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Abstract: Climate variability makes the future benefits of adaptation uncertain.  When 

adaptation comes in the form of discrete investments that are difficult to adjust, this uncertainty 

creates an economic value (an option value) to delaying adaptation to collect more information.  

This option value suggests adaptation will be slower than predicted by benefit-cost analysis.  

However, it is unclear how increases in climate variability influence this adaptation option value.  

Addressing this knowledge gap becomes critically important since climate change in many areas 

will be characterized by temperature and precipitation that is more variable than historic 

conditions.  This study uses down-scaled results from four different global circulation models 

and two different emission scenarios to determine how climate trends and variability influence 

an adaptation option value.  Using water-saving irrigation investments in California’s 

Sacramento Valley as an example, results indicate that climate variability is an important 

predictor of private adaptation uptake but the influence of climate variability on adaptation shifts 

as the climate changes.                   
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1 Introduction 

Economic theory and empirical results show that a degree of adaptation will be 

autonomously carried out by private parties in response to climate change (Chambwera, et al. 

2014).  In response to rising temperature or changing precipitation patterns, individuals will 

migrate (Albouy, et al. 2016), adopt new technologies (Hallegatte and Dumas 2009) or 

encourage government investment in protective capital like levees (Kousky, et al. 2006) to 

moderate potential damages from climate change.  Developing comprehensive climate change 

policy requires an understanding of the timing and magnitude of private adaptation since these 

measures may be complementary to mitigation efforts (Bosello, et al. 2010) or crowd out other 

climate and non-climate investments (De Bruin, et al. 2009;Wang and McCarl 2013) with 

potential for unintended consequences on macro-economic activity (Costinot, et al. 2016).  

Unfortunately, characterizing the incentives for private adaptation is challenging since these 

incentives depend on both climate change (shifts in long-term climate trends) and climate 

variability (time-varying variance in climate outcomes).  This study uses downscaled climate 

projections1 to isolate the role of climate trends and variability in private adaptation decisions.   

Large-scale results from global circulation models (GCMs) are now frequently 

downscaled to make predictions at local scales.  Individuals can use these predictions to update 

expectations of the future benefits and costs associated with adaptation investments.  For 

instance, in areas where predictions suggest the future will be drier than the past, individuals may 

plant drought resistant crops, invest in water-saving infrastructure, or move to other areas to 

shield themselves from future scarcity and subsequent higher water prices.  However, climate 

                                                           
1 The IPCC differentiates between climate projections and climate forecasts.  Climate projections are model-driven 

estimates of future climate.  Climate forecasts or predictions are the “most likely” projection.  We adopt these 

definitions throughout the paper.   
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change in many areas will also be characterized by greater temperature and precipitation 

variability.  How climate variability influences adaptation depends on how easily adaptation 

actions can be adjusted in response to new information.  When adaptation can be easily adjusted 

in response to recent temperature and precipitation (e.g., planting drought resistant varieties), 

climate variability influences adaptation through risk preferences (Burton 1997).  A risk averse 

decision maker faced with greater climate variability will tend to engage in more of this type of 

adaptation (Heal and Kriström 2002).   

Adaptation may also come in the form of discrete investments (e.g., switching to more 

efficient irrigation system) that are difficult or impossible to adapt in response to recent 

temperature and precipitation.  Climate variability influences this type of adaptation through an 

option value (Chambwera, et al. 2014;Margulis, et al. 2010;Sturm, et al. 2016;Treasury 2009).  

When adaptation incurs costs that cannot be easily recouped and the benefits of the action are 

uncertain, there is an economic value (an option value) to delaying the action to collect more 

information about the benefits (Arrow and Fisher 1974;Henry 1974).  In other words, when the 

future is uncertain, it pays to keep one’s options open.  While there is a fair amount of literature 

focused on option values for climate change mitigation (Golub, et al. 2014), there is far less 

focused on adaptation and especially private adaptation.   Theoretical work shows that increased 

climate variability makes private adaptation more risky and causes individuals to delay these 

investments (Fisher and Rubio 1997;Narita and Quaas 2014;Wright and Erickson 2003).  This 

suggests that projections of private adaptation based on perfect foresight assumptions will predict 

too much adaptation.  However, these theoretical results may not carry-over to actual adaptation 

decisions since climate change is a non-stationary process and adaptation payoffs are often 

nonlinear (Saphores 2004).   
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This paper represents the first test of these theoretical results using actual down-scaled 

climate projections from four GCMs under two different CO2 emissions scenarios.2  Using an 

investment in water conservation in California’s Central Valley as an example, we make three 

contributions to the economic literature on climate change adaptation.  First, we show how actual 

GCM-based climate projections influence private adaption investments by contrasting optimal 

adaptation with backward- and forward-looking agents.  Second, we allow for climate and 

market variability.  This allows us to determine if climate variability is more influential than 

other sources of variability that influence adaptation decisions.  Third, we characterize decision 

maker expectations of both climate and markets that would hasten private adaptation.  Contrary 

to the theoretical findings, our results suggest that climate variability may not always lead to a 

delay in adaptation.  However, climate variability may not be the most influential source of 

variability facing decision makers.     

   

2 The Model 

Our model is cast in terms of a risk-neutral farmer whose objective is to determine if and 

when to invest in a water-saving irrigation technology to maximize the expected present value of 

farm profits net of adaptation costs.  The problem is one of optimally switching from a regime 

where the farmer employs a water inefficient irrigation technology to one where he employs a 

more water efficient technology.  The optimal adaptation decision is influenced by 1) the 

                                                           
2 Those studies that do utilize output from GCMs (Gersonius, et al. 2013;Venkatesh and Hobbs 1999;Woodward, et 

al. 2014) utilize two-period Monte Carlo simulation techniques that limit their applicability to actual adaptation 

investments whose benefits extend over multiple periods.  The computational dynamic programming 

techniques we employ provide a more accurate estimate of the influence of climate variability 

than previous two-period models.       
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irrigated production process and 2) change and variability in climate and markets that shape 

expectations of future payoffs from conserving water.  For example, increased climate variability 

leads to extreme events such as unprecedented droughts and heatwaves that will tend to 

encourage adaptation.  However, climate variability also makes investments in adaptation more 

risky.  Precipitation that is more variable may result in extreme drought but it will also result in 

more floods that lower the expected benefits of water-conservation.  Climate change can 

encourage adaptation by increasing the expected returns from water conservation but climate 

variability can discourage adaptation by making water conservation more risky.  Given 

expectations of future climate and market conditions, the farmer must choose when to move 

from the inefficient technology regime to the efficient technology regime by choosing a critical 

threshold in the aggregate water supply (e.g., river flow or reservoir level that serves farmer’s 

fields).  Adaptation becomes profitable from the farmer’s perspective when the aggregate water 

supply falls below this threshold.     

