson (2009), by using more
dis-aggregated 5-digit SIC data to look within “products,” and not merely within 4-digit SIC “industries.”

5Cherniwchan et al. (2017) develop a closely related decomposition that highlights the same channels
(and others), potentially driving the aggregate technique effect. However, they do not develop a way to link
the various channels together empirically.

6Toxic Release Inventory (TRI) reporters must document the media of release for their chemicals, e.g. to
water, to air, to landfills or offsite incineration, or recycled.

7Melitz and Polanec (2015) focuses on decomposing industry productivity changes rather than emissions
intensity.
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to directly link establishment-level changes to aggregate emissions outcomes.
Identifying the importance of the establishment level channels of reduced emissions in-

tensity requires information on output and pollution at the establishment level. We match
pollution data from the EPA’s Toxic Release Inventory (TRI) to establishment characteristics
from the National Establishment Time Series (NETS) to create an unbalanced panel con-
sisting of establishment-level observations of polluters between 1990-1999. Though several
other papers in the literature have relied on Census of Manufacturing data for establishment
characteristics and the National Emissions Inventory for air pollution emissions of chemicals
regulated under the Clean Air Act, more recent papers have used a similar combination of
NETS and TRI data to provide detailed analysis of the environmental effects of firm export-
ing (see Cui et al. (2016)) and the NAFTA trade liberalization (see Cherniwchan (2017)).8

Our analysis provides additional evidence that the reduction in manufacturing pollution
emissions extends beyond the criteria air pollutants to include toxic pollution emissions and
emissions in other media besides air. These results suggest either spillovers from Clean Air
Act regulation or that some other force underlies the cleanup of both types of pollution
emissions.

Identifying the channel responsible for the cleanup is important. Understanding whether
exit of polluting establishments or existing establishments changing their production process
helps us identify the impacts of both trade and environmental regulation, a question of con-
siderable debate in the literature.9 If the cleanup is driven largely by the exit of polluting
establishments it would lend credence to concerns that environmental regulation might harm
the competitiveness of U.S. manufacturing. If the cleanup is driven by within sector real-
location to the cleanest establishments that might lead to market power concerns in those
industries.10 In addition, if other market forces are leading to the cleanup it complicates our
evaluation of the effectiveness of environmental regulation.

Our results suggest that the main driver of the substantial clean up in U.S. manufacturing
is reducing emissions intensity within surviving establishments. However, reallocation across
firms and establishments is also important. While the emissions intensities of new entrants
tend, on average, to be quite similar to those of existing firms, exiting firms tend to be dirtier
than the firms they leave behind. In addition, intra-industry reallocation of output towards
cleaner establishments has been an important source of cleanup during our sample period.
When analyzing the channels across media of release, we document an overall decline in

8Cherniwchan (2017) estimates that the effects of NAFTA account, on average, for nearly two-thirds of
the reductions in emissions documented by Levinson (2009) and Levinson (2015).

9See Jaffe et al. (1995) for a summary of the early literature and Greenstone et al. (2012).
10Ryan (2012) demonstrates how environmental regulation can lead to competitiveness inhibiting levels of

regulation for example.
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airborne emissions but a decline approximately half as large in aggregate emissions released
to water and public treatment works, consistent with recent work by Gibson (2016) who
documents a tendency of firms to substitute away from airborne emissions towards water
when subjected to Clean Air Act regulations.11

The paper proceeds as follows. Section 2 introduces the theoretical decomposition of
changes in pollution emissions first to the scale, composition and aggregate technique effects.
We then demonstrate how the aggregate technique effect can be further decomposed into
entry, exit, reallocation and within-establishment technique channels. Section 3 introduces
the data and the empirical approach and presents the decomposition results. Section 4
explores emissions across media and section 5 presents several robustness checks. Section 6
concludes.

2 Decomposing Emissions Changes

This section briefly describes the standard decomposition performed in the literature and
then lays out our additional decomposition of the aggregate technique effect into establishment-
level channels.

2.1 Within and Across Sector

To understand how much of the observed decline in aggregate emissions is due to reductions in
aggregate emissions intensity, we follow Levinson (2009) and decompose aggregate emissions
into three channels: scale, composition, and aggregate technique. Letting m denote an
industry or sector, total emissions, Z, in a given year, t, are given by:

Zt =
∑
m

Zmt =
∑
m

Qmt · Emt = Qt︸︷︷︸
Scale

×
∑
m

Θmt︸︷︷︸
Composition

· Emt︸︷︷︸
Aggregate Technique

(1)

where Θmt = Qmt/Qt represents the market share held by the sector and Emt = Zmt/Qmt

represents the aggregate emissions intensity of the sector. The decomposition can also be ex-
pressed in vector notation for a given year: Z = QΘ′E, where Γ and E are bothm×1 vectors
capturing sector market share and corresponding emissions intensity. Totally differentiating
this equation and dividing by Z, percent changes in total emissions can be expressed as the
sum of percent changes in country size or total output (“scale”), changes in the relative mar-
ket shares of cleaner and dirtier sectors (“composition”), and changes in aggregate emissions

11This contrasts with work by Greenstone (2003) that finds no evidence of increases in emissions to other
media in response to the Clean Air Act Amendments.
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intensity (“aggregate technique”):

dZ
Z

= dQ
Q

+ dΘ
Θ + dE

E
(2)

Note that if we were to only consider a single sector, Γmt would equal one in each year, and
there would be no composition effect. In this case, changes in aggregate emissions over time
would be driven solely by the scale and aggregate technique effects.

2.2 Within and Across Establishment

To understand how establishment-level adjustment can affect aggregate emissions, working
through the aggregate technique effect, we extend the decomposition in (1). We add an
additional subscript, i, to denote individual establishments. We represent establishment-
level variables with lower-case letters and aggregate variables with upper-case letters.

Emissions in a given sector are the sum of the emissions from each establishment in
that sector, Zmt = ∑

i∈m zimt, we can further decompose the aggregate emissions intensity
component from (1) as follows:

Emt =
∑

i

θimt︸︷︷︸
Reallocation

· eimt︸︷︷︸
Pure Technique︸ ︷︷ ︸

Aggregate Technique

(3)

where θimt = qimt/Qmt represents an establishment’s share of sector output, and eimt =
zimt/qimt represents a establishment’s emissions intensity. The “Reallocation” effect cap-
tures changes in aggregate emissions intensity that occur as establishments enter and exit
and resources are systematically reallocated between establishments–an across-establishment
effect. The “Within Establishment Technique” effect captures adjustment in establishment’s
production techniques–a within-establishment effect. Written in this way, aggregate emis-
sions intensity in each sector and year is an output-share weighted-average of each establish-
ment’s emissions intensity. Since the establishment-level analysis is inherently a sub-sector
analysis, we drop the sector subscripts through the remainder of the discussion.

To understand the relative importance of reallocation, in its various forms, and within-
establishment production technique adjustment in driving aggregate emissions, our empirical
approach will decompose the percentage change in aggregate emissions intensity over time
(from t = 1 to 2): ∆E/E = (E2 − E1)/E, where the weight E is included to express the
change in scale-independent percent-change terms.12 To accomplish this additional inves-

12E = (E1 + E2)/2
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tigation, we modify an approach suggested by Melitz and Polanec (2015),13 to decompose
changes in aggregate emissions intensity into three channels–the changes due to survivors,
entrants, and exiters–and then further decompose the surviving-establishment channel into
changes due to across-establishment reallocation and within-establishment adjustment.

