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Abstract

The number of large-scale, high-severity forest fires occurring in the

United States is increasing, as is the cost to suppress these fires. One of

the key challenges in studying the costs and benefits of forest fire preven-

tion management is the incorporation of risk and uncertainty surrounding

management decisions. We use a technique developed by William Reed

to incorporate the stochasticity of the time of a forest fire into our opti-

mal control problem. Using this optimal control problem we explore the

potential trade-offs between prevention management spending and sup-

pression spending, along with the overall economic viability of prevention

management spending. Our goal is to determine the optimal fire preven-

tion management spending rate and the optimal fire suppression spending

which maximizes the expected value of a forest. We develop a parameter

set reflecting the 2011 Las Conchas Fire in New Mexico and numerically

solve our optimal control problem. Furthermore, we adapt this problem

to simulate a sequence of fires and corresponding controls. We perform a

simulation study to determine how, on average, prevention management

spending affects the value of a forest given an unknown number of fires

over a fixed management horizon. Overall, our results support the con-

clusion that the prevention management efforts offset rising suppression

costs and increase the value of a forest overall.
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1 Introduction

The number of large-scale, high-severity forest fires occurring in the United

States is increasing. Despite a decreasing trend for the total number of fires

occurring each year, the total number of acres being burned each year is in-

creasing [22]. This suggests that fires are larger and more severe, on average. In

2015, there were 44 large fires that burned over 40,000 acres each [22]. Calkin

et al. conclude that only 1% of wildfires account for 97.5% of the total number

of acres burned [5].

In addition to increasingly large fires, the cost to suppress, contain, and

extinguish these fires is increasing [22, 8]. One explanation for the increase in

fire suppression costs includes decades of fire suppression and exclusion policies

which have resulted in uncharacteristically continuous and dense forests with

more ladder fuels [5]. In the past century there has been an active fire exclusion

effort in the United States; this means that wildland fires have not been allowed

to burn despite the history and relationship of fire to a given ecosystem or

region. As a result, some ecosystems have been significantly altered, leading

to more continuous, dense forests which support devastating severe fire events

[9, 2]. In particular, fire-adapted ecosystems, where low-intensity surface fires

were a common occurrence and were regenerative, now experience high-severity,

stand-replacing fires where most of the trees are killed [9]. Other explanations

for the increase in fire suppression costs include an expanding wildland-urban

interface (WUI), prolonged drought (climate change), and the lack of financial

accountability for fire managers [5].

These increasing trends in wildfire size and federal suppression costs have

prompted investigations into alternative methods to help prevent and manage

these large wildfires. One such alternative is fuels management, defined in the

USDA Forest Service Manual as the “practice of controlling flammability and
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reducing resistance to control of wildland fuels through mechanical, chemical,

biological or manual means, or by fire, in support of land management ob-

jectives,” [18]. Roughly 67 millions acres of forest have left their natural fire

regime and are in need of some form of fuels management [33]. The Wildland

Fire Strategic Plan: 2015-2019 put forth by the National Park Service empha-

sizes the importance of determining areas where fuels management treatments

are needed and the importance of developing appropriate programs to address

these treatments [35].

It is not feasible to experimentally test the impact of fuels treatments on

suppression costs on a large scale[2, 38]. However, empirical evidence for the

efficacy of fuels treatments to reduce fire hazard and the size of a fire has been

observed following several large fire events [2]. Even though evidence in favor of

fuels management is growing, fire suppression spending still outweighs expendi-

tures on hazardous fuels reduction [11]. In fact, in extreme fire years emergency

funding for fire suppression has been appropriated from funds designated for

fuels management programs [37]. Constraints surrounding smoke, endangered

species, regulatory review, and lack of societal acceptance inhibit timely im-

plementation of fuel management strategies [37, 34]. Furthermore, there has

been limited economic analysis concerning the viability of such fire prevention

management strategies [10, 14, 18]. In particular, Mercer et al. [18] stress that,

“Two of the most important unanswered economic questions are whether the

resources expended to reduce wildfire risk result in net economic gains and how

to quantify the trade-offs between increasing expenditures on suppression and

fuels management.”

Increasingly, researchers are turning to economics to inform wildland fire

prevention management plans [20]. Mercer et al. [19] use dynamic stochastic

programming and a Monte Carlo simulation model to test the impact of alter-
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native prescribed burning applications on the overall welfare of a forest. They

conclude that net economic gains may result from extensive prescribed burning

in a specified area. However, this model is only applied to one specific area,

does not account for ecosystems differences, is scale dependent, and thus, is not

easily broadly applied [19]. Additionally, this work does not address the trade-

offs between increasing suppression costs and prevention management spending.

In a different study, a standard-response model is modified and linear-integer

optimization is used to examine the trade-offs between fuels management alter-

natives and initial wildfire suppression attack resource deployment [18]. Minas

et al. [21] present an integer programming model which fully integrates fuel

treatment and fire suppression planning.

However, none of these studies consider how trade-offs between fire preven-

tion and suppression are shaped by the inherent risk and uncertainty associated

with fire events. The benefits of fire prevention are only realized when a fire

occurs. Because the timing of fires are unknown, the benefits fire prevention

are uncertain. Suppression represents a relatively more certain investment since

it works to limit the damages from an existing fire. In a literature review of

economic studies exploring the cost and benefits of wildland fires and their man-

agement, Milne et al. found that one of the key challenges in these studies is the

incorporation of risk and uncertainty surrounding management decisions [20].

This work aims to address this challenge by modeling the economic trade-offs

between fire prevention management spending and fire suppression spending

when the time of fire is unknown.

In the late 1980s and early 1990s Reed wrote a series of papers exploring

the management of a resource vulnerable to random catastrophic collapse [26,

27, 28, 29, 6]. Reed developed a method [30] to convert an initially stochastic

problem, due to the random time of collapse, into a deterministic optimal control
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problem where Pontryagin’s Maximum Principle may be utilized [31]. This

technique has been applied to forestry [26, 27], invasive species [7], and emerging

infectious diseases [4, 12]. A summary of Reed’s method, along with its different

applications, are found in [31].

We use Reed’s method to consider optimal prevention spending when the

time of fire is unknown. The strength of Reed’s method is its ability to incorpo-

rate the risk of a significant catastrophic event into resource management mod-

els, especially when there is a distinction between control management strategies

employed before, during, or after the event. Investment in preventative manage-

ment before a catastrophic fire is risky because its benefits are realized at some

unknown time in the future. Because managers are often risk-averse, they prefer

implementing control measures only after the fire has broken out because the

cost and benefits of these measures occur at approximately the same time and

are relatively more certain [7]. Thus, the Reed method allows us to investigate

and quantify how the uncertainty in the timing of large fire events influences

preventative management before a fire and the level of suppression management

during a fire.

Previous applications of Reed’s method consider an infinite time horizon and

one catastrophic event. In contrast, our application of Reed’s method considers

a finite time horizon with an unknown number of catastrophic events by suc-

cessively applying the optimal control problem to study sequences of fires. We

apply our optimal control problem multiple times in succession and sample for

the times of fires using a cumulative distribution function built with the solu-

tion to our optimal control problem. We perform a simulation study in order

to determine the average value of the forest over our management horizon given

that an unknown number of fires may occur, and look at the tradeoffs between

total prevention management spending and suppression spending. Additionally,
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our method differs from others in that we explicitly determine a function de-

scribing the optimal value of a forest following a fire using scalar optimization

to determine optimal suppression spending at the time of fire. This allows us

to quantitatively examine the effects of prevention management spending and

suppression spending on the overall economic value of a forest. By choosing

functional forms and parameter ranges explicitly, we are also able to perform

a parameter sensitivity analysis on our optimal control problems to determine

which parameters have the most impact on the value of the forest. To our

knowledge this type of global sensitivity analysis has not been performed for

other problems applying Reed’s method.

This work contributes to the fire economics literature because it is the first to

use Reed’s method to examine how fire risk influences tradeoffs between preven-

tion and suppression. Furthermore, this work is the first to use Reed’s method

to look at multiple random events and the first to perform a global sensitivity

analysis using Latin Hypercube Sampling and partial rank correlation coeffi-

cients to rank parameters based on their impact on the value of the objective

functional.

In Section 2 the formulation of our optimal control problem is given and

we derive the corresponding necessary conditions using Pontryagin’s Maximum

Principle (PMP). In Section 3 we build a parameter set based on a 2011 fire in

New Mexico (the Las Conchas Fire), numerically approximate the solution, and

interpret the results. We also perform a global parameter sensitivity analysis,

using Latin Hypercube Sampling and partial rank correlation coefficients, to

determine the parameters in our problem which have a significant impact on the

value of our objective functional and the mean optimal prevention management

spending rate. In Section 4, we consider the impact of prevention management

spending on the value of a forest for an unknown sequence of fires over a fixed
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management horizon. We finish with some conclusions.