2.1 Irrigated Agricultural Production 

The farmer produces a commodity whose price is given exogenously by 𝑃𝑦.  Following 

Berck and Helfand (1990), Letey (1991), and Carey and Zilberman (2002), the farmer’s 

production is represented by a Von-Liebig production function 

𝑦𝑖 = {
𝛾𝑖𝐵𝑋𝑖 𝑤ℎ𝑒𝑛 𝑋𝑖 < 𝑋𝑖

∗ 

𝑦∗ 𝑤ℎ𝑒𝑛 𝑋𝑖 ≥ 𝑋𝑖
∗  

}  𝑖 = 𝐼, 𝐸                                             (1) 

with i = I corresponding to production using a water inefficient irrigation technology (e.g, furrow 

or flood irrigation) and i = E corresponding to production using a water efficient irrigation 
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technology (e.g., center pivot or drip irrigation).3  𝑦∗ is the farmer’s optimal level of production, 

𝑋𝑖
∗ is the farmer’s optimal water demand under technology i (what he would require for optimal 

production if unconstrained by water supply), and 𝑋𝑖 is the amount of water employed in 

production.  In a Von-Liebig (or plateau) model, production responds to the addition of a 

limiting input until a different input becomes limiting (Letey 1991). This reflects the fact that 

production inputs are not as readily substitutable as implied by smooth, concave functions. The 

farmer has applied other production inputs at such a level that water is the limiting input in 

production when 𝑋𝑖 < 𝑋𝑖
∗. When water is the limiting input, production will respond to 

increasing water availability according to 𝛾𝑖𝐵𝑋𝑖 where 𝐵 is a vector of all non-water inputs and 

𝛾𝑖 is a scalar that reflects the efficiency of technology i.   Another production input (e.g., land or 

canal size) becomes limiting at 𝑋𝑖 ≥ 𝑋𝑖
∗.4 

The total amount of water available for use by the farmer is represented by; 

𝐴(𝑡) = {
𝜃�̃� 𝑖𝑓 𝑊(𝑡) ≥ �̃�

𝜃𝑊(𝑡) 𝑖𝑓 𝑊(𝑡) < �̃� 
}                                                  (2) 

where �̃� is an exogenously determined scarcity threshold, 𝜃�̃�  is the amount of water the 

farmer is entitled to divert under ‘normal’ conditions based on the farmer’s water rights or 

shares5, and 𝑊(𝑡) is the aggregate water supply at time t.  This aggregate water supply may 

                                                           
3 It is assumed that yield-increasing effects of the new technology on production are negligible (Berck and Helfand 

1990;Carey and Zilberman 2002;Letey 1991), leaving the focus of gains from adoption to rest solely on water 

savings from increased water efficiency. Thus we assume that 𝑦𝐼
∗ = 𝑦𝐸

∗ = 𝑦∗ so that we do not have a yield-

increasing effect associated with adoption if both technologies operate at full potential.  This assumption may be 

violated with if nutrient processing by agricultural crops is substantial.  This is an area that may be explored in 

subsequent work. 
4 Von-Liebig production functions can be reconciled with smooth, differentiable production functions via 

aggregation (Berck and Helfand 1990).  This specification is employed with the knowledge that it is not mutually 

exclusive to smooth production functions in the aggregate. 
5 We assume that 𝜃�̃� cannot change due to the allocation of new rights. 



7 
 

reflect the flow of a river or canal or the depth of snowpack supplying water to the farmer.  In 

times of relative water abundance (𝑊(𝑡) ≥ �̃� ), a farmer may exercise their full water right. 

The model assumes shares have been acquired in the past and recurrent expenses associated with 

holding the share are negligible.  In times of relative water scarcity (𝑊(𝑡) < �̃� ), the amount of 

water available to the farmer is restricted to a fixed proportion of the aggregate supply.  This 

conditional water supply reflects the reality in many parts of the western U.S. where water rights 

were allocated on historic conditions and often exceed available supply. 

The relationship between available water 𝐴(𝑡) and applied water 𝑋𝑖 is as follows;  

𝑋𝑖 = {
𝑋𝑖

∗ 𝑖𝑓 𝐴(𝑡) ≥ 𝑋𝑖
∗

 𝑋𝑖 <  𝑋𝑖
∗ 𝑖𝑓 𝐴(𝑡) <  𝑋𝑖

∗}                                                     (3) 

Thus, 𝐴(𝑡) −  𝑋𝑖  is the difference between water the farmer has available for production and 

how much he actually employs in production. If positive (𝐴(𝑡) >  𝑋𝑖), this difference represents 

the total amount of water left over after production and available for sale by the farmer. If 

negative (𝐴(𝑡) <  𝑋𝑖), this difference indicates how much water the farmer buys to supplement 

his available water for production. Investment in efficient irrigation technology helps tilt the 

difference of the two terms towards a surplus by reducing  𝑋𝑖. 

The farmer can smooth his water supply by leasing/renting water rights in the spot market at 

price 𝑃(𝑡) per acre-foot.  Periods of low aggregate water supply are assumed to correspond to 

periods of high water prices in the spot market.  For simplicity, we assume the (inverse) demand 

for water on the spot market is isoelastic 

𝑃(𝑡) = (
𝑊(𝑡)

𝜑(𝑡)
)

−
1
𝜀

                                                                 (4) 
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where 𝜑(𝑡) is a positive demand variable and ε > 0 is the price elasticity of demand.6  An 

isoelastic demand function depicts constant elasticity and is chosen here to demonstrate the 

relative (short run versus long run) inelasticity of water demand to water price (Olmstead and 

Stavins 2009).   

The farmer’s optimal amount of applied water is determined by constrained profit 

maximization holding the technology constant. The farmer’s optimized profit function at time 𝑡,  

derived by optimizing his instantaneous profit function, is 

Π𝑖(𝑃, 𝑊) = max
𝑋𝑖

𝑃𝑦𝛾𝑖𝐵𝑋𝑖 − 𝑃(𝑡)(𝑋𝑖 − 𝐴(𝑡)) − 𝐶𝑖                                    (5) 

where 𝐶𝑖 represents  the day-to-day fixed cost of operating the irrigation system under 

technology i. The farmer incurs this cost whether he invests or not. However, we allow for the 

possibility that 𝐶𝑖 may increase (decrease) upon adoption of the modern technology due to say 

higher pressurization costs (greater energy efficiency) with the new system.  

 The relationship between agricultural production and the aggregate water supply is 

depicted in Figure 1.  The bottom left quadrant depicts the discontinuous relationship between 

the aggregate water supply and the water available to the farmer in equation (2).  The bottom 

right quadrant depicts the relationship between available water and applied water in equation (3).  

The upper right quadrant depicts the Von-Liebig production relationship in equation (1).  

Moving counter-clockwise from the bottom left quadrant illustrates how the aggregate water 

supply and water rights influence the use of water in the production process.        