Let ΘGt = ∑
i∈G θit represent the aggregate market share of a group, G, of establishments,

where the G represents survivors (S), exiters (X), or entrants (N). Then define EGt =∑
i∈G (θit/ΘGt) eit as the group’s emissions intensity. Aggregate emissions intensity in periods

1 and 2 can now be expressed as a function of the aggregate output share and aggregate
emissions intensity of the three groups of establishments (survivors, entrants, and exiters):

E1 = ΘS1ES1 + ΘX1EX1 = ES1 + ΘX1(EX1 − ES1)

E2 = ΘS2ES2 + ΘN2EN2 = ES2 + ΘN2(EN2 − ES2) (4)

The final step of the decomposition builds on Olley and Pakes (1996) using the alternative
decomposition of aggregate emissions intensity:

Et = et +
∑

i

(θit − θt)(eit − et)

= et + cov(θt, et) (5)

where et is the unweighted average establishment emissions intensity and θt is average market
share.14 In this way, changes in aggregate emissions intensity can be expressed as the sum of
the change in unweighted average emissions intensity, ∆ei–this can be thought of as a within-
establishment effect that is common to all establishments–and the change in the covariance
(between market share and emissions intensity), ∆cov–which can be thought of as a cross-
establishment reallocation effect. As discussed by Melitz and Polanec (2015), expressing
the results in scale-independent terms when decomposing data measured in levels, as we
do, will also require a scale-independent covariance measure that will also be invariant to
proportional changes in emissions intensity. We follow their lead in defining such a measure
as c̃ov = cov(θ, e/E) = cov(θ, e)/E. Thus, c̃ov represents the share of aggregate emissions
intensity, E, driven by the correlation between market share and emissions intensity, a
cross-establishment share, and the remaining share, ē/E, captures the share due to average
emissions intensity, independent of its correlation with market shares.

13Melitz and Polanec (2015) use a similar approach to decompose the channels underlying changes in
aggregate productivity over time.

14Melitz and Polanec (2015) note that the use of the covariance operator, which would typically be mul-
tiplied by 1/nt, is a slight abuse of notation, but, because θnt are shares, the equation basically already
incorporate this division.
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Combining the equations in (4) with the decomposition in (5), the change in aggregate
emissions intensity is thus given by:

∆E
E

= ES2 − ES1

E
+ ΘN2(EN2 − ES2)

E
+ ΘX1(ES1 − EX1)

E

= ∆eS

(1− c̃ovS)E︸ ︷︷ ︸
Pure Technique

+ ∆covS

(1− c̃ovS)
ES

E
+ ΘN2(EN2 − ES2)

E
+ ΘX1(ES1 − EX1)

E︸ ︷︷ ︸
Reallocation

(6)

where ES = (ES2 + ES1)/2 and c̃ovS =
(
c̃ovS2 + c̃ovS1

)
/2 represent the time average over

periods 1 and 2.
The first line decomposes the percent change in aggregate emissions intensity into the

share due to survivors, entrants, and exiting establishments using (4). The second line fur-
ther decomposes the change due to survivors into the change in the distribution of emissions
intensity (which can be thought of as a within-establishment adjustment in production tech-
niques that is common to all surviving establishments) and the change due to market share
reallocation between cleaner and dirtier establishments (an across-establishment reallocation
of resources among survivors).15 This decomposition has several distinct advantages.

First, the decomposition in the second line cleanly separates changes in aggregate emis-
sions intensity into four possible channels: within-establishment adjustment to production
techniques and emissions intensity, reallocation among surviving establishments, realloca-
tion to entrants, and reallocation away from exiting establishments. Building on the ag-
gregate decomposition in equation (2) commonly used in related literature, our additional
establishment-level decomposition results can be easily linked to changes in aggregate emis-
sions.

Second, as noted by Melitz and Polanec (2015), this approach leverages the cross-sectional
nature of the Olley and Pakes approach. Thus the decomposition of the emissions changes
over time into three groups–survivors, exiting, and entering establishments–need not use
the same reference emissions intensity value for each group. The decomposition is only
constrained so that the sum of the three changes sum to the actual total change. Other
decomposition approaches used to examine productivity, for example Foster et al. (2001),
include a fixed reference group–either establishments from a single period, or an average from
multiple periods–and thus tend to miss trends in productivity, which Melitz and Polanec
(2015) argues introduces bias, tending to understate the relative contribution of survivors.

Finally, as formulated, the three channels have an intuitive interpretation. For exam-
ple, the change due to survivors is the change in aggregate emissions intensity that would

15The same Olley and Pakes decomposition could be extended to entering and exiting establishments as
well.
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have occurred if there were no entry and exit. Then, using surviving establishments as a
benchmark, the change due to entry, ΘN2(EN2 −ES2), is the change in aggregate emissions
intensity that would occur from adding or subtracting the entrants. Thus, entering estab-
lishments will contribute to a decline in aggregate emissions intensity if they have lower
aggregate emissions intensity than survivors in period two, EN2 < ES2. Similarly, exiting
establishments will contribute to a decline in aggregate emissions intensity if they have a
higher aggregate emissions intensity than the surviving establishments they leave behind,
EIX1 > EIS1.

3 Empirical Strategy

Our empirical analysis of the drivers of the reduction in toxic pollution emissions from
the U.S. manufacturing sector proceeds in two steps. First, we decompose the change in
pollution emissions into the traditional scale, composition and technique effects. We then
further decompose the technique effect into the four channels described above: reallocation
among entrants, exiters, and survivors, and the within establishment technique effect. In
this section we briefly describe the data and the empirical approach we employ.

3.1 Data

Our approach to measuring the drivers of the fall in toxic pollution emissions requires data
on output and emissions at the establishment level. For pollution emissions we employ
the EPA’s Risk Screening Environmental Indicators database (RSEI) based on emissions
reported in the Toxic Release Inventory (TRI).16 To measure establishment output we use
the National Establishment Time Series (NETS). In this subsection we briefly describe both
data sets and the process used to link them. The merged data set is an unbalanced panel
of establishment-year observations on U.S. manufacturing plants over the years 1990-1999.17

For each establishment we observe output, employment and industry. We are able to match
these establishments to their reported TRI emissions and are able to observe quantities of
pollution over 650 different chemicals by media of release (air, water, and various offsite
transfers). A version of this data set was employed to assess the relationship between envi-
ronmental performance and export orientation in Holladay (2016).

16In general, we refer to TRI emissions, which are the direct source of the emissions. The RSEI database
makes use of these reported TRI emissions to additionally evaluate potential hazards to human health based
on chemical toxicity estimates.

17We focus on manufacturing establishments since they represent the vast majority of emissions reported
in the RSEI database, and because we can make use of the NBER-CES manufacturing-sectors price indices
to calculate a measure of real output from the sales data we observe in the NETS database.
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The National Establishment Time Series (NETS) is a proprietary database compiled from
Dunn and Bradstreet data on the creditworthiness of establishments. It claims to provide
data on the universe of U.S. establishments. The NETS distributes the Dun and Bradstreet
data to researchers and companies for market research. A number of papers in the economics
literature have used the NETS.18 Most notably, Neumark et al. (2011) finds that the data in
the NETS is comparable in quality to other public and private data sets, including the US
Census.19 Dunn and Bradstreet collect data on output, employment, location and ownership
and use it to create a credit rating for establishments. The NETS includes data on the dollar
value of the establishment’s sales, employment and the Dunn and Bradstreet credit rating.
It also records the company’s primary industry and product (8-digit SIC) and up to five
secondary products.