2 Model Formulation

We want to incorporate the uncertainty surrounding the time of fire into our

study as this is one of the key challenges in addressing and developing fire

management strategies [20]. Our goal is to determine the optimal time path of

prevention expenditures which will maximize the expected net present value of

the forest over a finite time horizon. To achieve this goal, we solve the problem

using backward induction. First, we solve for the optimal ex post fire suppression

spending at the time of the fire. Given the optimized value function after the fire

occurs, we then solve for the optimal ex ante fire prevention spending schedule

given the optimized ex post value function.

We assume the effects of prevention management spending are instantaneous

and that prevention management spending at the time of fire will decrease the

number of acres burned in the fire and that it will decrease the hazard of fire.

Additionally, the fire event itself is taken to be instantaneous and therefore, only

prevention management spending that occurs exactly at the time of fire will

decrease the number of acres burned in the fire. Any prevention management

spending before the time of fire does nothing to decrease the number of acres

destroyed in the fire.

Consider a forest with Ā acres over the finite time horizon [0, T ]. Let A(t)

be the number of unburned acres in a forest before a fire at time τ ∈ [0, T ].

Suppose the forest generates a flow of non-timber benefits B per unit time as a

function of the number of unburned acres in the forest; that is, B = B
(
A(t)

)
.

Non-timber benefits are the sum of all provisioning, regulatory, supporting, and

cultural ecosystem services provided by the forest. The focus on non-timber

benefits is consistent with forests where fuel management is costly, but may not
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fully capture fuel management incentives associated with service contracts. For

now, suppose the next large fire in the forest occurs at time τ with 0 < τ < T .

Before a fire at time τ the present value of the net benefit from the forest is

given by

∫ τ

0

[
B
(
A(t)

)
− h(t)

]
e−rtdt, (1)

where h(t) is the prevention management spending rate over time. The number

of unburned acres A(t) before the fire is governed by the differential equation

A′(t) = δ
(
Ā−A(t)

)
with A(0) = A0 ≤ Ā, (2)

where δ represents the regeneration rate of the forest. We assume that the re-

generation of the forest is only dependent on the number of unburned acres in

the forest and the initial condition A0; it is not dependent on any control vari-

ables. The solution of the differential equation (2) for the number of unburned

acres is

A(t) = Ā− (Ā−A0)e−δt. (3)

We formulate our optimal control problem to allow for time-varying unburned

acres before a fire. This will later enable us to apply the optimal control problem

successively in order to consider a sequence of fires.

2.1 Ex Post Fire Suppression

The number of acres destroyed in the fire, K, is dependent on the ex ante

prevention management expenditures at the time of the fire, h(τ), and the ex

post fire suppression expenditures at the time of the fire, x(τ). That is,
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K = K
(
h(τ), x(τ)

)
. (4)

Assume that the number of acres burned in the fire K is decreasing with respect

to increases in prevention management and suppression spending; i.e. ∂K
∂h < 0

and ∂K
∂x < 0.

Let Â(t) represent the number of unburned acres in the forest following a

fire at time τ . The fire event at time τ is taken to be instantaneous and so the

number of unburned acres destroyed in the fire K is taken into account at the

time of fire τ . Thus, the number of unburned acres at the time of fire τ , Â(τ),

represents the number of acres remaining in the forest after the number of acres

destroyed K in the fire have been accounted for:

Â(τ) = A(τ)−K
(
h(τ), x(τ)

)
. (5)

At the time of fire there is a jump discontinuity between A(τ) and Â(τ).

Following previous work, for the optimal control problem formulation we assume

that another fire does not occur in our finite time horizon [0, T ]. We will be

considering a sequence of fires in Section 4. We assume that starting from the

time of fire τ the number of unburned acres Â in the forest increases according

to the differential equation

Â′(t) = δ
(
Ā− Â(t)

)
with Â(τ) = A(τ)−K

(
h(τ), x(τ)

)
, (6)

so that Â(t) increases toward Ā as time increases. Note that A(τ) is known

from equation (3). The solution to this differential equation is

Â(t) = Ā−
(
Ā−

(
A(τ)−K

(
h(τ), x(τ)

)))
e−δ(t−τ). (7)
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As before, the fire event is taken to be instantaneous and so are the asso-

ciated costs. The jump discontinuity in non-timber benefits, due to the jump

discontinuity in the number of unburned acres in the forest, serves as a cost

of the fire. Additionally, the cost of suppressing the fire x(τ) and the cost of

damages to built structures D are subtracted from the non-timber benefits that

accrue after the fire. The damages to built structures is a function of the number

of acres destroyed in the fire:

D = D
(
K
(
h(τ), x(τ)

))
. (8)

This may include impacts to surrounding buildings, roads, etc. We assume that

larger fires are more likely to impact built structures: ∂D
∂K > 0. Additionally,

we assume that built structures could be saved by increasing prevention and

suppression spending: ∂D
∂h < 0 and ∂D

∂x < 0.

The function describing the flow of benefits before and after the fire is the

same, even though we distinguish between unburned acres before the fire and

unburned acres after the fire, A and Â, respectively. The net present value of

the forest following a fire is given by the non-timber benefits accrued from the

time of fire to the end of our time horizon net of the instantaneous suppression

costs and costs to built structures:

∫ T

τ

B
(
Â(t)

)
e−rtdt−

[
D
(
K
(
h(τ), x(τ)

))
+ x(τ)

]
e−rτ , (9)

subject to (7) and x(τ) ≥ 0. With only a single fire event, there is no incentive

to invest in prevention following a fire. When we move to consider sequences of

fires we will have prevention management following each fire event, but this is

because we are essentially “resetting” our optimal control problem after every

fire.
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Let the value of the forest after the fire, with e−rτ factored out, be defined

by

JW
(
τ,A(τ), h(τ), x(τ)

)
=

∫ T

τ

B
(
Â(t)

)
e−r(t−τ)dt−

[
D
(
K
(
h(τ), x(τ)

))
+ x(τ)

]
.

(10)

Note that the ex post value of the forest is a function of the time of fire τ ,

the prevention management spending h(τ), suppression spending x(τ), and the

number of unburned acres A(τ) at the time of fire, before the effects of the fire

have been considered. We say that JW is a function of A(τ) and not Â(τ)

because Â is determined by the boundary condition containing A(τ) and the

differential equation (6). Hence, given a time of fire τ , the corresponding pre-

vention management spending at that time h(τ), and the number of unburned

acres A(τ) before the effects of the fire have been considered, the optimal ex

post value of the forest is the solution to

sup
x(τ)

∫ T

τ

B
(
Â(t)

)
e−r(t−τ)dt−

[
D
(
K
(
h(τ), x(τ)

))
+ x(τ)

]
subject to x(τ) ≥ 0, (11)

where Â(t) = Ā−
(
Ā−

(
A(τ)−K

(
h(τ), x(τ)

)))
e−δ(t−τ), (12)

with x(τ) being a real-valued scalar representing suppression spending. Let

x∗(τ) be the real-value scalar representing optimal suppression spending for a

given τ , h(τ), and A(τ), which maximizes the value of the forest after the fire.

The maximized ex post value of the forest for a given τ , h(τ), and A(τ) is

henceforth denoted by

12



JW ∗
(
τ,A(τ), h(τ)

)
= JW

(
τ,A(τ), h(τ), x∗(τ)

)
. (13)

The value of the forest following a fire JW is maximized when evaluated at

x∗(τ). We assume that suppression spending increases the value of the forest

following a fire:

∂JW ∗
(
τ,A(τ), h(τ)

)
∂h

> 0. (14)

Once functional forms are chosen we explicitly determine x∗(τ), and thus

JW ∗
(
τ,A(τ), h(τ)

)
, using scalar optimization techniques. The details surround-

ing this process are discussed in Section 3.

2.2 Ex Ante Fire Prevention

If the time of fire τ ∈ [0, T ] is strictly less than T , then the total value of the

forest over the time horizon [0, T ] is given by the sum of the net value of the

forest before the fire and the net value of the forest after the fire up to time T ,

∫ τ

0

[
B
(
A(t)

)
−h(t)

]
e−rtdt+

∫ T

τ

B
(
Â(t)

)
e−rtdt−

[
D
(
K
(
h(τ), x(τ)

))
+x(τ)

]
e−rτ ,

(15)

where A(t) is given by (3) and Â(t) is given by (7). Note that this total value

is the sum of (1) and (10) and gives the value of the forest over the full time

horizon [0, T ].

If the time of the first fire τ is equal to T , then we represent the value of the

forest over the time horizon [0, T ] by

∫ T

0

[
B
(
A(t)

)
− h(t)

]
e−rtdt, (16)
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where A(t) is given by (3). In this case, we recognize that a fire will eventu-

ally occur, but because it does not occur within the time horizon [0, T ] we do

not subtract the instantaneous suppression costs or cost of damages to built

structures.