                                                           
6 To the extent that changes in a farm’s water supply mirror changes in the aggregate supply, 𝑊 and P will be 

negatively correlated as expressed in our isoelastic demand function.      
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Because farm profits are linear in applied water, the first-order condition arising from 

equation (5) suggests a bang-bang solution.  When 𝑃(𝑡) ≤ 𝑃𝑦𝛾𝑖𝐵 the farmer optimally chooses 

to apply 𝑋𝑖
∗.  Whether a farmer is a buyer or seller of water depends on the relative magnitude of 

the farmer’s water right and optimal water demand.  If 𝐴(𝑡) < 𝑋𝑖
∗, the farmer will purchase 

water to produce 𝑦∗ given the von Liebig production function. As shown in Figure 1A, the need 

to purchase water will arise when the famer’s water rights are lower than the optimal water 

demand (𝜃�̃� < 𝑋𝑖
∗) or aggregate water supplies are sufficiently low.  If the farmer’s water right 

exceeds his optimal water demand (𝜃�̃� > 𝑋𝑖
∗), 𝑊(𝑡) must fall further than �̃� to trigger water 

purchases (Figure 1B).7  The von Liebig production function also implies that the farmer will sell 

excess water when water supplies are relatively abundant 𝐴(𝑡) > 𝑋𝑖
∗.  Water sales arise when the 

farmer’s water right exceeds his optimal water demand (𝜃�̃� > 𝑋𝑖
∗).  Otherwise, an investment 

in the more efficient technology is needed before the farmer will ever choose to sell water.      

But when 𝑃(𝑡) > 𝑃𝑦𝛾𝑖𝐵 the value marginal product of water in irrigated agriculture is 

lower than the price of water on the spot market.  As long as 𝑃(𝑡) > 𝑃𝑦𝛾𝑖𝐵, the farmer will 

terminate production and lease all of his available water.  Since it would no longer be in use, the 

water-saving technology would provide no value to the agent. This suggests a nonlinear 

relationship between water price and the value of water-saving investments from the farmer’s 

perspective.     

2.2 Change and variability in the climate and markets 

                                                           
7 In the razors edge case where the farmer’s right exactly equals his optimal water demand, the farmer only buys 

water when the water level falls to �̃�.   
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The spot price of irrigation water, 𝑃(𝑡), is a critical factor in the decision to adopt water 

conservation technologies since it determines how much a farmer must pay to offset below-

optimal water availability and also determines how much compensation will be received if the 

farmer elects to lease water conserved from the new technology.  There are two sources of 

change and variability that influence the spot price of irrigation water.  First, a farmer is unable 

to perfectly predict how much water will be available for use in future years due to the 

unpredictability of river/canal flows and snowpack levels from year to year.  This natural source 

of uncertainty is captured by modeling the evolution of aggregate water supply as a generalized 

Ito process: 

𝑑𝑊 = 𝛼(𝑊, 𝑡)𝑑𝑡 + 𝜎(𝑊, 𝑡)𝑑𝐵𝑤                                                             (6) 

where 𝛼(𝑊, 𝑡) is the instantaneous drift rate of the supply process, 𝜎(𝑊, 𝑡)2 is the instantaneous 

variance and 𝑑𝐵𝑤 is the increment of a standard Brownian motion.  A positive value for 𝛼 

implies aggregate water supplies are increasing while larger 𝜎 implies more volatility in water 

supply.  Common stochastic processes such as geometric Brownian motion and Ornstein-

Uhlenbeck processes are characterized by drift and volatility parameters that are not explicit 

functions of time.  These specifications imply that the water supply process is stationary in that 

the relationship between 𝑊(𝑡) and 𝑊(𝑡 + 𝑑𝑡) varies only with how far apart in time they are but 

not with the specific points in time.  When the drift and volatility terms are explicit functions of 

time, the farmer’s water supply becomes nonstationary which is more consistent with long-term 

climatic impacts on hydrologic processes (Milly, et al. 2008).   

Second, even if river flows could be predicted with certainty, future water prices will 

remain uncertain due to unpredictable changes in the demand for irrigation water (e.g., inability 
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to predict future agricultural trends and population growth in the area).  This demand uncertainty 

is captured by assuming φ follows a generalized Ito process 

𝑑𝜑 = 𝑎(𝜑, 𝑡)𝑑𝑡 + 𝑏(𝜑, 𝑡)𝑑𝐵𝜑                                                                (7) 

where 𝑎(𝜑, 𝑡) is the instantaneous drift rate, 𝑏(𝜑, 𝑡)2  is the instantaneous variance and 

𝐸[𝑑𝐵𝜑𝑑𝐵𝑤] = 𝛿𝑑𝑡 is the covariance between shocks to water demand and the aggregate water 

supply with 𝛿 ∈ [−1,1].  A larger value for 𝑎 implies a faster rate of growth in water demand 

while larger 𝑏 implies more volatility in water demand.   

Figure 2 illustrates how these two sources of uncertainty lead to uncertainty in future 

water prices.  Since river flows do not respond to changes in demand from year to year, 

aggregate water supply is perfectly inelastic.  Farmers can form expectations of future water 

supplies (𝑊) and water demand (𝜑) based on historic data or projections.  However, unexpected 

changes in 𝑊 and 𝜑, governed by the stochastic differential equations in (6) and (7), can both 

lead to unexpected changes in the future spot price of irrigation water.  Another appealing feature 

of the isoelastic demand specification is that unexpected shocks to the aggregate water supply 

will result in smaller shocks to water prices when aggregate water supplies are high.         

        

2.3 The Adaptation Decision 

Based on expectations of future profit, a farmer utilizing the old irrigation technology can 

choose to adopt the new irrigation technology when the aggregate water supply drops to 𝑊∗, 
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which instantly changes production efficiency to 𝛾𝐸 > 𝛾𝐼 and fixed production costs to 𝐶𝐸 ≤ 𝐶𝐼.
8  

The time when optimally investing in the efficient irrigation technology is uncertain since future 

aggregate water supply 𝑊 and water demand 𝜑 are uncertain.  In addition to the fixed production 

costs, adopting the new irrigation technology requires a one-time investment cost.  This 

investment cost 𝑀 represents the cost of purchasing and installing the new irrigation technology.          

 In this discontinuous or threshold control setting, adopting a more efficient irrigation 

technology is akin to an uncertain investment decision and is made with the knowledge that all 

future investing decisions will be optimal.  Based on traditional benefit-cost analysis, the 

efficient technology would be adopted when the expected present value of the profit increase 

(Π𝐸 − Π𝐼) equals or exceeds the investment cost 

𝐸[∫ 𝑃(𝑋𝐸
∗ − 𝑋𝐼

∗)𝑒−𝜌𝑡𝑑𝑡] − ∫ (𝐶𝐼 − 𝐶𝐸)
∞

0

∞

0

𝑒−𝑟𝑡𝑑𝑡 ≥ 𝑀                             (8) 

Since 𝑃 is stochastic, it is discounted by the risk-adjusted interest rate, 𝜌.  𝐶𝐼 − 𝐶𝐸 is 

deterministic and thus discounted by the risk-free interest rate r.   

However, when adoption of the efficient technology incurs a sunk cost, there is an 

incentive (an option value) to delay these decisions longer than suggested by benefit-cost 

analysis.  The delay allows the farmer to respond to new information on how scarce and how 

valuable water will be in the future.  To account for the option value, the farmer must evaluate, at 

                                                           
8 If the drift and variance parameters in equations (6) and (7) do not explicitly depend on t (non-homogenous 

differential equation), the critical streamflow that triggers adaptation will be independent of time.  Otherwise, the 

critical adaptation threshold changes as time passes.   
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each instant in time, whether or not the water-saving irrigation technology should be adopted.  