The TRI tracks the disposal of hundreds of different toxic chemicals regulated under the
Emergency Planning and Community Right-to-Know Act (EPCRA). The TRI records the
annual amount of toxic chemicals disposed by media of disposal, facility and chemical. Facil-
ities are required to report their toxic emissions if they: (1) have more than ten employees,
(2) “produce, process or otherwise use” more than a threshold level of any single regulated
chemical,20 and (3) are in the manufacturing sector, or a handful of other related sectors.21

The TRI has been widely used in the economics literature, but they are an imperfect mea-
sure of toxic pollution emissions. de Marchi and Hamilton (2006) and Koehler and Spengler
(2007) demonstrate evidence of under-reporting in the TRI.22 TRI emissions are reported by
the facilities themselves, but EPA is authorized to ensure compliance and brings a number
of cases each year against polluters who misreport.23 We are not aware of any evidence that
under-reporting or enforcement activities changed during our sample period. The RSEI dis-
tributes the TRI data along with toxicity weights for each of the reported chemicals, which

18See Levine et al. (2012), Cui et al. (2016) and Cherniwchan (2017), for examples. Brinkman et al. (2015)
uses a different version of the Dun and Bradstreet data on which the NETS is based.

19Though, as Haltiwanger et al. (2013) observe, the NETS database includes firms with and without
employees and does not appear to have complete coverage of both types of firms. The annual total number
of firms and establishments in the NETS is generally fewer than is documented in the US Census Longitudinal
Database (LDB).

20The most common threshold is 10,000 pounds but more toxic chemicals have lower thresholds ranging
down to 0.1-grams for dioxin. The reporting threshold is defined by use, not emissions, so many facilities
report emissions far below the threshold.

21In this paper we restrict our attention to the manufacturing sector.
22de Marchi and Hamilton (2006) finds that reported reductions in TRI emissions are not always matched

by reductions in pollution concentrations at air monitors and those reported emissions are not consistent
with Benford’s Law for two pollutants. Koehler and Spengler (2007) conducts a case study in aluminum
industry and finds evidence that emissions of polycyclic aromatic hydrocarbons (PAH) are under-reported
after the introduction of new regulations.

23TRI compliance history for facilities is available from EPA’s Enforcement and Compliance History Online
(ECHO) database.
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allows us to evaluate changes in emissions by quantity or toxicity.
Much of the literature that assesses the fall in pollution levels from manufacturing sector

uses the National Emissions Inventory (NEI) as the source of pollution data. The NEI claims
to be a comprehensive measure of point source air polluters without any of the reporting
requirements that affect the TRI. We believe the TRI is more appropriate for our analysis
because it reports annually while the NEI is triennial. Annual data allows us to better
evaluate the impacts of entry and exit on aggregate pollution emissions. The TRI also
reports emissions across different media, which is helpful in assessing whether the fall in air
pollution masks shifts in pollution to water or landfills. Finally, the TRI allows us to confirm
the results of the existing literature using a different data set covering pollutants regulated
in a very different manner.24

The set of chemicals that are reported in the TRI has changed over time. In this analysis
we restrict our focus to the emissions of “core” TRI chemicals that have been regulated
since the TRI began in 1988. We aggregate all reported toxic chemical emissions from an
establishment in a year and use that as our measure of pollution emissions.25 We then
match establishments from the TRI to the NETS. The matching procedure is described in
Holladay (2016) and detailed in the appendix below. The final matched data set contains
92,210 establishment-year observations, comprised of 16,226 manufacturing establishments
reporting emissions over the sample period.

Because we focus on the contribution of establishment entry and exit to the cleanup
in manufacturing, accurately measuring establishment churn is particularly important. Im-
portantly, the NETS data tracks when establishments enter and exit and provides a link to
their parent firm.26 The sample contains a number of multi-establishment firms and we define

24In addition, according to the EPA’s report “Factors to Consider When Using Toxic Release Inventory
Data” (2015), “79 percent of hazardous air pollutant releases found in the 2002 NEI data set were also
documented in TRI” (p.11).

25The EPA has published a concordance that links numerous TRI chemicals to a corresponding criteria
air pollutant (Environmental Protection Agency, 2013). Using this concordance we classified establishment
emissions as Volatile Organic Compounds (VOCs), as well as SO2 and particulate matter (PM-10). Grouped
in this way, VOCs make up the largest single group in our data and the decomposition results are quite similar
to the full sample results we report here. The PM-10 and SO2 observations make up a smaller share (17
percent and 4 percent, respectively) and the results are noisier but also similar. The results for VOCs,
PM-10, and SO2 all show a positive scale plus composition effect and reductions in emissions due to declines
in aggregate emissions intensity. VOC and PM-10 results exhibit declines due to both the technique and
reallocation channels, while SO2 exhibits a small increase due to the reallocation channel. Results are
available upon request.

26The NETS includes “firstyear” and “lastyear” fields identifying the first and last year that an estab-
lishment is active, respectively The NETS links establishments to their parent firm headquarters via an
“HQDuns” field. The Dunn and Bradstreet database uniquely identifies establishments and headquarters
using a “DUNSnumber” and “HQDuns”, respectively. All establishments in the same firm report the same
“HQDuns” number.
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entry and exit as firm-level outcomes. Thus, we say an establishment “exits” if that estab-
lishment’s last active year coincides with the year the last remaining establishment reporting
that headquarters DUNS value ceases to be active and exits the sample. This approach will
capture the environmental effects of any establishment exit that does not coincide with the
firm’s exit in the “survivors” group, identified in equation (6).27

3.2 Trends in toxic emissions

Toxic pollution emissions have been falling consistently since they began being tracked by
the TRI in 1988. Figure 1 shows the trends in real output and toxic pollution emissions,
represented by the sum of TRI emissions reported by manufacturing establishments in our
matched sample, from 1990-1999. Output rose 13 percent during that time while emissions
fell by 52 percent.28 The trend has continued, with aggregate TRI emissions falling by a
third between 2000 and 2015. The fall in aggregate TRI emissions is reflected in falling
emissions of the individual chemicals that are reported. In addition, hazard scores, which
weight the pounds of emissions by the toxicity of the chemical emitted, have fallen by roughly
a quarter, representing a significant reduction in the risk to human health. This suggests
that changes in the set of chemicals emitted has not undone the environmental benefit of
reduced emissions levels. Emissions of the five most toxic chemicals are down by a third.29

This is roughly consistent with the trend in criteria air pollutants regulated under the Clean
Air Act. The National Emissions Inventory reports that emissions of criteria pollutants fell
between 23 percent and 50 percent between 1990 and 2000 depending on the pollutant.30

27 The environmental effects of these establishment closures would then be further decomposed according
to the second line of equation (6).

28Real output is calculated using sales data from establishments in the NETS sample and deflated by
industry-specific price indices published in the NBER-CES database described in Becker et al. (2013). See
the appendix for more details on data set construction.

29The five most toxic chemicals based on the toxicity weights posted in the RSEI are Bis(chlorophyll)
ether, Thorium dioxide, Propyleneimine, Asbestos (friable), and Hydrazine. The reductions in emissions
range from 100 percent for Thorium dioxide to 16 percent for Asbestos.

30Source: author’s calculations using EPA’s National Emission Inventory Air Pollutant Emissions
Trends data (https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data), version
1970-2016, for the category “Industrial and other processes”.