In summary, the value of the forest over [0, T ] depends on the time of fire

τ , the prevention management spending h, and the initial condition A0 = A(0)

for the number of unburned acres in the forest before a fire. The value of the

forest can thus be represented by the piecewise function

V(A0, τ, h) =


∫ τ

0

[
B
(
A(t)

)
− h(t)

]
e−rtdt+ e−rτJW ∗

(
τ,A(τ), h(τ)

)
if τ < T

∫ T
0

[
B
(
A(t)

)
− h(t)

]
e−rtdt if τ = T,

(17)

where A(t) is given by (3). Note that Â is completely contained within JW ∗.

The equation V(A0, τ, h) represents the net present value of the forest over the

whole time interval [0, T ] for a given time of fire τ , prevention management

spending h, and initial number of unburned acres in the forest A0. In the case

that a fire happens within the time horizon, V incorporates the optimal value

of the forest following a fire JW ∗
(
τ,A(τ), h(τ)

)
.

When the large fire event will occur is unknown. Thus, the time of fire

τ ∈ [0, T ] represents an uncertainty in our system. To capture this uncertainty

in our problem, we take the time of fire τ to be a realization of the mixed-type

random variable (RV) T . The random variable is characterized by the hazard

function ψ, defined as

ψ = lim
∆t→0

{
Pr(fire in [t, t+ ∆t)|no fire up to t)

∆t

}
. (18)

The hazard function represents the conditional probability that a fire will occur
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at a time t given that no fire has occurred up to that time. For our prob-

lem, the hazard function is assumed to be a function of the ex ante prevention

management spending rate,

ψ = ψ
(
h(t)

)
. (19)

Furthermore, we assume that the hazard is decreasing with respect to an in-

creased prevention management spending rate, i.e. ∂ψ
∂h < 0. A constant back-

ground hazard is assumed in the absence of ex ante prevention management

spending.

The survivor function S(t), which gives the probability of the forest surviving

to time t with no fire, is related to the hazard function ψ in the following way:

S(t) = e−
∫ t
0
ψ
(
h(z)
)
dz. (20)

It follows that S(0) = 1. While we assume that prevention spending can reduce

hazard, we do not assume that prevention spending will indefinitely delay the

occurrence of a large, stand-replacing fire. Therefore, we assume that the inte-

gral representing the cumulative hazard,
∫ t

0
ψ
(
h(z)

)
dz, will diverge to positive

∞ as t → ∞, and thus S(∞) = 0. The corresponding cumulative distribution

function for T is related to the survivor function and is given by

FT (τ) =


1− S(τ) if τ < T

1 if τ = T.

(21)

Notice the potential for discontinuity at time T . Hence, we observe that the

probability density function for T ∈ [0, T ) is

fT (t) = ψ
(
h(t)

)
S(t). (22)
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The mixed type RV T has a discrete component. For T = T , the probability

mass is

P (T = T ) = FT (T )− FT (T−) (23)

= 1−
(
1− S(T )

)
= S(T ).

Again, if τ = T , no costs other than prevention management spending h are

considered. Our goal is to determine the prevention management spending rate

h(t) ≥ 0 which maximizes the net present value of the forest over [0, T ] using

deterministic optimal control. As written, our problem is currently stochastic.

However, using techniques developed by Reed, we can convert this stochastic

problem to deterministic by taking the expectation of (17) with respect to the

RV T and introducing a state variable to represent cumulative hazard [31].

The expected net present value of the forest over [0, T ], is given by

J(h) = ET
{
V(A0, τ, h)

}
=

∫ T

0

[∫ τ

0

[
B
(
A(t)

)
− h(t)

]
e−rtdt+ JW ∗

(
τ,A(τ), h(τ)

)
e−rτ

]
ψ
(
h(τ)

)
S(τ)dτ

+ S(T )

∫ T

0

[
B
(
A(t)

)
− h(t)

]
e−rtdt. (24)

After a bit of calculus, we arrive at

J(h) =

∫ T

0

[
B
(
A(t)

)
− h(t) + ψ

(
h(t)

)
JW ∗

(
t, A(t), h(t)

)]
S(t)e−rtdt. (25)
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This function, J(h), represents the expected net present value of the forest over

an interval [0, T ] subject to the survivor function S(t). By introducing a new

state variable y to represent cumulative hazard we complete the conversion of

our stochastic problem to deterministic. Let y represent cumulative hazard and

be governed by the differential equation

y′(t) = ψ
(
h(t)

)
with y(0) = 0. (26)

The initial condition y(0) = 0 follows from the fact that S(0) = 1. Note that

the survivor function can be rewritten as

S(t) = e−y(t), (27)

and this allows us to rewrite (25) with our new state variable y.

Our goal is to find a control h in our control set which maximizes the objec-

tive functional J(h) with respect to the state variable y governed by differential

equation (26). Therefore, our deterministic optimal fire prevention problem can

be written as

sup
h∈U

∫ T

0

[
B
(
A(t)

)
− h(t) + ψ

(
h(t)

)
JW ∗

(
t, A(t), h(t)

)]
e−rt−y(t)dt (28)

subject to y′(t) = ψ
(
h(t)

)
with y(0) = 0, (29)

where

U =
{
h : [0, T ]→ [0,∞)|h is Lebesgue measurable

}
, (30)

and

A(t) = Ā− (Ā−A0)e−δt. (31)
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Thus, our control problem with stochastic time of fire has been converted to a

deterministic optimal control problem.

2.3 Linking Optimal Prevention and Suppression

Selecting explicit functional forms for B, K, D, and the hazard function al-

lows us to determine the the optimal ex post value of the forest following a

fire JW ∗
(
τ,A(τ), h(τ)

)
and ultimately solve our optimal control problem by

determining the optimal management spending h(t) rate over [0, T ]. The ben-

efits function B represents the flow of benefits from the forest and is assumed

directly proportional to the number of unburned acres in the forest:

B
(
A(t)

)
= B1A(t), (32)

where parameter B1 ≥ 0. The number of acres completely burned by the

fire, K, is decreasing with respect to prevention management and suppression

expenditures:

K(h, x) =
k

(k1 + h)(k2 + x)
, (33)

with parameters k > 0 and k1, k2 ≥ 1. The parameter k is related to the size

of a fire. The parameter k1 controls the magnitude of the effect of prevention

management spending h on decreasing the number of acres burned. Similarly,

the parameter k2 controls the magnitude of the effect of suppression spending

x on decreasing the number of acres burned. It is assumed that the cost of lost

built structures is directly proportional to the number of acres destroyed in the

fire:
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D
(
K(h, x)

)
= cK(h, x) =

ck

(k1 + h)(k2 + x)
, (34)

with parameter c ≥ 0 as the cost of damages in millions of dollars per thousand

acres burned.

The hazard function ψ, representing the conditional probability that a fire

will occur at time t given that a fire has not occurred up to that time:

ψ
(
h(t)

)
= be−vh(t), (35)

is consistent with the literature [31, 26, 4, 7]. The parameter 0 < b < 1 repre-

sents the constant hazard rate when there is no prevention management spend-

ing. The constant v > 0 is used to control the effectiveness of preventative

management spending h(t) on reducing hazard.

Now that the functional forms have been defined, we optimize the value of

the forest after the fire JW . Recall the ex post problem is to maximize

max
x(τ)

∫ T

τ

B
(
Â(t)

)
e−r(t−τ)dt−

[
D
(
K
(
h(τ), x(τ)

))
+ x(τ)

]
(36)

subject to x(τ) ≥ 0,

where Â(t) = Ā−
(
Ā−

(
A(τ)−K

(
h(τ), x(τ)

)))
e−δ(t−τ). (37)

Using the solution to the state differential equation for Â(t) above, we integrate

the flow of benefits from the time of fire τ to the end of our time horizon T .

Hence, the ex post value of the forest is given by
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JW
(
τ,A(τ), h(τ), x(τ)

)
=
B1Ā

r

(
1− e−r(T−τ)

)
−
B1

(
Ā−A(τ)

)
δ + r

(
1− e−(δ+r)(T−τ)

)
−K

(
h(τ), x(τ)

)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− x(τ). (38)

Our goal is to maximize JW
(
τ,A(τ), h(τ), x(τ)

)
with respect to the one-

time suppression costs x(τ). We do this using scalar optimization and thus

consider the partial derivative of JW (38) with respect to x(τ). It follows that


x∗(τ) = 0 if ∂JW

∂x(τ) < 0,

x∗(τ) ≥ 0 if ∂JW
∂x(τ) = 0.

(39)

As K is a function of x, the partial derivative of JW
(
τ,A(τ), h(τ), x(τ)

)
with respect to x(τ) is,

∂JW

∂x
= −

[
B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
∂K

∂x
− 1

=

[
B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
k

(k1 + h)(k2 + x)2
− 1. (40)

If ∂JW
∂x(τ) = 0, then x∗(τ) ≥ 0. To determine x∗(τ) in this case we set the partial

derivative (40) equal to zero, and solve for x(τ). As x(τ) ≥ 0, we determine

0 ≤ x∗(τ) = x∗
(
τ, h(τ)

)
=

√
k(

k1 + h(τ)
)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− k2,

(41)

in the case that ∂JW
∂x(τ) = 0.