The optimal technology adoption decision (𝑊∗) satisfies9 

𝑉(𝑊0, 𝜑0, 𝑡) = max
𝑊∗(𝑡)

𝐸0 [∫ Π𝐼(𝑊, 𝜑)𝑒−𝜌𝑡

𝑡∗

0

𝑑𝑡 + {[𝑉(𝑊, 𝜑) − 𝑀]𝑒−𝜌𝑡∗
}]           (9) 

subject to 𝑑𝑊, 𝑑𝜑, 𝑊(0) = 𝑊0, 𝜑(0) = 𝜑0 where 𝑡∗ is the expected time the aggregate water 

supply reaches 𝑊∗.  The evaluation at each instant in time maximizes expected discounted farm 

profits from that point forward by making a simple choice to continue with the water inefficient 

technology or to adopt the more water efficient technology at cost M.   

 Because of the multi-dimensional nature of the state space, the critical water supply level 

that triggers technology adoption (or adaptation) is characterized by a curve, 𝑊∗(𝜑, 𝑡).  This 

curve solves the following value matching condition 𝑉𝐼(𝑊∗(𝜑, 𝑡)) = 𝑉𝐸(𝑊∗(𝜑, 𝑡)) where  

𝑉𝐸(𝑊∗(𝜑, 𝑡)) = 𝐸𝑡 ∫ Π𝐸(𝑊∗(𝜑, 𝑡))𝑒−𝜌𝑡𝑑𝑡
∞

𝑡

− 𝑀                                    (10) 

The value matching condition ensures the total payoff under the inefficient and efficient 

technologies are equal and acts as a boundary condition for the inefficient technology regime.  

The payoff from continuing with the inefficient technology, 𝑉𝐼, is the solution to the partial 

differential equation      

𝜌𝑉𝐼 = Π𝐼 +
𝜕𝑉𝐼

𝜕𝑡
+ 𝑎(𝜑, 𝑡)

𝜕𝑉𝐼

𝜕𝜑
+ 𝛼(𝑊, 𝑡)

𝜕𝑉𝐼

𝜕𝑊
+

𝑏(𝜑, 𝑡)2

2

𝜕2𝑉𝐼

𝜕𝜑2
+

𝜎(𝑊, 𝑡)2

2

𝜕2𝑉𝐼

𝜕𝑊2
+ 𝑏𝜎𝛿

𝜕2𝑉𝐼

𝜕𝜑𝜕𝑊
    (11) 

                                                           
9 The adaptation problem can be stationary or nonstationary.  Stationarity is typically assumed by allowing for an 

infinite planning horizon and assuming the stochastic processes are described by non-autonomous stochastic 

differential equations such as geometric Brownian motion.  Here we relax the stationary assumption by assuming the 

parameters of the stochastic processes are explicit functions of time.    
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The left-hand side of (11) is the return a farmer would require to delay technology adoption over 

the time interval dt.  The right-hand side is the expected return from delaying adoption over the 

interval dt.  When (11) holds as an equality, it is optimal to delay adopting the more efficient 

irrigation technology (remain in the inefficient technology regime).  When (10) and (11) are 

satisfied, a farmer has optimally delayed adaptation until the efficient technology provides a 

payoff as large as the inefficient technology.   

 The multi-dimensional nature of the state space and the dual technology regimes require 

numerical methods to approximate 𝑉𝐼(𝜑, 𝑊) and 𝑉𝐸(𝜑, 𝑊).  We approximate these unknown 

value functions over a subset of the state space using piecewise linear basis functions 

(Balikcioglu, et al. 2011;Marten and Moore 2011).  The approximation procedure solves for the 

2 × 𝑛2 basis function coefficients which satisfy (10) – (11) at a set of 𝑛 nodal points spread 

evenly over the two-dimensional state-space.  Specifically, the unknown value functions are 

approximated with a linear spline constructed using upwind finite difference approximations.  

Instead of an explicit solution, the technology adoption curve, 𝑊∗(𝜑, 𝑡), is the set of 𝑛 points 

where these conditions are met.         

 

3. Adapting to Water Scarcity in the Sacramento Valley 

To illustrate, we apply the framework and solution technique to the decision to invest in 

water-saving irrigation technology in the Sacramento Valley of California (see Figure 3).  The 

Sacramento Valley is the northern portion of California’s Central Valley - the most productive 

agricultural region in the country.  Agricultural production in the Sacramento Valley relies on 

irrigation and over 70 percent of the annual irrigation supply comes from surface water.  Surface 



15 
 

water is annually replenished by melting snowpack in the Sierra Nevada Mountains.  This water 

is brought to agricultural producers in the valley via four main rivers: the Sacramento, Feather, 

Yuba, and American.           

3.1 Characterizing the investment decision in the Sacramento Valley 

Model parameters are presented in Table 1.  Our investment decision is based on a farm 

producing 5.5 tons of alfalfa per acre annually (𝑦 = 5.5) which is the average of 2012 and 2013 

alfalfa production in Yuba County in the Sacramento Valley.10  Alfalfa constitutes more irrigated 

hectares than any other crop in California (Tindula, et al. 2013).  Unlike high value crops like 

almonds and pistachios, the vast majority of alfalfa area is irrigated using relatively inefficient 

surface irrigation methods.  The price of alfalfa is 𝑝𝑦 = $197 per ton, which is consistent with 

2013 County Crop Reports from the Sacramento Valley.     

According to the U.S. Department of Agriculture Farm and Ranch Irrigation Survey 

(https://www.agcensus.usda.gov/index.php), 3.8 to 5 acre-feet of irrigation water was applied in 

the production of alfalfa in California in 2013.  To yield optimal water demand at the upper end of 

this range, the water usage parameter under the inefficient technology is 𝛾𝐼 = 1.1.  The 

exogenously determined scarcity threshold is set to 35 percent of the average historic flow in the 

Yuba River (�̃� = 25,000,000 annual acre feet).  The farmer is neither a buyer nor seller of water 

during normal operating conditions: 𝜃 =
𝑋𝐼

∗

�̃�
= 0.0000002.  The water usage parameter under the 

efficient technology is 𝛾𝐸 = 2 which yields annual water savings of 2.25 acre-feet per acre 

following investment.  These savings are consistent with switching from flood to center pivot 

irrigation in the semi-arid areas in the western United States (Brown 2008). The $1,000 per acre 

                                                           
10 For details see http://www.co.yuba.ca.us/Departments/Ag/.  

https://www.agcensus.usda.gov/index.php
http://www.co.yuba.ca.us/Departments/Ag/
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investment cost is obtained from California estimates for the cost of center pivot irrigation by the 

Natural Resources Conservation Service of the United States Department of Agriculture (NRCS, 

2009).   