12



113

48

55
70

85
10

0
11

5
19

90
 =

 1
00

1990 1992 1994 1996 1998 2000
Year

Output (NETS) Emissions (RSEI)

Figure 1: U.S. Manufacturing Real Output and Emissions
Note: Emissions is an aggregate measure of the pounds of emissions of TRI chemicals released by all establishments as reported
by EPA’s RSEI database. Real output is calculated using sales data from establishments in the NETS sample and weighted by
SIC4 price indices published in the NBER-CES database described in Becker et al. (2013).

3.3 Decomposing the trend in toxic emissions

To better understand the drivers of the improved environmental performance in the U.S.
manufacturing sector, we follow the literature by first decomposing the annual scale, compo-
sition, and aggregate technique channels in our matched NETS and TRI data. The percent
change in total emissions can be expressed as the sum of the percent changes in each of the
scale, composition, and aggregate technique effects, as shown in equation (2). We then im-
plement our further decomposition of the percent changes in the aggregate technique effect
into the within-establishment technique and across-establishment reallocation effects, given
in equation (6). The results are summarized in Figure 2, where values are scaled to equal
100 in 1990.

First, the scale effect, captured by changes in real output, rises 13 percent, shown by line
(1). This suggests that holding the composition and emissions intensity of manufacturing
in our sample constant we would have expected emissions of toxic chemicals to increase by
13 percent. This outcome is somewhat lower than the levels reported in the literature from
estimates of changes in criteria air pollutants.31 To understand the role of the composition

31For example, the aggregate NBER-CES data reports a 23 percent increase in real manufacturing output
from 1990-1999. The scale effect documented using our establishment-level NETS sample is approximately
ten percentage points lower.

13



effect, we first measure emissions intensity by SIC4 industry in 1990.32 We then calculate the
change in emissions implied by shifts in the cross-sector output shares by multiplying the fixed
1990 emissions intensity measure by sector-output in each year. This identifies the combined
scale and composition effect, holding sector-level aggregate emissions intensities fixed at their
1990 levels. The additional change due to the composition effect shown in Figure 2 implies
an additional increase in emissions, as shown by line (2). If the emissions intensity of U.S.
manufacturing output had remained constant over our sample period, emissions would have
increased by 10 percentage points. This suggests that there has been a shift in production
towards relatively dirty industries.33 Adding in the within-establishment technique effect,
emissions would have declined to 65 percent of their 1990 level, shown by line (3). The within
establishment reduction in toxic emissions intensity accounts for a decline in emissions of 58
percent34–more than one hundred percent of the observed fall in toxic pollution emissions
from the U.S. manufacturing industry over our sample period.35
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Figure 2: Toxic Emissions from U.S. Manufacturing
Note: This figure plots the percent-change in emissions, collected in the Toxic Release Inventory, decomposed into the 4-channels
defined above. The fourth line represents the sum of all four effects and reports the percent-change in overall emissions relative
to the base year of 1990.

Finally, line (4) reports the change in total toxic emissions by adding in the the realloca-
32We measure emissions intensity by sector in 1990, as shown in (1), using data from our sample.
33This outcome is in contrast to the composition shift towards cleaner sectors identified by Levinson (2009)

and Shapiro and Walker (2016) using NEI data.
34-35 percent minus 23 percent.
35Similarly, Levinson (2015) finds that, for some criteria pollutants, the aggregate technique effect accounts

for more than 100 percent of the observed emissions reduction.
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tion effect, changes in emissions as establishments enter and exit and as output share shifts
among surviving establishments. Cross-establishment reallocation represents an additional
important cleanup channel, driving down emissions by an additional 17 percent.36 The real-
location effect plus the within-establishment technique effect yields the changes due to the
aggregate technique effect, and taken altogether the sum of the four channels (scale, com-
position, technique, and reallocation) yields the actual decline in emissions over the sample
period. From 1990-1999, total toxic emissions declined by 52 percent, with the aggregate
technique effect accounting for 75 percent of the implied drop. Our combined results are
generally consistent with existing literature. For example, Levinson (2009) finds that from
between 1987-2001 emissions declined by 27 percent, and the aggregate technique effect ac-
counted for a drop in emissions of 39 percent–thus, accounting for more than 100 percent
of the observed reduction in emissions. Shapiro and Walker (2016) present evidence that
the aggregate technique effect accounts for at least 63 percent and as much as 104 percent
of the reduction in criteria air pollution emissions, depending on the pollutant under con-
sideration. Our analysis provides the additional insight that these aggregate reductions in
emissions intensity are not driven by within-establishment technology upgrading and abate-
ment activities, but are also driven by reallocation of market activity towards cleaner firms
and establishments.

3.4 Decomposing the technique effect

As described in equation (6) above, we develop a method to decompose the aggregate tech-
nique effect into four separate components: reallocation among surviving, entering estab-
lishments, exiting establishments, and the within-establishment technique effect. To better
understand the factors driving the reallocation and technique channels presented in Figure
2, we present these additional decomposition results in two tables. The first set of results
based on equation (6), are presented in Table 1, which reports the change in aggregate emis-
sions intensity due to survivors (which are additionally broken into the within-establishment
technique and between-establishment reallocation channels), entrants, and exiting establish-
ments, and their sum from 1991 to 1999.37 The decline documented from year to year in
the total corresponds to the annual changes in aggregate emissions intensity that can be
seen from year to year in the decline of line (4) relative to line (2) shown in Figure 2. The
annual changes reported are in scale-independent terms and can be interpreted as percentage

36-52 percent minus -35 percent yields the additional reduction of 17 percent due to the reallocation effect.
37Note that the total change due to surviving establishments is equal to the sum of the within and

between establishment channels, and the total change due to all establishments is the sum of the changes
due to survivors, entrants, and exiters.
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point changes. Table 2, reports the within-establishment technique effect and the realloca-
tion effect, which is the sum of the reallocation between surviving establishments and those
entering or exiting in each period.38

Examining the contribution of each channel in Table 1, several trends emerge. First,
the cleanup among surviving establishments is the most important factor driving observed
declines in aggregate emissions intensity and the sign correlates with the aggregate change
every year except 1995. Among these survivors, cleanup within establishments as well as re-
allocation of productive activity towards cleaner establishments are both important channels
driving down emissions. However, both channels do not contribute to reductions in every
year, for example, in 1992 reallocation of market share toward dirtier establishments gener-
ated a drag on the cleanup among survivors that would otherwise have occurred if driven
solely by the within-establishment technique effect.

Second, entering establishments are very similar to the average establishments they are
entering alongside and do not exhibit a large effect, in either direction, on the aggregate
emissions intensity. Finally, exiting establishments and firms are dirtier than the surviv-
ing establishments they leave behind, on average,39 though, again, this is not a consistent
phenomena over time. In some years, the exiting establishments are cleaner than the firms
they leave behind, for example in 1991, 1993, etc. In these years, this exit is a drag on
the clean up of toxic pollution emissions from manufacturing during our sample period. In
other years, when exiting firms are dirtier, they contribute to additional cleanup. Overall,
the within-establishment technique effects and and the reduction in emissions due to cross-
establishment reallocation is driven primarily by market activity among surviving firms.
Our results demonstrate that, while important, entry and exit exhibit a relatively smaller
effect on emissions outcomes. To get a sense of the relative importance of each channel we
computed the mean of the absolute value of each column. Survivors average 7.5, entrants
average 0.2, and exiters average 1.8. Thus, as a share, survivors account for 78 percent,
entrants for 3 percent, and exiters for 19 percent of the observed changes in aggregate emis-
sions intensity over the sample period. Together, entry and exit appear to drive roughly
22 percent of the changes in aggregate emissions intensity, with the remainder driven by
surviving establishment activity.