If ∂JW
∂x(τ) < 0 and x∗(τ) = 0, then
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√
k(

k1 + h(τ)
)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− k2 < 0 = x∗(τ). (42)

Based on our choices for our functional forms, we see that optimal suppres-

sion spending x∗ is not only a function of the time of fire, but also prevention

management spending h(τ). Note that maximum of JW could occur at the

endpoint. Thus, it follows that optimal suppression spending is given by

x∗
(
τ, h(τ)

)
= max

{
0,

√
k(

k1 + h(τ)
)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− k2

}
.

(43)

Therefore, we substitute (43) into our JW representation (38) so that the opti-

mal value of the forest following a fire is

JW ∗
(
τ,A(τ), h(τ)

)
= JW

(
τ,A(τ), h(τ), x∗

(
τ, h(τ)

))
. (44)

We note that a quick calculation shows ∂2JW
∂x2 ≤ 0 and so the JW value (41) is

indeed a maximum of JW (38).

We now work through the derivation of the conditional current-value opti-

mality system. Let the standard Hamiltonian be given by H and let the adjoint

function associated with state variable y by given by λ. Let the conditional

current-value adjoint function be given by

ρ(t) = ert+y(t)λ(t). (45)

The conditional current-value Hamiltonian H is
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H = ert+y(t)H (46)

= B
(
A(t)

)
− h(t) + ψ

(
h(t)

)
JW ∗

(
t, A(t), h(t)

)
+ ρ(t)ψ

(
h(t)

)
. (47)

The partial derivative of the conditional current value Hamiltonian H with

respect to the control is

∂H
∂h

= −1 + JW ∗
(
t, A(t), h(t)

)∂ψ
∂h

+
∂JW ∗

∂h
ψ
(
h(t)

)
+ ρ(t)

∂ψ

∂h
. (48)

Special care must be taken when deriving the conditional current-value ad-

joint differential equation. Since ρ(t) = ert+y(t)λ(t), the differential equation

for the conditional current value adjoint is given by

ρ′(t) =
(
r + ψ

(
h(t)

))
ert+y(t)λ(t) + ert+y(t)λ′(t) (49)

=
(
r + ψ

(
h(t)

))
ρ(t)− ert+y(t) ∂H

∂y
(50)

Hence, the conditional current-value adjoint differential equation is

ρ′(t) =
(
r + ψ

(
h(t)

))
ρ(t) +B

(
A(t)

)
− h(t) + ψ

(
h(t)

)
JW ∗

(
t, A(t), h(t)

)
, (51)

with transversality condition

ρ(T ) = erT+y(T )λ(T ) = 0. (52)

The hazard function ψ is nonlinear in h, as is the function JW ∗
(
t, A(t), h(t)

)
,

which represents the optimal value of the forest following a forest fire for a given
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Table 1: The table below includes the parameter values chosen to reflect the
2011 Las Conchas Fire.

Parameter Units Value Justification

Ā acres(1000) 1700 size of SFNF, BNM, VCNP

r /time 0.04 standard discount rate

k acres(1000)×$2/time 7000 k ≈ size of fire× suppression $

k1 $ (mil.)/time 1 assumed

k2 $ (mil.)/time 1 assumed

δ /time 0.05 Pipo: 70-250 years to mature

b ——– 0.2 high frequency of fires in region

c $ (mil.)/ 0.1 114 buildings destroyed,

acres(1000) 156,000 acres burned

B1 $ (mil.)/time 0.02 calculated from x∗ formula

v ——— 1 assumed

time of fire and a given amount of prevention management spending at the time

of fire. We utilize the fact that Pontryagin’s Maximum Principle (PMP) states

that the optimal control maximizes the Hamiltonian with respect to the control

h pointwise at each t to numerically determine the optimal control [15]. We

justify the use of PMP for our maximization problem as we can show that

∂2H
∂h2

≤ 0, (53)

numerically for our given functions and parameter choices.

3 Las Conchas Fire: Numerical Example

Now that we have formulated our optimal control problem and the associated

optimality system, we solve it numerically and interpret the results. To help us

build a realistic set of parameter values, we examine information from the 2011

Las Conchas Fire . A fallen power line ignited the Las Conchas Fire on June 26,
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Figure 1: The plots above contain the h∗, x∗, and S results of our optimal
control problem using the Las Conchas Fire parameter set. For comparison, in
each plot we include the case with optimal prevention management spending h∗

and the case with no prevention spending h = 0.
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2011. The Las Conchas Fire continued to burn over the course of the summer

through sections of Santa Fe National Forest, Bandelier National Monument,

and Valles Caldera National Preserve near Los Alamos, New Mexico. The fire

was finally contained at the beginning of August 2011 [24, 36]. Over 150,000

acres burned in the fire and over $40 million were spent on fire suppression

efforts [24, 36, 42]. In addition to suppression costs, over 110 structures were

destroyed or damaged during the fire [24, 36]. We are using the data from this

fire to build a more realistic problem, not to draw any retrospective conclusions

concerning prevention management or suppression spending decisions made at

the time of this fire. Parameter choices are summarized in Table 1.

The parameter Ā represents the “size of the forest” in units of thousands

of acres. The Las Conchas Fire mainly burned through the Santa Fe National

Forest, Bandelier National Monument, and Valles Caldera National Preserve

and the combined size of these three areas is approximately 1,722 thousand

acres[23, 41, 44]. Rounding down, we take Ā = 1, 700.

The parameter δ represents the regeneration rate of the forest following a

fire. We choose δ based on the dominant tree type in the forest, which in the

Santa Fe National Forest is Ponderosa Pine (Pipo). The age of Ponderosa Pine

at maturity is 70-250 years [40]. Assuming that at the time of fire the number

of unburned acres is reduced by half, we choose a value for δ so that the number

of unburned acres after 100 years has approximately returned to Ā. As such,

we choose δ = 0.05. The discount rate is set at 4 percent in accordance with

USDA Forest Service practice: r = 0.04 [32]. The parameter b, found in the

hazard function ψ
(
h(t)

)
, represents the background fire hazard. To capture the

probability that large, high-severity fires happen frequently in the region, we

choose b = 0.2 [45]. For b = 0.2 the probability of the forest surviving to 3.5

years with no fire is approximately 0.5.
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The parameters k, k1, and k2 are all included in the function K which rep-

resents the number of acres burned in the instantaneous fire. Given that values

for parameters k1 and k2 could not be estimated from the literature, for sim-

plicity we choose k1 = k2 = 1. The parameter k, with k1 = k2 = 1, represents

the number of acres that will be completely burned in the fire given that there

is no prevention management spending or suppression spending at the time of

the fire. In particular, given that we know the number of acres burned in the

Las Conchas Fire and the amount spent on suppression, we use the function K

to estimate a value for the fire severity parameter k. Assuming that there is no

prevention management spending at the time of fire, we have k ≈ K × (1 + x),

where K represents the number of acres burned (in thousands) in the fire and x

represents the amount spent on suppression (in millions). For the Las Conchas

Fire, approximately 157 thousand acres were burned and over $40M were spent

on suppression. Thus, we choose k = 7, 000 given that estimates for suppression

costs range between $40M and $50M.

The parameter v is found in the hazard function ψ and represents the ef-

fectiveness of prevention management spending on reducing hazard. From the

literature, we choose v = 1 [27, 4].

The parameter c represents the cost of damages to built structures in millions

of dollars per thousand acres burned. In the Las Conchas Fire, 114 buildings

were destroyed or damaged in the fire [36]. The median value of homes in the

region ranges between $100,000 and $450,000 [39]. First, we estimate the cost

of non-timber damages D for the Las Conchas Fire by multiplying the number

of building destroyed by the median value of homes in the area. Our estimate

for D is thus $17.2 million. We then divide this estimate for D by the number

of acres destroyed in the fire, K = 157, to estimate an appropriate value for c;

c ≈ D
K . For the Las Conchas Fire in particular, we round and take c = 0.1.
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Lastly, we look to determine an appropriate value for the parameter B1,

which represents the flow of non-timber benefits from the forest given in units

millions of dollars per thousand acres. The challenge of valuing a forest is very

complex and is its own problem in and of itself [25]. We use our equation

for optimal suppression spending (41) to determine a value for B1 based on

our other parameter choices and the amount of money spent on suppression

for the Las Conchas Fire. In order to determine a reasonable estimate for

B1, we assume that the amount of suppression spending was optimal and we

allow this amount to stand in for x∗. We then solve equation (41) for B1 and

approximate its value using our previous parameter choices. Furthermore, we

assume h(τ) = 0, τ = 0, and T = 500. This leads to the choice of B1 = 0.02 for

the Las Conchas Fire.

We recognize that the selection of some of these parameter values is not

literature driven. Because of this, we perform a sensitivity analysis to determine

which parameters have the most impact on the overall expected net present

value of the forest. We use Latin Hypercube Sampling (LHS) and Partial Rank

Correlation Coefficient (PRCC) analysis to determine the parameters to which

the value of the objective functional evaluated at the optimal control h∗ is most

sensitive. Ten parameters with appropriate ranges were chosen for this analysis

and the full details are shown in the appendix. We conclude that the parameter

B1 has the strongest impact on the expected net present value of the forest

J(h∗), followed by parameters Ā and r, followed by parameters c and k2. We

note that using the objective functional at the optimal control as an output for

a LHS/PRCC analysis is novel.