There is little data on actual transaction prices for irrigation water in the Sacramento 

Valley.  To obtain a value for the drift and volatility of the demand parameter and the elasticity of 

water demand, we utilize water price data from the Water Transfer Level Dataset compiled by 

researchers at UC-Santa Barbara.  This dataset draws from water transactions reported in the 

monthly trade journal the Water Strategist and its predecessor the Water Intelligence Monthly from 

1989 through February 2010.  The dataset includes the year of a water transfer, the acquirer of the 

water, the supplier, the amount of water transferred, the proposed use of the water, the real price 

of the trade (in 1987 dollars), the terms of the contract, and the issue of the Water Strategist where 

the data was reported.  To obtain a dataset of prices relevant to agricultural producers in the 

Sacramento Valley, we only include prices from transactions that took place in northern California 

where the lessor, lessee, seller, or buyer is an agricultural user (i.e., irrigator, an irrigation district, 

a water district, a farmer, a rancher, a canal company, a ditch company or an individual).  This 

leaves 277 water transactions between 1989-2009.  As shown in Figure 4, there is a clear negative 

relationship between aggregate water supplies and the reported water price consistent with an iso-

elastic demand function.  Applying ordinary least squares indicates irrigation water demand is 

elastic: 휀 = 1.94.   

However, the relationship in Figure 4 indicates that demand shocks are common and would 

limit a farmer’s ability to predict water price even if aggregate water supplies were known with 

certainty.  Given our estimate for demand elasticity, we use equation (4) to solve for the 𝜑(𝑡) 

implied from our time series datasets for 𝑃(𝑡) and 𝑊(𝑡).  This approach generates a 23-year time 
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series for 𝜑(𝑡) that captures trends and variability in irrigation water demand in the Sacramento 

Valley.   

The stochastic process governing 𝜑(𝑡) may be either difference stationary or trend 

stationary.  The former describes widely used stochastic processes such a arithmetic Brownian 

motion and geometric Brownian motion which are characterized by a stochastic trend.  The latter 

describes various mean reverting processes, which are characterized by a deterministic trend.  An 

augmented Dickey Fuller test is performed to test whether 𝜑(𝑡) are trend or difference stationary.  

The null hypothesis corresponding to 𝜑(𝑡) being geometric Brownian motion cannot be rejected.  

We conclude 𝜑(𝑡) evolves according to a geometric Brownian motion: 𝑎(𝜑, 𝑡) = 𝑎𝜑 and 

𝑏(𝜑, 𝑡) = 𝑏𝜑.  The drift and volatility parameters of the geometric Brownian motion process for 

𝜑(𝑡) are estimated by applying ordinary least squares to the first order (Euler) approximation of 

the GBM process (𝜑𝑡+1 − 𝜑𝑡) 𝜑𝑡⁄ = 𝑎 + 𝜖𝑡 where 𝜖𝑡 is normally distributed with mean zero and 

standard deviation 𝑏.  The regression results suggest that the demand for irrigation water is 

increasing at over 43 percent per year (𝑎 = 0.437) with an 80 percent volatility around this trend 

(𝑏 = 0.798).            

3.2 Incorporating climate change and variability 

 To capture the effect of climate change and variability in the Sacramento Valley, we 

focus on climate projections for annual streamflow (in acre feet) in the Yuba River watershed.11  

While streamflow magnitude and timing within a watershed depend on area and elevation (Null, 

et al. 2010), watersheds in California’s Sierra Nevada are known to be spatially and temporally 

                                                           
11 Our analysis focuses on streamflow instead of natural flow.  Streamflow considers diversions and more closely 

matches actual water in the river in an area.  Streamflow conditions are consistent with measurements at IRF 

Smithville (below Englebright Lake) which is a focal point of management in the watershed. 
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correlated with neighboring basins (Lundquist, et al. 2004;Peterson, et al. 2008).  In other words, 

neighboring streams behave in similar ways.  Weather patterns are spatially correlated 

throughout California (Peterson, et al. 2008), while snowmelt is temporally correlated for similar 

elevations (Lundquist, et al. 2004). 

 Meteorological data (air temperature, precipitation, and relative humidity) downscaled 

from general circulation models (GCMs) from the Coupled Model Intercomparison Project 

Phase 5 (Knutti and Sedláček 2013;Taylor, et al. 2012) were used as input for a hydrologic 

model developed for the western Sierra Nevada with the Water Evaluation and Planning System 

(Yates, et al. 2005;Young, et al. 2009).12  Four GCMs were forced with two different 

representative concentration pathways (RCP) to capture regional meteorology and a range of 

emissions and economic conditions.13  Representative concentration pathway +4.5 W/m2 

(RCP4.5) assumes maximum CO2 emissions of 450 parts per million (ppm), global population 

that peaks mid-century, and introduction of a resource-efficient technology.  Representative 

concentration pathway +8.5 W/m2 (RCP8.5) assumes maximum CO2 emissions of 850 ppm, 

continuously increasing global population, and slow economic growth.  This gives us eight short-

term (2001-2050) streamflow projections (in acre feet).  To illustrate how the climate-driven 

models alter streamflow projections and farmer expectations, we also use a modeled historical 

dataset consistent with observed streamflow in the Yuba River (see Figure 5) to generate a 

hindcast of streamflow in the Yuba River from 1951 to 2000.     

An augmented Dickey Fuller test is performed to test whether the streamflow projections and 

hindcasts are consistent with Geometric Brownian Motion (GBM).  If w = ln(W) is normally 

                                                           
12 Downscaled meteorological data based on these GCMs was obtained from the CMIP5 hydroclimate archive 

(Brekke, et al. 2013) and prepared using bias-corrected constructed analogues (Maurer 2010).   
13 See Appendix for more information on the GCMs used in this study. 
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distributed, Ito calculus ensures W must be log-normally distributed and consistent with GBM.  

We reject the null hypothesis that w is normally distributed for all climate models.14  Thus, we 

conclude that W is trend stationary and adopt a mean-reverting process to describe the evolution 

of W.  However, traditional mean-reverting processes revert to a constant mean.  This approach 

would ignore trends in aggregate water supply produced by the climate models.  Instead, we 

follow Lo and Wang (1995) and assume that aggregate water supply reverts to an affine trend 

�̅� + 𝜇𝑡:         

𝑑(𝑊 − 𝜇𝑡) = 𝛼(�̅� + 𝜇𝑡 − 𝑊)𝑑𝑡 + 𝜎𝑑𝐵𝑤                                           (12) 

This process is the sum of a zero-mean stationary autoregressive Gaussian process and a 

deterministic linear trend.  This can be rearranged to yield: 

𝑑𝑊 = 𝛼(𝑔(𝑡) − 𝑊)𝑑𝑡 + 𝜎𝑑𝐵𝑤                                                     (13) 

where 𝑔(𝑡) =
𝜇

𝛼
+ �̅� + 𝜇𝑡.   

Estimates of 𝛼, 𝜇, and �̅� can be found for each climate model and each emissions 

scenario by noting that the trending process is consistent with the detrended streamflow data 

reverting to a constant mean 

𝑑𝜔 = 𝛼(�̅� − 𝜔)𝑑𝑡 + 𝜎𝑑𝐵𝑤                                                     (14) 

where 𝜔 = 𝑊 − 𝜇𝑡.  Parameters are estimated by applying ordinary least squares to the first 

order (Euler) approximation of the mean-reverting process in equation (14): 𝜔𝑡+1 − 𝜔𝑡 =

                                                           
14 This runs counter to Fisher and Rubio (1997) and Bhaduri and Manna (2014) who assume a GBM for the 

stochastic evolution of water supply based on the log-normal distribution of water flow.  Focusing only on 

variability in annual streamflow only captures part of the effect of climate change.  In many areas, climate change 

manifests as more precipitation falling as rain instead of snow.  Even if the annual total is unchanged, these shifts 

from snow to rain will manifest as inter-annual variability in streamflow.   
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𝛼(�̅� − 𝜔𝑡) + 𝜖𝑡 where 𝜖𝑡 is normally distributed with mean zero and standard deviation 𝜎.  We 

follow this process for all eight streamflow projections (2001-2050) and the streamflow hindcast 

(1951-2000).  Results are presented in Table 2.   