Table 2 reformulates the aggregate emissions intensity decomposition, to give the within-
38Differences in the Total column in each table are only due to rounding differences.
39Recall from equation (3) that exiting establishments will contribute to a decline in aggregate emissions

intensity if exiting establishments have a higher emissions intensity than the establishments they leave behind.
The positive values in the exiting establishments column are tending to raise aggregate emissions intensity
as exiting establishments, on average, have a lower emissions intensity than incumbents they leave behind
in those years. Due to the sign changes over the period, the average impact of exiting establishments is an
emissions reduction of 0.2 percent.
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Table 1: Change in Aggregate Emissions Intensity by Channel

Entering Exiting Total
Surviving Firms Firms Firms (All Firms)

Year Total Within Between

1991 -17.2 -8.9 -8.4 -0.1 4.1 -13.2
1992 -2.2 -9.6 7.4 0.0 -0.6 -2.8
1993 -9.4 -8.5 -0.9 1.1 1.6 -6.8
1994 -2.7 1.0 -3.7 0.3 0.4 -2.0
1995 1.5 4.8 -3.3 0.0 -1.6 -0.1
1996 -9.8 -11.1 1.3 0.3 -2.1 -11.6
1997 -12.7 -11.2 -1.5 0.0 0.9 -11.7
1998 -7.7 -6.9 -0.9 -0.2 -3.3 -11.2
1999 -4.7 1.4 -6.1 0.2 -1.4 -5.9

Note: Underlying data are establishment-year observations. Entry and Exit are
identified at the firm level. Establishments are considered to have exited if their
parent firm also exits; similarly for entry.

surviving-establishments technique effect and the reallocation effect in each year, by adding
together the three components of the reallocation effect, given in equation (6). The second
column reports the within-establishment percentage-point change due to survivors, which
is the technique effect.40 The third column sums the change due to reallocation across
surviving establishments, exiting establishments, and entering establishments. The final
columns reports the sum of the two, which are the changes in aggregate emissions intensity,
or the aggregate technique effect in each year.

During much of the sample period the two channels are of similar magnitude and the
net result of churning was to move resources towards relatively less emissions-intense es-
tablishments, two exceptions being 1992-1993. On average, the within-establishment tech-
nique channel has been more important than reallocation across establishments in driving
observed changes in aggregate emissions intensity, but the reallocation of resources across
establishments has been an important factor in every year, and the average trend has been
to reallocate activity towards cleaner establishments.

4 TRI Emissions Media Categories

The existing literature analyzing the fall in manufacturing pollution emissions has focused
largely on emissions of the six pollutants regulated under the Clean Air Act and its amend-
ments. One of the driving questions of this literature has been the extent to which the

40This information is also reported in the second column of results in Table 1.
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Table 2: Reallocation and Within-Establishment Technique Effects

Within Establishment Across Establishment Total
Year (Technique) (Reallocation) (Aggregate Technique)

1991 -8.9 -4.3 -13.2
1992 -9.6 6.8 -2.8
1993 -8.5 1.7 -6.8
1994 1.0 -3.1 -2.1
1995 4.8 -4.9 -0.1
1996 -11.1 -0.5 -11.6
1997 -11.2 -0.5 -11.7
1998 -6.9 -4.3 -11.2
1999 1.4 -7.3 -5.9

Note: Change in aggregate emission intensity decomposed into the two channels that com-
prise the aggregate technique effect. Units are the percent of 1990 toxic release inventory
emissions in our sample.

Clean Air Act itself has caused the fall in pollution emissions from U.S. manufacturers. One
advantage to employing the RSEI database, based on TRI data, is that it allows us to ex-
amine the evolution of emissions of a different set of pollutants into a number of different
media. The toxic chemicals covered under the TRI are regulated under a different regula-
tory framework41 and the TRI requires detailed information on how chemicals are disposed.
Each establishment must report the quantity of each chemical released via each of twenty-one
different disposal media ranging from onsite recycling to direct water discharge.42

We implement the empirical strategy described above for the two major release categories
accounted for in the TRI database: air and water.43 The vast majority of the emissions
documented in the TRI database fall into one of these media of release. For ease of exposition
we present the results graphically for each disposal channel using a figure analogous to Figure

41Toxic chemicals are primarily regulated under the Toxic Substances Control Act (TSCA) and the Emer-
gency Planning and Community Right-to-Know Act of 1986 which established the TRI. These regulations
focus on information provision and risk management rather than the command and control style regulation
in the Clean Air Act and its amendments.

42Major categories include air, water, on site land releases and offsite transfer for disposal. Each of these
major categories can include multiple subcategories.

43The RSEI database makes use of six of the release-channels reported to the TRI to estimate the potential
human health risks of different chemical releases: Fugitive Air, Stack Air, Direct to Water, Transfer to
Publicly Owned Treatment Works (water), Offsite for Incineration, Offsite for Incineration (no fuel value).
We have aggregated the two air channels and the two water channels. The two incineration channels account
for 9 percent of RSEI emissions in our sample and their decomposition is very similar to air emissions.
However, these release channels may include chemicals that were stored up over several years, and is thus
not necessarily limited to chemicals used or produced in the reporting year. Results are available for any of
the emissions media by request.
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2.
Figure 3 presents the decomposition results for onsite releases to the air, which account

for 78 percent of total TRI emissions and 71 percent of the observations in our sample. The
results are similar to those presented in figure 2. Overall airborne emissions have fallen by
58 percent over the sample period, compared to a 52 percent fall in total TRI emissions. The
scale effect accounts for an 11 percent increase, slightly less than the overall TRI because
not all TRI reporters emit pollution to the air. The composition effect is also essentially
unchanged from the aggregate TRI results. The technique effect accounts for a 69 percent
reduction44 and the reallocation effect drives emissions down by an additional 12 percent.
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Figure 3: Emissions to Air from U.S. Manufacturing
Note: This figure plots the percent-change in emissions, collected in the Toxic Release Inventory that were released into the
air, decomposed into 4-channels. The fourth line represents the sum of all four effects and reports the percent change in overall
emissions relative to the base year of 1990.

We next analyze water releases, which account for 13 percent of total toxic emissions.
In this category we aggregate onsite releases to surface water bodies and offsite transfers
to publicly owned water treatment works. Offsite transfer to treatment works represents 92
percent of the releases to water, with direct releases accounting for the remaining 8 percent.
Thus, changes in releases to water over the period are largely driven by changes in the trans-
fer to publicly owned treatment works. Figure 4 decomposes these toxic emissions. Here the
pattern is somewhat different than for airborne emissions. Overall water discharges fell by 35
percent, broadly consistent with Shapiro and Walker (2017) findings that broad measures of

44-46 percent minus 23 percent.
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water pollution (such as fishability) improved during this time frame. While significant, the
decline in water discharges of toxic waste is much smaller than the fall in overall toxic emis-
sions. The scale effect is larger, implying that water polluter’s output is growing faster than
the average toxic polluter in our sample. Most notably, the within-establishment technique
effect is much smaller for toxic releases to water. The within establishment technique effect
contributes 25 percent towards the reduction in toxic water emissions.45 The reallocation
effect, however, is relatively much larger, accounting for an additional decline in emissions
of 38 percent. As with the airborne emissions, reallocation of water discharges has been
towards relatively cleaner establishments, which has aided in the cleanup of these releases.
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Figure 4: Emissions to Water and Treatment Works from U.S. Manufacturing
Note: This figure plots the percent-change in emissions, collected in the Toxic Release Inventory that were released into the
water or transferred to a treatment works, decomposed into 4-channels. The fourth line represents the sum of all four effects
and reports the percent change in overall emissions relative to the base year of 1990.