We consider a time horizon of T = 500 years. We choose a long time horizon

so that any tail effects from the finite time horizon can be reasonably ignored.

Additionally, by choosing T very large, we essentially “guarantee” that the
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time of the next fire will fall within our time horizon. This is validated by

the survivor functions in Figure 1 which is essentially zero after 100 years in

both the optimal prevention management spending case and the no prevention

management spending case. This long time horizon is also very important in

our consideration of sequences of fires.

From our numerical results in Figure 1, the optimal prevention management

spending rate h∗ is approximately constant at 1.5 million dollars per year over

the course of the time horizon, with an increase to 2 million near the end of

the time horizon. This increase is likely due to the sharp decrease in the value

of JW ∗ near the end of the time horizon. Hence, we interpret the graph of

h∗ as saying that approximately $1.5 million should be spent on prevention

management per year, up to the time of the first fire, which in practice is

unknown.

Recall that the fire event in our problem is taken to be instantaneous, along

with its associated costs. As seen in Figure 1, the function representing optimal

suppression spending in the optimal prevention management spending case is

approximately constant at $29M over the time horizon, except for effects at the

end. It is important to recall that suppression spending is a one-time instanta-

neous cost at the time of the fire and therefore, the suppression cost of $29M

only occurs once in application at the time of fire. This is in contrast to the

optimal prevention management spending h∗, discussed in the previous para-

graph, which is ongoing up to the time of fire. In the case without prevention

management spending, instantaneous suppression spending is roughly $46.5M

at the time of fire, given that the function for x∗ in the case without prevention

management spending is approximately constant over the course of the time

horizon. As expected, instantaneous suppression spending in the case with-

out prevention management spending is greater than instantaneous suppression
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spending in the optimal prevention case: ∂x∗

∂h < 0. Moreover, instantaneous

suppression spending decreases approximately 38% when optimal prevention

management spending is applied, in comparison to the corresponding amount

without prevention management spending.

Given that the time of fire is treated as a random variable in our problem,

we would like to compare the expected time of the next fire between the two

cases of optimal prevention management and no prevention management. In

order to determine this value, we calculate the expected value of the time of

fire random variable. The expected value of the time of fire random variable is

justifiably approximated by

E[T ] =

∫ T

0

tψ
(
h(t)

)
e−y(t)dt. (54)

In the case of no prevention management spending, this is reduced to

∫ T

0

bte−btdt. (55)

The mean time of fire in the case without prevention management spending is 5

years. In the case of optimal prevention management spending, the mean time

of fire is approximately 22.3 years. Hence, on average, the time of the fire in

the optimal case is approximately 17 years later than the no prevention case.

Furthermore, in the case of multiple fires, we might expect that over a fixed

amount of time there will be fewer fires when optimal prevention management

spending is employed compared to when there is no prevention management

spending.

Another measure we wish to consider is the expected net present value of

the forest over [0, T ]. This is given by the value of the objective functional

in our optimal control problem, either evaluated at the optimal control h∗ or
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evaluated when h = 0. In the no prevention management spending case, the

expected value of the forest over [0, T ] is approximately $772.6M. In the optimal

prevention spending case, the expected value of the forest over [0, T ] is approx-

imately $801.2M. Thus, the value of forest is larger when optimal prevention

management spending is applied.

Overall, we see that in the case of optimal prevention management spending

h∗, the value of the forest, and the mean time of fire are larger than in the case

without prevention management spending, h = 0. However, we recognize that

it is unrealistic to assume that only one fire will occur in 500 years, especially

since we chose the background hazard b to reflect a high frequency of fires in

the region. Thus, in order to make better comparisons concerning the value of

the forest and the trade-offs between prevention management and suppression

spending, we would like to apply our optimal control problem to a sequence of

fires over a fixed amount of time in Section 4.

4 Applying Optimal Prevention Strategies to a

Sequence of Fires

Our goal is to explore the effects of prevention management spending on the

value of a forest over a fixed number of years given that a sequence of an

unknown number of large fire events may occur within this time. Let this fixed

management horizon that we wish to consider a sequence of fires over be Y years

long.

We are optimizing prevention management spending between each fire event

using our optimal control problem. We determine JY , the value of the for-

est over Y years, and consider the trade-offs in total prevention management

spending and suppression spending. Because we are sampling the times of the
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fires, each time we determine JY years will be different. Thus, we perform a

simulation study and perform multiple trials. We then examine some basic de-

scriptive statistics for the value of the forest over Y years, the number of fires

over Y years, and the total amount of prevention management spending and

suppression spending over Y years. For comparison, we also consider the case

without prevention management spending.

4.1 Fire Sequence Simulation

As our optimal control problem allows for non-constant unburned acres before

a fire, it possible to consider sequences of fires. In essence, we solve our optimal

control problem, use y∗ to build the CDF of RV T , sample for a time of fire, and

then solve our optimal control problem again with an updated initial condition

A0 for the number of unburned acres in the forest. This new initial condition

takes into account the number of acres destroyed in the fire according to the

previous solution of the optimal control problem. We continue to do this until

the time of the nth fire, n unknown, is beyond a specified amount of time, Y .

Now we discuss some important differences between the quantities Y and

T . The parameter T represents the length of the time horizon considered for

our optimal control problem. The parameter Y represents the the length of the

management horizon over which we want to consider a sequence of fires. Over

the course of the management horizon [0, Y ] our optimal control problem will

be solved several times. Each time the optimal control problem is solved over

the time horizon [0, T ]. We choose Y based on the number of years over which

we want to consider a sequence of fires. The length of the time horizon for our

optimal control problem T should be chosen so that S(T ) is very small (close to

zero) so that we can approximate the CDF for T by its continuous counterpart.

Here, we explain the process used for a single simulation of a sequence of
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fires. Within a single simulation, or trial, we solve our optimal control problem

multiple times and as such we will need to distinguish between the different state

and control variables corresponding to the different solutions for the optimal

control problem. To do this, we use numerical subscripts to indicate which

solution to which the variables correspond.

First, we solve our optimal control problem for a given set of parameters

and initial condition A1(0) = Ā. As a result, we know the optimal prevention

management spending h∗1(t), the optimal instantaneous suppression spending

x∗1(t), the optimal cumulative hazard y∗1(t), and the number of unburned acres

A1(t) over the time horizon [0, T ]. Note the subscript 1 on the variables denotes

that these functions correspond to the solution of our optimal control problem

the first time we solve it. The number of unburned acres A1(t) is unaffected by

either control variables x and h and as such, we do not use the star notation

with it; it is completely determined by (3). After numerically determining the

solution, we build the CDF for the time of fire RV T using y∗ and sample for

the time of the first fire.

Let τ1 ∈ [0, T ] be the sampled time of the first fire. If τ1 > Y , then the value

of the forest, denoted by JY , over Y years is given by

JY =

∫ Y

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt, (56)

We do not consider costs of suppression or non-timber damages because the

time of the first fire is outside of our management horizon Y . If τ1 = Y , then

the value of the forest up to time τ1 = Y is given by

JY =

∫ Y

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt−

[
D
(
K
(
h∗1(τ1), x∗1(τ1)

))
+ x∗1(τ1)

]
e−rτ1 ,

(57)
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Here, we consider the cost of suppression and cost to built structures because

the time of the first fire occurs at the end of the management horizon Y . If

τ1 < Y , then value of the forest up to time τ1 is given by

∫ τ1

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt−

[
D
(
K
(
h∗1(τ1), x∗1(τ1)

))
+ x∗1(τ1)

]
e−rτ1 , (58)

and we need to solve our optimal control problem again and sample for the time

of the next fire since τ1 < Y . The expression directly above is not labeled as

JY because we have not yet accounted for the whole management horizon.

Now that a fire has occurred, and τ1 < Y , the number of unburned acres

is less than Ā and we need to set the initial condition A2(0) to prepare for the

next application of our optimal control problem. In particular, we set our new

initial condition to be

A2(0) = A1(τ)−K
(
h∗1(τ1), x∗1(τ1)

)
, (59)

where A1(τ) = Ā. Note that A1(τ) = Ā because for our first solution of our

optimal control problem we chose the initial condition for A to be at an equi-

librium point. We point out again that while this initial condition is dependent

on prevention management spending and suppression spending, it is from the

previous optimal control solution, and thus completely known.

Note that while we are considering these fires in sequence, the time horizon

[0, T ] of our optimal control problem remains the same. At each fire event, we

are in essence “resetting” our problem. With our new initial condition, we solve

our optimal control problem using the same set of parameters over [0, T ] and

once again, as a result, we will know h∗2(t), x∗2(t), and y∗2(t) over the time horizon

[0, T ]. Thus, as before, we sample for the time of the second fire, τ2, using the
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CDF constructed using y∗2 . The sampled time τ2 is associated with the time

horizon [0, T ]. We have to be careful when translating this to our management

horizon. Thus, the time of the second fire in the context of our management

horizon [0, Y ] is τ1 + τ2, the sum of the first sampled time of fire and the second

sampled time of fire.