Differences in future trends across the models can be ascertained by examining �̅� and 𝜇.  

Higher values for �̅� suggest a deterministic trend with a higher intercept.  Positive (negative) 

values for 𝜇 suggest that streamflow is trending up (down).  Streamflow persistence from year to 

year is captured by 𝛼.  Lower (higher) values of 𝛼 suggest a slower (faster) return to the 

deterministic trend following a shock.  Higher values for 𝜎 suggest more variability around the 

deterministic trend.   

Comparing parameter estimates under the historic hindcast (1951-2000) to estimates 

under the short-term climate projections (2001-2050) indicates the general implications of 

climate change and variability in each GCM-RCP combination (see Figure 6).  The parameters 

estimated under two of the climate models (CCSM4.1, CNRM-CM5.1) suggests that the future 

will be wetter but the other two models (MIROC5.1, MIROC-ESM) suggest the future will be 

drier.  All eight short-term climate projections suggest future streamflow will be more volatile.     

The stochastic differential equation in (12) allows us to rewrite the partial differential 

equation in (11) as an ordinary differential equation by noting that time only influences the value 

function through the affine trend in streamflow: 
𝜕𝑉𝐼

𝜕𝑡
=

𝜕𝑉𝐼

𝜕𝑊

𝜕𝑊

𝜕𝑡
=

𝜕𝑉𝐼

𝜕𝑊
(𝜇 + 𝜎).15  By substituting 

for 
𝜕𝑉𝐼

𝜕𝑡
 and rearranging, equation (11) can be rewritten as: 

                                                           
15 The analytic solution to equation (12) is 𝑊(𝑡) = �̅� + 𝜇𝑡 + 𝜎 ∫ 𝑒𝛼(𝑠−𝑡)𝑑𝐵𝑤

𝑡

0
 such that 𝜕𝑊 𝜕𝑡⁄ = 𝜇 + 𝜎.   
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𝜌𝑉𝐼 = Π𝐼 + 𝑎(𝜑, 𝑡)
𝜕𝑉𝐼

𝜕𝜑
+ [𝛼(𝑊, 𝑡) + 𝜇 + 𝜎]

𝜕𝑉𝐼

𝜕𝑊
+

𝑏(𝜑, 𝑡)2

2

𝜕2𝑉𝐼

𝜕𝜑2
+

𝜎(𝑊, 𝑡)2

2

𝜕2𝑉𝐼

𝜕𝑊2
+ 𝑏𝜎𝛿

𝜕2𝑉𝐼

𝜕𝜑𝜕𝑊
 (15) 

which allows us to interpret the adaptation decision as a constant threshold in the Yuba River 

streamflow 𝑊∗(𝜑).  A linear climate change trend will shift the optimal adaptation decision but 

will not cause it to change over time.16   

 

3.3 Climate adaptation under different expectations of the future 

Given the parameter values in Table 1, we approximate 𝑉𝐼 and 𝑉𝐸 over a state space that 

extends from 0 to 211,470 in the 𝜑 dimension and 1 to 700 in the 𝑊 dimension.  This state space 

implies a range of possible water prices from $0 to $560 per acre feet which easily encompasses 

the range of water prices reported in the The Water Strategist in northern California.  The value 

of the water efficiency investment option, 𝑉𝐼(𝑊, 𝜑), is decreasing in 𝜑.  However, the value of 

the water efficiency investment option may be increasing or decreasing in W.  When streamflow 

is low, the water price is high and the farmer is leasing all water so an increase in W means a 

farmer has more water to lease.  When the streamflow is high, increases in W lower the price at 

which conserved water could be sold.   

Approximating 𝑉𝐼(𝑊, 𝜑) and 𝑉𝐸(𝑊, 𝜑) allows us to calculate the critical adaptation 

curve that would trigger investment in new water-saving irrigation infrastructure (see Figure 7).  

The contour lines show the price of water at different combinations of 𝑊 and 𝜑.  The black line 

shows the adaptation threshold based on the modeled historic streamflow (1951-2000).  The 

                                                           
16 This result relies on climate change causing a linear affine trend in the mean streamflow level �̅� + 𝜇𝑡.  If the 

passage of time leads to nonlinear changes in mean streamflow, the critical adaptation threshold will change over 

time 𝑊∗(𝜑, 𝑡).  
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optimal investment decision depends on both the aggregate supply of water, W, and the demand 

for irrigation water in the area, 𝜑.  When the current state of the world, defined by pair (𝑊, 𝜑, ), 

is in region I, no change should be made to the irrigation technology.  In this region, the value of 

the option to invest exceeds the expected net present value of farm profits if the water 

conservation technology were adopted.  As the demand for water increases, the cost of acquiring 

water increases during water shortages and the value of conserved water increases during normal 

periods.  A sufficiently large increase in the demand for irrigation water (rightward movement 

along the x-axis into region II) will trigger a water-saving investment regardless of the water 

supply (y-axis).  Because both 𝑊 and 𝜑 are stochastic, water price becomes a poor predictor of 

adaptation behavior.  For example, an $80/acre foot water price is observed in both region I and 

II.      

Region III highlights the nonlinear relationship between water demand and the value of 

investing in water conservation during water shortages.  An increase in the demand parameter 

above approximately 80,000 will increase the water price enough to cause the farmer to adopt the 

water-saving irrigation technology regardless of the streamflow.  But when streamflow is below 

20 million acre feet, an additional increase in the demand parameter above approximately 

100,000 makes it optimal to delay the water conservation investment once again.  Delaying the 

investment is optimal in region III because it is sufficiently likely that the water price will stay 

high enough (above $217/acre feet) to encourage the farmer to stop production and temporarily 

lease all water rights.  In other words, it is unlikely that the farmer will use the water-saving 

irrigation technology in region III.  Because of the stochastic aspect of the model, a farmer that is 

currently leasing all his water rights would still find it optimal to invest in water conservation 

when the demand parameter is between 80,000 and 100,000.  In this small window, demand is 
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sufficiently strong to encourage water conservation but not so strong that the farmer expects to 

lease his entire water right for the foreseeable future.    

The adaptation threshold in Figure 7 is consistent with a backward-looking farmer that 

bases expectations of future streamflow on his observations of past streamflow.  A farmer may 

also be forward-looking and base expectations of future streamflow on climate-based 

projections.  Climate projections that suggest the future will be wetter (CCSM4.1 with RCP 8.5, 

CNRM-CM5.1 with RCP 8.5) shift the adaptation threshold to the right suggesting adaptation 

will be delayed when future climate projections are incorporated into the adaptation decision 

(i.e., requires a higher water price to trigger investment in water conservation).  Climate 

projections that suggest the future will be drier and/or more volatile (CCSM4.1 with RCP 4.5, 

CNRM-CM5.1 with RCP 4.5, MIROC5.1, MIROC-ESM) shift the adaptation threshold to the 

left suggesting climate projections will hasten adaptation.   