For each of the methods of disposal we analyze here, the total amount of toxic waste
disposed has decreased. The composition effects have have been a drag on the reduction
in emissions across the full sample period, as economic activity has tended to shift towards
relatively dirty sectors. However, within-establishment improvements in techniques as well
as across-establishment reallocation towards cleaners producers have both contributed sub-
stantially to observed declines in emissions across multiple release channels.

The decomposition results suggest that emissions into different media have evolved in
different ways. Emissions have fallen further for air than water and the technique effect is

45+3 percent minus 28 percent.
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relatively smaller, and reallocation effect relatively larger, for water discharges than the other
disposal methods. While the literature has largely focused on the evolution of air pollution
emissions from U.S. manufacturing, it appears that water emissions may have been reduced
less than air. This is consistent with the hypothesis that environmental policy targeting
air criteria pollutant emissions has had the ancillary benefit of reducing other types of air
pollution emissions, but is also consistent with the concern that regulations on airborne
emissions may drive firms to substitute to an alternate release channel like water.46

5 Robustness Checks

We explore the sensitivity of our results in two ways. First we analyze how weighting the
quantity of toxic chemical by toxicity affects the decomposition result. We then consider the
implications of different establishment weighting options.

The results presented thus far aggregate across different toxic chemicals by weight. The
chemicals that are reported in the TRI vary tremendously in their toxicity and so the RSEI
includes measures of toxicity by disposal method. The RSEI provides a “Hazard” metric that
allows pollution emissions from each reporting establishment to also be ranked by toxicity.47

As described in section 3.1, we collected establishment level hazard scores as a proxy for the
toxicity of the emissions. We implement the decomposition described above to analyze the
evolution in the hazard associated with pollution from U.S. manufacturing establishments
across our sample period. The results are presented in Figure 5.

While the total weight of toxic emissions from U.S. manufacturing facilities reported in
the TRI has fallen by 52 percent, toxicity weighted emissions are down by only 10 percent,
as shown by line (4). This suggests that the fall in toxic emissions is masking a shift to more
toxic chemicals and provides justification for decomposing the hazard scores as well. The
scale effect is the same as the scale effect in unweighted emissions. This is expected since the
scale effect, as shown in equation (1) holds emissions intensities within and across sectors
fixed, and is essentially an aggregate output index. The composition effect is slightly larger
when using toxicity weights, suggesting a stronger cross-sector shift of output towards sectors
with relatively more toxic emissions. The technique effect is considerably larger for hazard
(indicating a decline of 89 percent) while the reallocation effect is actually positive–indicating
a drag on the cleanup as productive activity is being reallocated towards establishments
producing or making use of more toxic chemicals.

46This idea is supported by recent work by Gibson (2016).
47Of the approximately six hundred chemicals in the TRI over four hundred have associated toxicity

weights.
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Figure 5: Hazard Score from U.S. Manufacturing Emissions
Note: This figure plots the decomposition of the EPA Hazard Score, a risk weighted measure of pollution emissions. The fourth
line represents the sum of all four effects and reports the change in overall emissions relative to the base year of 1990.

As with pollution emissions we further decompose the reallocation effect into the con-
tribution of surviving, entering, and exiting establishments, in Table 3. There is significant
variation in the yearly estimates, but the general trend is for surviving establishments to
become cleaner. On average, reallocation of output has been towards more toxic polluters,
though also with substantial annual variation. Exiting establishments tend to have lower
hazard scores than their surviving competitors, meaning their exit increased industry emis-
sions intensity. Entering establishments tend to have relatively low hazard scores compared
to incumbents, but there are a few years with notable exceptions.

The second concern to address is the choice of establishment weights. First, as discussed
by Melitz and Polanec (2015), there is no theoretical reason to prefer one establishment-
weighting scheme over another when focusing on changes in aggregate productivity. The
same is true in for an analysis of aggregate emissions intensity, but with one important caveat.
We are not concerned, solely, with the channels driving changes in aggregate emissions in-
tensity. As laid out in equation (1), aggregate emissions intensity is just one component
driving aggregate emissions, which is our ultimate concern. To link our decomposition of ag-
gregate emissions intensity back to this original decomposition requires that we maintain the
same output-weighting approach throughout. Laying this consideration aside, though, there
is no other reason to prefer output shares as weights in an analysis of aggregate emissions
intensity, in isolation.
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Table 3: Change in Aggregate Hazard Intensity by Channel

Entering Exiting Total
Surviving Firms Firms Firms (All Firms)

Year Total Within Between

1991 -2.0 -20.8 18.8 -0.1 0.8 -1.3
1992 10.8 -8.4 19.2 0.2 4.0 15.0
1993 -8.7 14.5 -23.3 0.4 2.4 -5.9
1994 2.5 -10.3 12.8 11.8 2.4 16.7
1995 -19.6 -21.1 1.5 0.0 -5.1 -24.7
1996 -4.5 -2.4 -2.1 -0.3 2.1 -2.7
1997 -14.9 -7.4 -7.5 -0.2 -2.9 -18.0
1998 51.9 3.8 48.1 -0.5 -16.6 34.9
1999 -37.5 -8.3 -29.3 -0.2 0.4 -37.4

Note: Hazard, not Pounds

Further, as documented by Foster et al. (2001), the choice of different weighting ap-
proaches is known to generate different conclusions regarding the channels driving employ-
ment, productivity and various other outcomes studied in related literature. It would not
be surprising if different choices of weights generated different conclusions in an analysis of
aggregate emissions intensity. To explore this possibility we compare the trend in weighted-
aggregate emissions intensity using four different establishment-level weights–nominal sales,
employment, emissions, and emissions intensity–and compare them to our baseline aggregate
result using output.

Aggregate emissions intensity is identical, whether calculated as the sum of establishment
emissions in a year, divided by the sum of real establishment output, or whether calculated as
the sum of establishment emissions intensity weighted by establishment real-output-share.48

This equivalence provides our baseline result which we compare to four other weighting
options: nominal sales, employment, emissions, and emissions intensity, in Figure 6.

Using real output shares gives more weight to larger establishments, in terms of output.
Using employment shares, instead, gives more weight to larger employers. Examining the
panels in the first row of of Figure (6), the differences between real and nominal sales weights
are quite small, while the second panel suggests that, in contrast to larger producers, larger
employers may tend to be a littler more emissions intense, with their emissions intensity
declining more slowly, on average, over the panel. This suggests that the decline in aggregate
emissions through the aggregate emissions intensity channel is driven by larger and more
productive establishments, and implies that nominal sales and employment data do not

48For all polluting establishments in each year, Et =
∑

i zit/
∑

i qit =
∑

i (qit/Qt) · (zit/qit)
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Figure 6: Change in Aggregate Emissions Intensity - Comparison of Weights
Note: The panels in this figure present the evolution of aggregate emissions intensity over time. Aggregate emissions intensity in
each figure is calculated according to equation (3), the only difference being the choice of establishment weights. The “Baseline”
aggregate emissions intensity included in each panel uses real establishment output weights. In the first panel, in the first row,
the weight used is nominal sales from the NETS database. In the second panel, the weight is employment from the NETS
database. In the first panel of the second row, the weight used is total emissions (“ModeledPounds”) taken from the EPA’s
RSEI database, and the weight used in the final panel is emissions-intensity, calculated as the ratio of establishment emissions
to real output.

completely correlate with productivity and output.49

Using total emissions and emissions intensity shares, in the second two panels of the
figure, gives more weight to dirtier establishments. With this approach, aggregate emissions
intensity appears to be decreasing at a much slower rate, suggesting that the decline in
emissions may not be concentrated among the dirtiest establishments.