If τ1 + τ2 > Y , then the value of the forest over Y years is given by

JY =

∫ τ1

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt−

[
D
(
K
(
h∗1(τ1), x∗1(τ1)

))
+ x∗1(τ1)

]
e−rτ1

+

∫ Y−τ1

0

[
B
(
A2(t)

)
− h∗2(t)

]
e−rtdt. (60)

Here, we take into account the cost associated with the first fire because it falls

within [0, Y ]. We do not take into account the costs associated with the second

fire because because τ1 + τ2 > Y . Also notice that the limits of integration for

the second integral are from 0 to Y − τ1. We begin at the time t = 0 because

the optimal control problem is solved over [0, T ]. We only integrate up to Y −τ1

because there are only Y − τ1 years from the time of the first fire τ1 to the end

of the management horizon Y .

If τ1 + τ2 ≤ Y , then the value of the forest up to τ1 + τ2 years is given by

∫ τ1

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt−

[
D
(
K
(
h∗1(τ1), x∗1(τ1)

))
+ x∗1(τ1)

]
e−rτ1

+

∫ τ2

0

[
B
(
A2(t)

)
− h∗2(t)

]
e−rtdt−

[
D
(
K
(
h∗2(τ2), x∗2(τ2)

))
+ x∗2(τ2)

]
e−rτ2 .

(61)

If τ1 + τ2 = Y , we are done since τ2 = Y − τ1. However, if τ1 + τ2 < Y , once

again, we must sample for another time of fire and solve our problem again. We
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set our new initial condition for unburned acres,

A3(0) = A2(τ2)−K
(
h∗2(τ2), x∗2(τ2)

)
, (62)

solve our optimal control problem, and sample the next time of fire. We continue

to do this until the sum of the sampled fire times is greater than or equal to Y .

Suppose that the nth time of fire τn sampled gives τ1 + τ2 + · · · + τn > Y .

Then, the value of the forest over Y years is given by

JY =

∫ τ1

0

[
B
(
A1(t)

)
− h∗1(t)

]
e−rtdt−

[
D
(
K
(
h∗1(τ1), x∗1(τ1)

))
+ x∗1(τ1)

]
e−rτ1

+

∫ τ2

0

[
B
(
A2(t)

)
− h∗2(t)

]
e−rtdt−

[
D
(
K
(
h∗2(τ2), x∗2(τ2)

))
+ x∗2(τ2)

]
e−rτ2

+ · · ·+
∫ Y−(τ1+···+τn−1)

0

[
B
(
An(t)

)
− h∗n(t)

]
e−rtdt, (63)

where Ai(t) is governed by

A′i(t) = δ
(
Ā−Ai(t)

)
with Ai(0) = Ai−1(τi−1)−K

(
h∗i−1(τi−1), x∗i−1(τi−1)

)
,

(64)

for i = 2, . . . , n. Notice that the expenses from the final fire are not deducted

from the value of the forest. This is because the final fire occurs outside of

[0, Y ]. If τ1 + τ2 + · · ·+ τn = Y then

JY =

n∑
i=1

[∫ τi

0

[
B
(
Ai(t)

)
− h∗i (t)

]
e−rtdt

−
[
D
(
K
(
h∗i (τi), x

∗
i (τi)

))
+ x∗i (τi)

]
e−rτi

]
. (65)
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Figure 2: The top plot gives management prevention spending with optimal
prevention and without prevention over a management horizon Y = 50 years
The bottom plot gives the number of unburned acres. Every jump discontinuity
represents a fire event.

Figure 2 provides one example of the management prevention schedule and

number of unburned acres in one simulation where a sequence of fires is consid-

ered over Y = 50 years. Because we sample for the times of the fires, every fire

sequence simulation will be different. The set of parameter values used are based

on the values determined for the Las Conchas Fire and are found in Table 1.

The only difference is that we choose a smaller value for the background hazard

band we let b = 0.1. These plots also show what the number of unburned acres

might look like given no prevention management spending. This simulation is

determined separately from the optimal case. This is because h determines y

which is used to build the CDF used for sampling a time of fire. The jump dis-

continuities in the plots correspond to the different fire events. In the particular

example in Figure 2 the no prevention management spending case 5 fires occur

in 50 years and in the optimal prevention case 2 fires occur.

In order to create a more comprehensive picture concerning the effect of pre-

vention management spending over a fixed management horizon for sequences
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Number of Fires Value of Forest - $ (M)

Prevention Optimal None Optimal None

Mean 1.4 5.0 671 536

Median 1 5 677 556

Std. 1.1 2.4 34.0 111.7

Table 2: This table provides statistics concerning the average number of fires
and average value of the forest over 50 years for 500 simulations.

of fires, we conduct many simulations and calculate statistics concerning the

results. For our simulation study, a management horizon of Y = 50 years is

considered and 500 trials are run. The set of parameter values, based on the

values determined for the Las Conchas fire, used for the simulation study are

found in Table 1, with the exception that now b = 0.1. Note in particular the

large value for T and the initial condition A1(0). The initial condition A1(0) = Ā

only holds for the first solution of the optimal control problem in a single trial.

Following that, the initial condition for the number of unburned acres following

the first fire in a single trial are determined based on the sampled time of fire.

For the simulation study, 500 trials are conducted to determine the value

of the forest JY over 50 years, given that an unknown number fires may occur

in this time period for each trial. In addition to calculating value of the forest

JY using the prevention management schedule found according to the optimal

control problems, for comparison, we also calculate the value of the forest given

that no money is spent on prevention management. It is important to note

that these two cases are determined independently from one another. We also

consider total prevention management spending and suppression spending in

each case, in addition to the number of fires that occur in the management

horizon. The results from the simulation study are discussed below.

Table 2 provides statistics concerning the distribution of the number of fires

in the region encompassing the Santa Fe National Forest, Bandelier National
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Monument, and the Valles Caldera Preserve in 50 years across 500 simulations.

In the optimal prevention management case there are fewer large forest fires

than in the no prevention case. In particular, the mean number of fires in

the case with optimal prevention management is 1.4 and in the case with no

prevention management spending is 5.0. Furthermore, the standard deviation

of the number of fires is approximately 1 in the optimal prevention management

case and greater than 2 in the no prevention management case. Moving from

a case where there is no spending on prevention management to the case with

optimal prevention management shown here, there is on average a 72% reduction

in the number of fires that occur within 50 years. Hence, applying optimal

prevention management spending reduces the risk of fire for a forest.

Additionally, Table 2 provide details concerning the distribution of the value

of the forest JY over 50 years across 500 simulations. In the optimal prevention

case the mean value of the forest over 50 years is $671 million dollars and in the

case without prevention management the mean value of the forest over 50 years

is $536 million dollars. Additionally, the standard deviation of the distribution

for the value of the forest in the optimal prevention management case is 34.0,

compared to 111.7 in the no prevention management case. That is, the stan-

dard deviation is three times larger in the case without prevention management

spending compared to the case with optimal prevention management. Hence,

the value of the forest over 50 years with multiple fires, is less variable and on

average adds a value of $1.2M per year to the value of the forest in the case

of optimal prevention management compared to the case without prevention

management.

We also calculate the total prevention management spending and suppression

spending over 50 years. In the case without prevention management spending,

on average $236M is spent on forest fire suppression over 50 years. In the case
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with optimal prevention management spending, on average $42M is spent on

suppression over 50 years and $65M is spent on prevention management spend-

ing over 50 years. That is, in the case applying the optimal prevention manage-

ment spending, on average only $107M is spent on prevention management and

suppression combined. Thus, we can conclude that prevention management has

the potential to offset high suppression costs and decrease spending overall.

Our results reveal that, on average, in the case of optimal prevention man-

agement spending there are fewer fires and an increased value of the forest in

comparison to the case with no prevention management spending. Furthermore,

the standard deviation around the average number of fires and value of the forest

is much smaller in the optimal prevention management case in comparison to

the no prevention management case. This suggests that using optimal preven-

tion management spending is a less risky management option when compared

to the case without prevention management spending. Additionally, we see that

prevention management spending can offset high suppression costs and decrease

the total amount of spending overall.

5 Conclusions

Rapid increases in wildfire suppression expenditures have prompted fire man-

agers, scientists, and policy makers to investigate alternative approaches to man-

aging wildfire. An increasingly popular alternative is fuels management which

attempts to reduce wildfire risk and intensity through mechanical, chemical, bio-

logical or manual means, or by fire. This paper examines the economic tradeoffs

between fuels management spending and suppression spending using a frame-

work that recognizes how the inability to predict the timing of large fire events

influences the riskiness of the two management options. We formulate an opti-

mal prevention and suppression problem with stochastic time of fire and convert
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it to a deterministic optimal control problem using Reed’s method. We present

numerical results from our optimal control problem applied to a parameter set

based on a recent fire event in New Mexico, a global parameter sensitivity anal-

ysis evaluating the impact of our parameters on the expected net value of the

forest, and a simulation study concerning the effects of prevention management

spending over a finite management horizon given an unknown sequences of fires.