However, each climate projection generates a separate adaptation threshold that only 

defines the optimal adaptation decision when future climate is characterized by that climate 

projection.  Unfortunately, a farmer cannot assess the relative likelihood of the different climate 

projections and must assign subjective weights to each adaptation threshold.  Figure 8 compares 

the adaption threshold of a backward-looking farmer to adaptation for two different types of 

forward-looking farmers.  A forward-looking farmer may adapt based on an average of all eight 

adaption thresholds (red line in Figure 8).  This threshold would be consistent with a farmer that 

is ambiguity neutral and gave each adaptation threshold an equal weight.  The climate change 

projections cause the farmer’s adaptation threshold to shift to the left.  This suggests that a 

farmer is more likely to invest in adaptation (i.e., invests at a lower water price) when he bases 

his expectations of future streamflow on climate projections.  However, climate trends are not 
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responsible for the increased likelihood of adaptation.  An ambiguity neutral farmer that focuses 

only on climate trends generated from GCMs and ignores the variability in the climate forecasts 

would invest in adaptation at nearly the same time as a farmer that formed expectations based on 

historic streamflow data.  Climate projections will only encourage more expedient adaptation 

when the farmer accounts for the inter-temporal variability in the climate projections.        

A forward-looking farmer may also base adaptation decisions only on the worst-case 

projection.  A focus on worst-case scenarios is consistent with ambiguity aversion in a maxmin 

expected utility specification (Gilboa and Schmeidler 1989).  The green line in Figure 8 shows 

that an ambiguity averse farmer will invest in climate change adaptation before an ambiguity 

neutral famer.  From the farmer’s perspective, the worst-case scenario will be the one that yields 

the lowest discounted expected farm profits.  Since a drier future implies a farmer’s water rights 

will be more valuable, the worst-case scenario in terms of discounted expected farm profits is 

where the future is wetter than the past: CNRM-CM5.1 and RCP 4.5.  A wetter future lowers the 

expected price of irrigation water in the future and reduces the incentive to invest in water 

conservation.  However, this worse-case projection also suggests future streamflow will be much 

more volatile than the past.  This volatility in future streamflow works to shift the critical 

threshold to the left and hasten adaptation. 

To indicate regions of the state space that have been observed historically, we plot price 

and streamflow combinations from 1990 through 2008.  In 1990, water demand is so low that the 

option to invest exceeds the expected net present value of farm profits with the more efficient 

technology regardless of whether farmers are backward- or forward-looking.  By 1992, only a 

forward-looking ambiguity averse farmer will choose to adopt the water conservation 

technology.  By 1998, water demand increases enough to make investment in the water-efficient 
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technology economically viable regardless of the way farmers form expectation of the future.  A 

forward-looking, ambiguity averse farmer would adapt four years earlier than an ambiguity 

neutral farmer or a backward-looking farmer.  But by 2002, water demand drops enough to move 

the farmer back over the adaptation curve.  This temporary decline in water demand does not 

mean that the farmer regrets investing in the water conservation technology.  The critical 

adaptation threshold is robust to stochastic shocks meaning that water demand need only cross 

the adaptation threshold; not remain above it.                    

         

3.4 The influence of change and variability in the climate and markets 

 The primary benefit of our approach is the ability to isolate the effect of changes in trends 

and variability from both climate and market sources on the adaptation decision.  This approach 

allows us to determine whether short-term accuracy is more important than long-term trends.  To 

investigate the effect of change and variability, we look at how a 25 percent increase and 

decrease in the market trend (𝑎), market variability (𝑏), climate trend (�̅�), and climate 

variability (𝜎) each impact the critical water price (i.e., critical demand parameter) that triggers 

adaptation under normal streamflow conditions and during water shortages.  An immediate 

investment in water conservation will maximize the value of the farm when the water price 

crosses the thresholds from below.      

 Panels A and B in Figure 9 show the effect of climate trends and variability when the 

average annual streamflow is 70 million acre feet.  Under these normal streamflow conditions, a 

drier and more volatile future will encourage more expedient adaptation.  If a farmer expects the 

future to be wetter, the value of conserved water is lower which lowers the expected net present 
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value of the conservation investment.  As a result, the critical water price needed to trigger 

adaptation will be higher with expectations of a wetter future.  More climate variability does not 

lead to a similar delay in adaptation.  The critical price that triggers adaptation declines as 

climate variability increases, regardless of the way farmers form expectations of the future.  

While more stochasticity tends to increase the option value and encourage a delay in sunk cost 

investments, this will not always be the case in highly nonlinear models (Saphores 2004).  The 

plateau production function and the ability to lease all water rights when the price of water is 

greater than its value in agricultural production, makes the payoff from adaption highly nonlinear 

over the relevant state space.     

However, climate variability encourages a delay in adaptation during water shortages.  

Figure 10 shows how a more volatile future will increase the critical water price threshold when 

the farmer is forward-looking and ambiguity neutral and when average annual streamflow is 15 

million acre feet,.  During water shortages, increased streamflow variability has a larger impact 

on the adaptation option value than on the expected net present value of farm profits under the 

inefficient technology.  In areas where water availability is expected to decline over time, the 

role of climate variability will also change.  While climate variability in the short term 

encourages adaptation, climate variability in the long term will delay adaptation.  This suggests 

that with a drier and more volatile future, some individuals may never find it optimal to invest in 

water conservation even if they continue to use irrigation water for agricultural production.         

Climate is not the only relevant source of change and variability that influences the water 

conservation investment.  Panels C and D in Figure 9 show that a faster growing and less volatile 

water market will encourage more expedient adaptation during normal streamflow conditions.  

Faster demand growth increases the expected net present value of the water conservation 
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investment.  This relationship persists regardless of how the farmer forms expectations of future 

streamflow and during water shortages.  Decreased variability in local water markets makes an 

investment in water conservation less risky.  With a less risky adaptation decision, a farmer will 

require a smaller burden of proof before investing in water conservation.     

   

5. Conclusions 

Large-scale results from global circulation models (GCMs) are frequently downscaled to 

make predictions at local scales.  However, there is little understanding of how these local 

predictions influence adaptation decisions.  The study uses an application to water conservation 

investments in the Sacramento Valley of California to illustrate how projected climate trends and 

the uncertainty in these projections influence private adaptation.  In general, results suggest that 

forward-looking farmers that base expectations on downscaled projections will adapt to climate 

change sooner than backward-looking farmers that base expectations on historic conditions.  

These results hold regardless of individual preferences for ambiguity that arise due to the 

inability to assess the likelihood of any single climate projection.  The results also call into 

question three commonly held beliefs concerning climate change and adaptation.   