Alternative weighting approaches do appear to yield fruitful insights into the channels
driving aggregate emissions intensity, and reveal opportunity for further research into the
establishment-level factors driving observed emissions outcomes. However, due to the ability
to link the results smoothly to an intuitive decomposition of aggregate emissions to better
understand the establishment-level effects driving aggregate changes, we continue to prefer
the output-weighting approach.

49This is consistent with cross-country evidence presented by Bartelsman et al. (2013) showing that there
is substantial variation in the strength of the correlation between establishment productivity and size over
time.
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6 Conclusion

The rapid decrease in pollution emissions from U.S. manufacturers has been the subject of
a great deal of attention. The existing economics literature has found that the majority of
pollution emissions reductions have come from reduction in emissions per unit out output,
rather than changes in the quantity or types of goods produced. In this paper, we employ a
matched establishment characteristic and pollution emissions data set to confirm and extend
this work. We provide evidence that the fall in criteria air pollution is mirrored by a fall in
toxic pollution. As with criteria air pollutants, the primary driver of the aggregate decline in
toxic pollution emissions is reduced emissions intensity within industries. Taking advantage
of establishment level data, we are able to further decompose the decline in within-industry
emissions intensity into four channels: reallocation among surviving establishments, entering
establishments, and exiting establishments, and the within-establishment technique effect.

Our results indicate that the main driver of the cleanup in toxic pollution emissions has
been within establishment improvements in emissions intensities, driving roughly 75 percent
of the aggregate technique effect. However, we also demonstrate the importance of cross-
establishment reallocation of economic activity towards cleaner firms and establishments
that is responsible for the remaining 25 percent of the decline in aggregate emissions inten-
sities. These improvements have markedly decreased the toxic pollution intensity of U.S.
manufacturing. The differences in the contribution of the various channels across disposal
media provide suggestive evidence that air pollution regulations may have played a role, but
it is possible that the cleanup was driven by other environmental policies, increased com-
petition (either domestic or foreign) or other channels either alone or in conjunction with
air pollution regulations. Our result unpacks the primary channels driving the fall in toxic
pollution emissions, but does not explain why there has been a remarkable improvement in
within establishment environmental performance.
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Appendix

7 Data Set Construction

In this section we provide a brief description of the process we used to construct the matched
polluting and establishment characteristics datatset. The initial dataset was constructed for
(and described in) Holladay (2016). We begin by matching as many RSEI establishments to
the NETS database as possible. The initial match was based on DUNS number, a proprietary
establishment-specific identifier created by Dunn and Bradstreet. Unfortunately, the EPA
treats DUNS number as optional in TRI submissions, so many polluter records do not have
a DUNS. For these establishments we used a a fuzzy matching procedure based on common
fields in the NETS and TRI: establishment name, address, latitude-longitude and industry.
We also acquired a 10% sample of all manufacturing establishments in the NETS which we
use to construct comparisons to other measures of manufacturing output.

We merge the combined TRI-NETS data with the NBER-CES manufacturing database.
That database contains industry-year specific price indices. We use those price indices to
deflate the output reported in the NETS. We create emissions intensity measures by dividing
an establishment’s reported TRI emissions (and hazard) by the deflated output. The NETS
allows multi-product establishments to report multiple SIC codes. Where reported industries
differ between the datasets we defer to the RSEI.

While the TRI and NETS include data on non-manufacturing industries, we restrict
our attention to establishments that report SIC 20-39 as their primary classification. We
drop from the analysis six sectors (logging and publishing sub-industries: SICs 2411, 2711,
2721, 2731, 2741 and 2771) that were fully reclassified out of manufacturing over the sam-
ple period, because they are missing price-index data across the entire sample. We follow
Levinson (2009) in dropping observations from 9 computer-related sectors whose price in-
dices declined over the sample period: electronic computers (3571), computer storage de-
vices (3572), computer terminals (3575), computer equipment n.e.c. (3577), calculating and
accounting machines (3578), household audio and video equipment (3651), telephone and
telegraph apparatus (3661), semiconductors (3674), and magnetic and optical media (3695)
because they experience deflation across our sample period. We focus on the years 1990-2000
because the output data reported by the NETS (both nominal and real) are not consistent
with those reported in the NBER-CES after 2000. The NETS data contains a combination
of establishment reported output, Dunn and Bradstreet imputed output and NETS imputed
output. Holladay (2016) describes in detail how the output data is imputed and provides
simple robustness checks for the imputed data.
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We keep all observations for which emissions intensity data is not null, which in ef-
fect drops observations without emissions data and drops observations without real output
data.50 The final data set consists of 92,210 establishment-year observations. We create
firm entry and exit variables using the NETS “firstyear” and “lastyear” variables across the
“HQdunsnumber” variable. Thus, we capture any entry or exit of establishments within a
given firm that is not entering or exiting in the changes due to surviving establishments. It is
important to note that our definition considers reallocation among surviving establishments
within surviving firms to be “reallocation”–this definition only affects how we define entry
and exit–which we define as a firm-level phenomena.

Finally, we decompose annual emissions changes according to process described in paper
theory section.

8 Matching Establishment Characteristics and Pollu-
tion Emissions

In this section we briefly compare our matched TRI-NETS data to the full NETS and TRI
samples. Table 4 compares entry and exit rates of firms in the matched TRI-NETS sample
to the Census of Manufactures. We observe lower rates of entry and exit in the NETS than is
reported in the Census data. Haltiwanger et al. (2013) makes a similar observation for a larger
extract from the NETS, and suggests that this may be due to the NETS database having
less coverage of very small establishments, particularly those with one or zero employees.

However, since our focus is the role of entry and exit on emissions outcomes, the fact that
entry and exit in our sample may not exactly match the broader economy is of less concern
for two reasons. First, by comparing the sales of polluters to sales of all establishments in our
sample, we observe that establishments that report emissions tend to be larger.51 Thus, the
matched data over-samples large establishments relative to the broader economy, but this
merely reflects the fact that these establishments emit the vast majority of toxic pollution.
Second, the distribution of emissions in our matched TRI-NETS sample is consistent with
the pollution measures in the complete TRI data set, lending further confidence that the
results we report are representative of the channels driving aggregate emissions for all TRI
reporters.

50In the next section we compare the composition of the final data set to the raw NETS, TRI and NBER-
CES datasets to evaluate the effect of these dataset construction choices.

51Relatively large establishments tend to enter and exit at lower rates than their smaller counterparts, but
without access to the establishment level Census of Manufacturers data we cannot confirm whether the entry
and exit rates in the NETS are consistent with broader measures for large manufacturing establishments.
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Table 4: Market Share, Entry and Exit Rates by Firms (NETS)
Market Share Entry and Exit Rates

NETS NETS US Census

Year Entrants Exiters Entry Exit Entry Exit

1991 0.2 14.3 0.7 10.8 7.8 7.8
1992 0.3 5.1 0.8 5.6 7.1 8.1
1993 0.4 4.5 2.3 5.5 8.3 7.6
1994 0.6 1.4 1.3 3.1 8 7.6
1995 0.2 5 1.4 6.7 8.2 7.4
1996 0.3 3.9 1.5 7 7.8 7.5
1997 0.4 2.5 1.6 4.4 7.4 7.5
1998 0.4 3.6 1.2 5.2 7.1 7.5
1999 0.4 1.7 1.4 2.6 6.2 7.6

Mean 0.4 4.7 1.4 5.7 7.5 7.6

Entrants and Exiters are identified by a firstyear and lastyear indicator (re-
spectively) in the NETS database and their HQDuns number. Market Share
is the ratio of total output by establishments in each group (Entrants or Ex-
iters) to total output in each year. Entry Rates are the ratio of the number
of entering firms to the total number of firms. Exit Rates are the ratio of the
number of exiting firms to the total number of firms in the previous year.