We find that with the application of prevention management, the value of the

forest is greater and less variable than in the case where prevention management

spending is not applied to the forest. We also find that prevention spending

lowers the number of devastating large fire events. The mean value of the forest

over a 50 year time horizon in the no prevention management case is $536M

with a standard deviation of $111.7M. In the case using prevention management

determined by the successive application of our optimal control problem, we find

the mean value of the forest over 50 years to be $671M with a standard deviation

of $34.0M. This result illustrates that there are real economic costs associated

with using funding for fuel management to fund immediate fire suppression.

Perhaps more surprisingly, we find that when optimal prevention manage-

ment is employed, not only are high suppression costs drastically reduced, total

spending on fire management (prevention and fire suppression) is less than the

case without prevention management. In the case without prevention manage-

ment spending, $236M was spent on average on fire suppression over the course

of 50 years. In the case with applying optimal prevention management spend-

ing, only $42M was spent on average on suppression over 50 years and $65M was

spent on prevention management. By comparison, $40M-$50M was spent fight-

ing the Las Conchas fire. In our work with unknown fire sequences, we observed

an 88% reduction in suppression spending on average with prevention manage-

ment, and a 55% reduction in spending overall. This result provides hope that a
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more careful integration of fire prevention into wildfire management plans may

actually reduce the cost of these plans.

Our results clearly highlight the value of fuel management. This result arises

even when we assume prevention expenditures only influence fire risk in the pe-

riod they are incurred. If prevention spending has an impact on fire risk that

extends beyond the current period, our results will under-value prevention and

should be viewed as a lower bound. In spite of our results, expenditures on fire

suppression will likely continue to outweigh hazardous fuel reduction expendi-

tures. There are a number of factors not considered in our model that may

explain this paradox. In our model, forest managers are forward-looking when

they select suppression expenditures. However, forest managers acknowledge

that public outcry during a large fire often prevents them from saving resources

to fight future fires. To date, Congress has made up for any budget short-

falls that occur due to unexpected fire suppression expenditures. These factors

suggest that forest mangers may choose fire suppression expenditures more my-

opically than our model suggests. These political economy considerations could

be investigated by allowing the ex ante and ex post problems to be solved for

different planning horizons. There are also additional liability considerations

associated with prevention activities such as prescribed burning that our model

does not consider. We leave these issues for future work.
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A Appendix: Global Parameter Sensitivity Anal-

ysis

The values chosen for our parameters are not all strictly data driven or from

literature sources. Thus, we perform a global sensitivity analysis to determine

which parameters have the most significant impact on the expected value of the

forest, J(h∗) [13, 16]. We use Latin Hypercube Sampling (LHS) and Partial

Rank Correlation Coefficient (PRCC) analysis to determine the parameters to

which the value of the objective functional evaluated at the optimal control h∗

is most sensitive.
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Table 3: The table below contains the lower and upper bounds of the parameter
values to be used in our LHS/PRCC analysis. The baseline value for a given
parameter is simply the average of the lower and upper bounds.

Parameter Lower Bound Upper Bound Baseline Value

Ā 1250 1900 1575

δ 0.025 0.075 0.05

B1 0.01 0.05 0.03

r 0.03 0.05 0.04

b 0.1 0.2 0.15

c 0.01 0.75 0.38

v 0.5 1.5 1

k 5000 20000 12500

k1 1 5 3

k2 1 25 13

LHS was introduced in 1979 by M.D. McKay as an improved alternative to

simple random sampling in Monte Carlo studies[17]. The LHS method provides

similar accuracy as simple random sampling methods, but with fewer iterations,

making it particularly useful for computationally expensive models [13, 16, 17].

There are 10 parameters in our optimal control problem that we will investi-

gate. They are listed in the first column of Table 3. First, we must determine an

appropriate range over which to investigate each of the parameters, or “inputs”.

For each parameter we must choose an appropriate lower and upper bound for

the parameter range; see Table 3. Next, we briefly discuss how these ranges

were chosen. We note that while the values for the parameters chosen for the

Las Conchas Fire example are included in these ranges, they do not serve as the

baseline values for the parameters.

Our range for the size of forest parameter Ā is based on the sizes of national

forests in the United States and is given in thousands of acres [43]. The forest

regeneration rate δ parameter range is centered around our original choice of
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δ = 0.05 for Ponderosa Pine in the previous fire examples. Recall that for a

particular fire event we determine a value for the flow of benefits parameter

B1 by solving the equation representing optimal fire suppression spending (43)

for B1 in terms of x∗. To determine a parameter range of B1 to be used in the

LHS/PRCC analysis, several fire events were considered and the range chosen is

a reflection of the value of B1 across these scenarios. The cost to built structures

parameter c was chosen to capture the possibility of fire events in both isolated

forest areas (smaller c) and well-developed forest areas (larger c). The range

for the fire severity parameter k is chosen to capture a variety of high severity

fires. The upper bound for the range is much larger than either of the choices

in our examples because in our sensitivity analysis we are allowing for a range

of values for k1 and k2, and not simply setting k1 = k2 = 1. The parameter

range for k1, associated with prevention management spending h, is chosen to

be smaller than the range for parameter k2 because, at a given point in time,

less is spent on prevention management than on suppression. The choice for

the background hazard parameter b was chosen to reflect the frequency with

which large fire events may occur in a given area. The range for the discount

rate parameter r is centered and varied around our original choice of r = 0.04.

The range for the prevention management effectiveness parameter v, found in

the hazard function, is centered and varied around our original choice of v = 1.

In order to properly use LHS, we must first verify that the output in question,

J(h∗), is monotonic with respect to each parameter[17]. That is, we solve our

optimal control problem multiple times across the range of a given parameter,

with all other parameters held at their baseline values, which is simply the

average of the lower and upper bound for that parameter. We then verify that

the value of the objective functional evaluated at the optimal control h∗ is

monotonic with respect to changes in the parameter. We repeated this process
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for every parameter and verified the monotonicity.

The LHS parameter matrix can now be generated. The LHS matrix is an

N × 10 matrix where N is the number of trials to run and 10 is the number of

parameters to investigate. We assume a uniform distribution for all 10 parame-

ters across their parameter ranges because the parameter ranges are not strictly

data driven or from literature sources. Choosing N = 50, each parameter range

is partitioned equally into 50 intervals and from each interval a sample is taken.

Thus, each parameter is strategically sampled 50 times across its range and

these 50 samples are stored in a column vector. The 10 column vectors, one

for each parameter, make up the LHS matrix. For each individual parameter

column vector in the LHS matrix, the sampled values are permuted so that

they are not necessarily ordered. Thus, one row of the LHS matrix contains the

parameter values to be used in a single trial of our optimal control problem.

Once the LHS matrix has been generated we solve our optimal control prob-

lem 50 times, once for each row vector of parameter values from the LHS ma-

trix. For each trial, J(h∗0 is calculated. The mean of J(h∗) for the 50 trials is

µ = $1, 153M. Given that the standard deviation for the output, σ = $525M,

is large in comparison to the mean, it is clear that the uncertainty present in

the value of J(h∗) is substantial. That is, variation in our choice of parameter

values has a significant impact on J(h∗). Hence, we follow this work with a

PRCC sensitivity analysis to determine which parameters are the most signifi-

cant contributors to this uncertainty.

Partial rank correlation coefficients (PRCCs) assess the degree of monotonic-

ity between one input and the output, while controlling for the effects of the

other inputs. That is, a PRCC is a sensitivity measure which allows us to assess

nonlinear, but monotonic relationships between inputs and an output[13, 16].

A PRCC is calculated for each parameter investigated.
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Table 4: In this table, the partial rank correlation coefficients for each param-
eter associated with the output J(h∗), along with the corresponding p-values,
are listed. Using a significance level of α = 0.05 we see that 5 of the 10 param-
eters investigated are significantly different from zero. They are highlighted in
yellow.

Parameter PRCC p-value

Ā 0.88 << 0.05

δ -0.04 0.82

B1 0.99 << 0.05

r -0.86 << 0.05

b -0.09 0.57

c -0.37 0.02

v 0.08 0.61

k -0.30 0.052

k1 -0.10 0.54

k2 0.37 0.02

The PRCC for each parameter and associated p-values in Table 4 are cal-

culated using the MATLAB function partialcorr(). The p-values are used to

assess whether or not the PRCCs are significantly different from zero. Using a

significance level of α = 0.05, we see that 5 of our 10 parameters have PRCCs

significantly different from zero. These parameters include the size of the forest

parameter Ā, the flow of benefits parameter B1, the discount rate parameter r,

the nontimber damage cost parameter c, and the suppression spending effective-

ness parameter k2. We interpret this to mean that the parameters which have

PRCCs significantly different from zero have a significant impact on J(h∗).