The first is that climate variability should discourage adaption investments.  A common 

finding in the real options literature is that a greater inability to predict future environmental and 

market conditions make investments in environmental protection more risky and will tend to 

discourage those investments.  Our results only partially confirm this finding.  When a market 

creates an incentive to adapt, variability in that market creates an incentive to delay adaptation 

due to an adaptation option value.  However, the same is not always true for climate variability.  



28 
 

Increases in climate-induced streamflow variability during water shortages delay adaptation 

similar to market variability.  However, climate variability works to encourage adaptation with 

the historic streamflow conditions that will persist in the near future.   In the near term, market 

and climate variability create countervailing effects on adaptation investments.  Public 

investments in adaptation such as investments in instream storage that decreases streamflow 

variability will crowd out private adaptation decision in the near future but may spur adaptation 

investment in the future if water shortages become more severe and more frequent   

The second commonly held belief is that adaptation is more influenced by climate 

variability than economic sources of variability.  In our water conservation investment in the 

Sacramento Valley of California, the critical water price threshold that triggers adaptation is 

more sensitive to changes in market variability than climate variability.  This result suggests that 

policies that destabilize water markets may be more detrimental to incentives to invest in 

adaptation than greater variability in temperature and precipitation.      

The third commonly held belief is that climate change trends are a good predictor of 

adaptation behavior.  While adaptation is more sensitive to climate trends, focusing only on 

climate-driven streamflow trends causes the farmer to wait until the water price rises 5 percent 

higher than the optimal water price trigger.  Climate-driven projections of future water 

availability only trigger a more expedient investment in adaptation if the farmer is forward-

looking and incorporates the variability in climate projections.  Thus, a drier future may not 

create the right incentives for private adaptation if future streamflow is more predictable and 

markets are more unpredictable. 
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This study also provides a framework for using real options analysis to investigate 

climate change adaptation by solving a non-autonomous optimal stopping problem. While real 

options analysis has been frequently cited as a useful framework for investigating climate change 

adaptation, there has been little guidance on how analysis should be done.  This modeling 

framework allows for the isolation of change and variability in climate and input markets and the 

identification of these factors on the intensive margin of agricultural production.  However, there 

are also extensive margin adjustments such as adopting different crops and shifting production 

geographically that we leave for future work (Olmstead and Rhode 2011).  The inability to 

achieve analytic results means our results may not be generalizable to other watersheds or other 

water markets much less other forms of adaptation investment.  Future work is needed to apply 

our modeling framework in other watersheds and in other water markets.             

Appendix 

Table 1A: Features of the Atmosphere-Ocean General Circulation Models (AOGCMs) and Earth 

System Models (ESMs) used in our study.  Column 1 indicates model name and calendar year of 

first publication of each model.  Column 2: Sponsoring institutions.  Subsequent columns 

indicate presence or absence of key model components. 

Model Name CCSM4.1 (2010) CNRM-CM5.1 

(2010) 

MIROC5.1 (2010) MIROC-ESM 

(2010) 

Institution US National 

Center for 

Atmospheric 

Research 

Centre National 

de Recherches 

Meteorologiques 

and Centre 

Europeen de 

Recherche et 

Formation 

Avancees en 

Calcul 

Scientifique 

University of Tokyo, 

National Institute for 

Environmental Studies, 

and Japan Agency for 

Marine-Earth Science 

and Technology 

University of 

Tokyo, National 

Institute for 

Environmental 

Studies, and 

Japan Agency for 

Marine-Earth 

Science and 

Technology 

Atmosphere CAM4 ARPEGE-Climat CCSR/NIES/FRCGC 

AGCM6 

MIROC-AGCM 

Aerosol Interactive Prescribed SPRINTARS SPRINTARS 

Atmos Chemistry Not implemented 3-D linear ozone 

chemistry model 

Not implemented Not implemented 
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Land Surface Community Land 

Model 4 

SURFEX (Land 

and Ocean 

Surface) 

MASTSIRO MATSIRO 

Ocean POP2 with 

modifications 

NEMO COCO4.5 COCO3.4 

Ocean 

Biogeochemistry 

Not implemented PISCES Not Implemented NPZD-type 

Sea Ice CICE4 with 

modifications 

Gelato5 (Sea ice) Included Included 

Source: Flato, et al. (2013) 
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  Table 1. Model parameter values 

Parameter Value Source 

𝑃𝑦 $197/ton 2013 Yuba County Crop Report 

𝑦 5.5 tons per acre annually California Agricultural Statistics 2013 Crop Year 

𝛾𝐼 1.1 USDA 2013 Farm and Ranch Irrigation Survey 

𝛾𝐸 2 Brown, 2008 

𝑀 $1,000/acre Natural Resources Conservation Service 

𝜃 0.0000002  

�̃� 25 million annual acre feet  

𝜌 0.04  

휀 1.94 estimated from Water Strategist data 

𝑎 0.437 estimated from Water Strategist data 

𝑏 0.798 estimated from Water Strategist data 
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Table 2. Stochastic differential equation parameters for Yuba River streamflow 

Period Emissions scenario Climate model 𝜇 �̅� 𝛼 𝜎 

1951-2000   0.001 71.297 400.990 214.062 

2001-2050 Moderate (RCP4.5) 

CCSM4.1 0.043 70.846 279.699 515.765 

CNRM-CM5.1 1.058 60.202 329.652 496.667 

MIROC5.1 0.133 67.689 311.470 430.293 

MIROC-ESM 0.304 53.579 325.578 337.073 

2001-2050 
Severe (RCP8.5) 

 

CCSM4.1 -0.093 81.933 384.627 449.965 

CNRM-CM5.1 0.491 70.157 294.686 351.943 

MIROC5.1 0.026 67.665 382.480 310.940 

MIROC-ESM -0.307 74.434 389.442 354.830 
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Figure 1. Relationship between streamflow, applied water, and production when water rights are 

(A) less than and (B) greater than optimal water demand 

    

A 
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Figure 2. Uncertainty in irrigated water prices originating from uncertainty in future river flows 

(supply) and demand for irrigation water. 
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Figure 3. Yuba River study area 
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Figure 4. Relationship between Water Strategist reported price for irrigation water in northern 

California and Yuba River streamflow indicates iso-elastic demand function 
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Figure 5. Comparison of observed streamflow in the Yuba River at Smartville with coupled 

climate-hydrologic model projections  
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Figure 6. Differences between historic (black lines) and future (red lines) Yuba River streamflow 

produced from four different general circulation models (GCM) under two different 

representative concentration pathways (RCP). 
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Figure 7. Critical private adaptation threshold for a backward-looking farmer that bases 

expectations of water supply on historic streamflow conditions in the Yuba River 
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Figure 8. Influence of climate change expectations on water-saving irrigation investment 

thresholds.  Black line is the investment threshold for a backward-looking farmer that bases 

future expectations on historic conditions.  Red line is the investment threshold for a forward-

looking farmer that is ambiguity neutral.  Green line is the investment threshold for a farmer that 

is ambiguity averse. 
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Figure 9. Effect of trend and variability in streamflow and market for irrigation water on the 

critical water price that triggers water conservation under normal streamflow conditions (W=70 

million annual acre feet) 
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Figure 10. Influence of climate variability during normal streamflow conditions and water 

shortages 
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