As we note in the main text, establishments reporting emissions tend, on average, to
be slightly larger than the average establishment in the larger NETS sample. Table 5 re-
ports the sample statistics for sales (and log sales) reported in the full NETS sample as
compared to the the sub-sample of polluters. Just over five percent of NETS establishment
observations are matched to TRI reporters. The larger NETS sample contains a number of
establishments that do not report emissions because they do not pollute or do not meet the
reporting requirements. Because establishments with fewer than 10 employees are exempt
from reporting to the TRI we expect to see fewer small establishments in the matched sample
and that is consistent with the statistics reported in Table 5.

Figure 7 reports the distribution of log sales across the two data sets. The matched data
set is in the top panel and the full NETS data is in the bottom panel. The shape of the
distribution is quite similar, but, consistent with the summary statistics reported above, the
matched sample is shifted roughly three log points to the right.

As reported in Holladay (2016), the matched data set contains around two-thirds of the
full set of TRI reporting manufacturers. Figure 8 reports the distribution of log pounds of
toxic emissions for the matched TRI-NETS set (top panel) and the EPA’s full TRI data set
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Figure 7: Sample Comparison: NETS (Sales)
Note: The top panel shows the distribution of establishment log-sales of polluting establishments from the NETS database
that also report emissions to the TRI. The lower panel shows the distribution of log-sales for the larger 10-percent NETS
sample, including establishments that do not report emissions to the TRI. Both distributions are restricted to manufacturing
(SIC2 20-39) establishments operating from 1990 - 2000. The establishment sales data has been weighted by sector-specific
NBER-CES price indices.
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Table 5: Sample Comparison: NETS (Sales)

Sales Log Sales

Polluters Both Polluters Both

Mean 36,900,000 7,565,452 16.4 14.1
Std. Dev. 104,000,000 47,100,000 1.4 1.6
Median 13,500,000 1,050,000 16.4 13.9
Min 5,336 0 8.6 0
Max 4,330,000,000 8,490,000,000 22.2 22.9

Obs. 92,210 1,314,619 92,210 1,314,618

The first two columns compare the sample Sales statistics for establishments
matched from the RSEI to the NETS database and the larger 10-percent
NETS sample including both polluters and non-polluters. The second two
columns compare the sample Log-Sales statistics.

(bottom panel). The distributions are very similar. The sample mean, standard deviation
and median are within rounding error of each other. We are confident that the matched
sample is a good representation of the full TRI data set.

The set of establishments that report to TRI does not represent the full distribution es-
tablishments in the NETS. However, because our focus is on the environmental performance,
we are satisfied that the merged data provides an accurate representation of the channels
driving the evolution of toxic pollution emissions that are reported by TRI.

9 Defining entry and exit

As noted in the main text, the definition of entry and exit has important implications for the
estimation of the impacts of entry, exit and reallocation. In this section we briefly present
decomposition results when we define entry and exit as occurring at the establishment level,
without regard to the status of the parent firm. These results indicate that manufactur-
ing establishments are reallocating production towards dirtier establishments, and that a
tremendous amount of the observed cleanup in toxic pollution emissions is due to the within
establishment cleanup, the technique effect. The finding of a positive reallocation effect is
reversed when we define entry and exit as occurring at the firm level. Table 6 reports the real-
location and within establishment technique effects using the establishment level definitions
of entry and exit.

Reallocation of resources within industries tends to be towards dirtier establishments,
driven primarily by the exit of relatively clean establishments. This is offset by the relentless
cleanup in surviving establishments which drives the overall cleanup in the manufacturing

33



0
.0

5
.1

.1
5

.2
D

en
si

ty

−5 0 5 10 15 20
Log Pounds, Matched Sample

0
.0

5
.1

.1
5

.2
D

en
si

ty

−5 0 5 10 15 20
Log Pounds, Full Sample

Figure 8: Sample Comparison: RSEI (Pounds)
Note: The log-emissions data for the top panel of this figure are taken from matched RSEI-NETS establishment-level data set
described in the text. The distribution in the lower panel is based on the log-pounds of manufacturing establishments (SIC2
20-39) from the full RSEI sample.

sector. The results indicate that the cleanup is not being driven by environmental regulation
forcing old, pollution intensive manufacturing establishments out of business.

Using this broader definition of entry and exit, exiting establishments tend to be cleaner
than the incumbents they leave behind. As a result, this reallocation channel raises toxic
emissions from the manufacturing sector during our sample period. The decline in the
aggregate technique effect masks the fact that exit of relatively clean establishment raises
emissions by between 1 and 3.7 percent depending on the year. To better understand this
result we aggregated the effect of exiting establishments on total manufacturing emissions by
industry and year. Industrial organic chemicals (SIC 2869) experiences the most exit from
relatively clean establishments, but paper mills (SIC 2611) and pulp mills (SIC 2621) are
not far behind. Only a handful of manufacturing industries (29 out of 450 in our sample) get
cleaner due to exit of relatively dirty establishments. Only for wet corn milling (SIC 2046)
and household cooking equipment (SIC 3631) does exit of relatively dirty establishments
contribute more than 0.1 percent to the overall clean up.

By using these two definitions together the findings give some additional insight into the
operations of manufacturing firms and their environmental consequences. In particular, our
results indicate that a substantial portion of the aggregate technique effect is due to firms
merging cleaner operations with dirtier, and not merely from the installation or adjustment
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Table 6: Change in Aggregate Emissions Intensity by Channel

(1) (2) (3) (4) (5) (6)
Entering Exiting Total

Surviving Establishments Establishments Establishments (All Establishments)

Year Total Within Between

1991 -14.7 -21.6 6.9 -0.9 3.0 -12.6
1992 -4.6 -16.6 12.0 -1.4 3.2 -2.9
1993 -12.3 -12.2 -0.2 -2.0 3.6 -10.8
1994 -3.5 -3.3 -0.2 -0.3 3.4 -0.5
1995 -4.4 -7.7 3.4 -1.8 2.3 -3.9
1996 -13.6 -14.4 0.8 -1.0 3.3 -11.3
1997 -11.5 -7.4 -4.0 -1.2 3.9 -8.8
1998 -12.4 -12.4 0.0 -0.9 2.8 -10.6
1999 -9.6 -3.2 -6.4 -0.7 2.7 -7.6
2000 -5.6 -3.5 -2.1 3.7 2.9 1.0

Note: Change in toxic pollution emissions attributable to surviving, entering and exiting establishments.
Change in emissions in surviving establishments are further decomposed into changes within establishments
in column 2, which we term the “pure technique” effect and reallocation among survivors in column 3. Units
are percent of 1990 toxic release inventory emissions in our sample.

of production technologies at the dirtier establishments.

35


	Introduction 
	Decomposing Emissions Changes
	Within and Across Sector
	Within and Across Establishment

	Empirical Strategy
	Data
	Trends in toxic emissions
	Decomposing the trend in toxic emissions
	Decomposing the technique effect

	TRI Emissions Media Categories
	Robustness Checks
	Conclusion
	Data Set Construction
	Matching Establishment Characteristics and Pollution Emissions
	Defining entry and exit