Now that we know which parameters have a significant impact on the output,

we would like to make a comparison of these significant parameters to see which

ones have the strongest impact, in magnitude, on J(h∗). To determine if a given

parameter has a greater impact on the output than another, we must determine

if there are significant statistical differences in their corresponding PRCCs. In
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Table 5: This table lists the PRCCs and their corresponding Fisher transforms
for the parameters which were shown to have the most impact on the value of
the objective functional evaluated at the optimal control h∗.

Parameter PRCC γ Fisher Transform γ′

Ā 0.88 1.38

B 0.99 2.53

r -0.86 -1.31

c -0.37 -0.39

k2 0.37 0.39

order to perform statistical comparison tests for PRCCs, we must first apply

the following log transformation to each PRCC:

γ′ =
1

2
ln

∣∣∣∣1 + γ

1− γ

∣∣∣∣, (66)

where γ is the original PRCC and γ′ is the transformed PRCC[16, 3]. The log

transformed PRCC γ′ is known as the Fisher tranform and is approximately

Gaussian N (µ, σ2) with

µ =
1

2
ln

∣∣∣∣1 + γ

1− γ

∣∣∣∣ and σ2 =
1

N − 3− p
, (67)

where N is the number of trials and p is the number of parameters controlled

for when the PRCC is calculated. Table 5 gives the Fisher transformed PRCCs

for the parameters whose PRCCs are significantly different from zero.

We can compare the values of two PRCCs by examining the z-statistic

z =
γ′1 − γ′2√

1
N1−3−p1 + 1

2−3−p2

, (68)

which follows a N (0, 1) distribution. Here, N1 = N2 = 50 is the number of

trials and the value pi, i = 1, 2, represents the number of parameters controlled

for when the PRCC γi is calculated [16]. For our problem, p1 = p2 = 9 since we
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are investigating 10 parameters. We are most interested in determining which

parameters have the largest impact on the output in magnitude, regardless of

whether that impact is positive or negative. This guides the development of the

family of hypotheses we wish test to determine the ranking of the significant

parameters.

To properly rank the PRCCs according to their impact on the output J(h∗)

in magnitude, we must perform multiple pairwise comparison tests. In particu-

lar, we test the null hypothesis that all PRCCs are equal

H0 : |γ′Ā| = |γ
′
B1
| = |γ′c| = |γ′k2 | = |γ

′
r| (69)

against the alternative hypotheses

HA : |γ′i| 6= |γ′j |, (70)

for every pair (i, j) ∈ {Ā, B1, c, k2, r} where i 6= j. Thus, we have a family of(
5
2

)
= 10 pairwise hypothesis tests to perform in order to effectively rank our 5

significant parameters.

When performing multiple comparison tests we must be careful to consider

the increased likelihood of a rare event; that is, when considering multiple tests,

we are more likely to reject the null hypothesis when it is true, a type I error.

Given that we are performing 10 hypothesis tests and have chosen a significance

level of α = 0.05, the probability that we reject at least one of the null hypotheses

(i.e. the probability of at least one rare event) is
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P (≥ 1 significant event) = 1− P (0 significant events)

= 1− (1− 0.05)10

= 0.40126. (71)

In other words, using a significance level of α = 0.05 for each of the 10 tests,

the probability of at least one significant event (at least one rejection of the

null hypothesis) is approximately 40%. This is known as the familywise error

rate (FWER). We would like to control the FWER on our family of hypothesis

tests in order to control the number of false positives. To do so, we need to

differentiate between a per test significance level α[PT ], read “alpha per test,”

and a per family significance level α[PF ], read “alpha per family.” Given a

family of hypothesis tests we would like to control the familywise error rate at

the level of α[PF ] = 0.05. The FWER for a given α[PT ] is given by

α[PF ] = 1− (1− α[PT ])C , (72)

where C is the number of hypothesis tests [1]. This is known as the Sidak

equation which can be rewritten to give the α[PT ] for a given α[PF ]:

α[PT ] = 1− (1− α[PF ])
1
C . (73)

Thus, given that we want α[PF ] = 0.05 and we are performing C = 10

tests, we can solve for α[PT ]. However, to determine α[PT ] we use the simpler

Bonferroni approximation:

α[PT ] ≈ α[PF ]

C
. (74)
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Table 6: The table below contains the results of the hypothesis tests to deter-
mine the ranking of our significant parameters according to their impact on the
output. To control the FWER, using the Bonferroni approximation, we use a
per test significance level of 0.005 to determine whether or not to reject the null
hypothesis.

Hypothesis Test Results - J(h∗)

Alternative Hypothesis z-statistic Conclusion

|γ′
Ā
| 6= |γ′B1

| 5.540 reject null

|γ′
Ā
| 6= |γ′c| 4.304 reject null

|γ′
Ā
| 6= |γ′k2 | 4.304 reject null

|γ′
Ā
| 6= |γ′r| 0.359 FAIL TO REJECT

|γ′B1
| 6= |γ′c| 9.843 reject null

|γ′B1
| 6= |γ′k2 | 9.843 reject null

|γ′B1
| 6= |γ′r| 5.899 reject null

|γ′c| 6= |γ′k2 | 0 FAIL TO REJECT

|γ′c| 6= |γ′r| 3.944 reject null

|γ′k2 | 6= |γ
′
r| 3.944 reject null

The Bonferroni approximation is the linear approximation of the Sidak equation

and its use is well-established in the literature as a procedure to control FWER

[1].

Thus, to control the type I error for the family of 10 hypotheses we are

testing at a significance level of α[PF ] = 0.05, we use a per test significance

level of

α[PT ] ≈ α[PF ]

C
=

0.05

10
= 0.005. (75)

Next, we perform our family of hypothesis tests, with α[PT ] = 0.005. We

are testing the null hypothesis (69) against the alternative hypotheses that a

pair of PRCCs are not equal. There are 10 pairs of PRCCs as we are ranking 5

parameters. The z-statistic to test the hypotheses is given by equation (68).

The results of the 10 pairwise comparison tests are included in Table 6. The
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z-score associated with α[PT ] = 0.005 is 2.807. Therefore, if the z-statistic

for a given hypothesis test is is greater than 2.807, then the null hypothesis is

rejected and if the z-statistic is less than 2.807, then we fail to reject the null

hypothesis. To reject the null hypothesis means that the two PRCCs considered

in the alternative hypothesis are significantly different from one another. Thus,

the parameter with the larger PRCC in absolute value has a greater impact

on the output J(h∗). To fail to reject the null hypothesis means that there

is not enough evidence to conclude that the two PRCCs being compared are

significantly different and hence no conclusions about which parameter has a

greater impact on the output can be drawn. The full results of our hypothesis

tests are summarized in Table 6, and we now explain specific comparisons in

detail.

First, we test the null hypothesis (69) against the alternative hypothesis

|γ′
Ā
| 6= |γ′B1

|. With a z-statistic of 5.540 > 2.807, we reject the null hypothesis

and conclude that the parameter B1 has a greater impact in magnitude on

the output than the parameter Ā. Here, we note that the parameter B1 has

the PRCC closest to 1 in magnitude and Ā has the second largest PRCC.

Thus, it is not surprising, and is expected, that when considering the alternative

hypotheses |γ′B1
| 6= |γ′c|, |γ′B1

| 6= |γ′k2 |, and |γ′B1
| 6= |γ′r|, we also reject the null

hypothesis. Hence, we conclude that the impact of B1 on the value of the

output is also greater than the impact of the parameters c, k2 and r on the

output. Therefore, B1, the flow of benefits parameter, is the parameter which

has the greatest impact on the output in magnitude.

Next, we compare the PRCCs of the parameters Ā and r. With a z-statistic

of 0.359 < 2.807 we fail to reject the null hypothesis. That is, we cannot make

any conclusions about whether Ā or r has a greater impact on J(h∗) in magni-

tude. Thus, the parameters Ā and r, which were shown to have significantly less
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impact on the output than the parameter B1, were not shown to be significantly

different from one another when considering their impact on the output in ab-

solute value. The z-statistics for comparing the impact of Ā against c and Ā

against k2 are equal because, in terms of absolute value, c and k2 have the same

PRCC. Hence, with a z-statistic of 4.304 > 2.807 we reject the null hypothesis

and conclude that the impact of Ā on the output is greater than the impact of

c and greater than the impact of k1 on the output.

Once again, as the PRCCs for c and k2 are equal in absolute value, comparing

the impact of r against c on the output is equivalent to comparing the impact of r

against k2 on the output. Similarly we can conclude that in terms of magnitude,

the parameters c and k2 have a similar impact on the output J(h∗). In summary,

we use the Bonferroni approximation to determine a per test significance level

for the family of hypothesis tests used in order to rank the parameters according

to their impact on the value of the objective functional. We conclude that the

parameter B1 has the strongest impact on the expected net present value of the

forest, followed by parameters Ā and r, followed by parameters c and k2.
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