Jet spectra

Christine Nattrass

University of Tennessee, Knoxville

Questions an experimentalist should ask

- What do I want to learn?
- What am I measuring?
- What assumptions am I making?
- What are the dominant uncertainties?
- How do I compare to models?

The answers for jets are highly non-trivial!

What do I want to learn? The cartoon picture

Probing the Quark Gluon Plasma

Medium

Probe
Detector

Want a probe which traveled through the collision QGP is very short-lived $(\sim 1-10 \mathrm{fm} / \mathrm{c}) \rightarrow$
cannot use an external probe

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium
QGP is short lived \rightarrow need a probe created in the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium
QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb/modify probe

Probes of the Quark Gluon Plasma

Probes of the Quark Gluon Plasma

"Simple" example: Single hadrons

Nuclear modification factor

- Measure spectra of probe (jets) and compare to those in p+p collisions or peripheral A+A collisions
- If high- p_{T} probes (jets) are suppressed, this is evidence of jet quenching

Nuclear modification factor

Control

Control

Probe

$$
p_{\mathrm{T}}(\mathrm{GeV} / c) \text { or mass }\left(\mathrm{GeV} / c^{2}\right)
$$

- Charged hadrons (colored probes) suppressed in $\mathrm{Pb}-\mathrm{Pb}$
- Charged hadrons not suppressed in $\mathrm{p}-\mathrm{Pb}$ at midrapidity
- Electroweak probes not suppressed in $\mathrm{Pb}-\mathrm{Pb}$

Nuclear modification factor R

Electromagnetic probes - consistent with no modification - medium is transparent to them
Strong probes - significant suppression - medium is opaque to them

- even heavy quarks!

What am I measuring? Definition of a jet

What is a jet?

What is a jet?

A measurement of a jet is a measurement of a parton.

What is a jet?

A measurement of a jet is a measurement of a parton.

What is a jet?

What is a jet?

US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Jets in principle

Hard scattering

Parton Hadronization shower
Image from http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Zeppenfeld-3.pd

- Jet measures partons
- Hadronic degrees of freedom are integrated out
- Algorithms are infrared and colinear safe

OK

BAD: 2 jets are merged in one

Jet finding
 in pp collisions

- Jet finder: groups final state particles into jet candidates
- Anti- k_{T} algorithm

JHEP 0804 (2008) 063 [arXiv:0802.118

- Depends on hadronization
- Ideally
- Infrared safe
- Colinear safe

Snowmass Accord: Theoretical calculations and experimental measurements should use the same jet finding algorithm. Otherwise they will not be comparable.

Jet finding algorithms

Tracks

Clusters

Jet finding algorithm

Jet
 candidates

Particles

- Any list of objects works as input
- Use the same algorithm on theory \& experiment
- Output only as good as input

k_{T} jet finding algorithm

Particles, clusters
\mathbf{k}_{T} algorithm
$k_{T}=p_{T}, \Delta R_{i j}=\sqrt{\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}}$

- For all i, j calculate: $\Delta R_{i j}^{2}$
$d_{i j}=\min ^{2}\left(p_{T, i}^{2}, p_{T, j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}$
$d_{i B}=p_{T,}^{2}$
- Combine smallest d_{ij} If d_{iB} smallest, $\mathrm{d}_{\mathrm{iB}} \rightarrow$ jet Repeat until no particles left

Jet candidates

anti- k_{T} jet finding algorithm

Cambridge/Aachen jet finding algorithm

A jet is what a jet finder finds.

Jet cross-section in pp

arXiv:1301.3475
$V_{s}=2.76 \mathrm{TeV}, \mathrm{R}=0.2$ Inclusive
PLB: 10.1016/j.physletb.2013.04.026

-Green and magenta bands: NLO on Parton level
${ }^{\bullet}$ Blue band: NLO + hadronization
${ }^{\bullet}$ Hadronization calculations necessary to describe data

Jet ratios in pp

$$
V_{\mathrm{s}}=2.76 \mathrm{TeV}, \mathrm{R}=0.2,0.4 \text { Inclusive }
$$

Mini-summary

- Jets are not partons
- Good jet finders:
- Infrared and colinear safe
- k_{T}, anti- K_{T}, Cambridge/Aachen, SISCone
- Jet is defined by jet finder, its parameters
- PDFs, fragmentation functions non-perturbative
\rightarrow all jet measurements sensitive to somewhat non-perturbative effects
- Good agreement between theory and experiment

Jets in A+A collisions What assumptions am I making?

$p+p$ vs $A+A$

Signal vs Background:

The standard paradigm

Background

Signal

Signal vs Background:

The standard paradigm

Background

Combinatorial jets

Signal

Signal vs Background:

The standard paradigm

Background

Combinatorial jets
= "fake" jets

Signal

Signal vs Background:

The standard paradigm

Background

Combinatorial jets

Signal

*Some gray areas

Jet finding

in AA collisions

- Jet finder: groups final state particles into jet candidates
- Anti- k_{T} algorithm

JHEP 0804 (2008) 063 [arXiv:0802.1189]

- Combinatorial jet candidates
- Energy smearing from background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets

Background density ρ

Random cones

η

Width vs multiplicity

Width vs multiplicity

Mini-summary

- Jet finders put all input clusters, tracks in a jet candidate
- Background is dominated by random particles
- But 5\% effects from flow
- Models have background too!
- Sensitive to multiplicity, shape of spectrum

Jets in A+A collisions: Dealing with background

Focus on smaller angles

- Pros
- Background is smaller
- Background fluctuations smaller
- Cons:
- Modifications expected at higher R
- Biases sample towards quarks

Aside: "quark" and "gluon" jet only defined at leading order.

Focus on high p_{T}

- Pros:
- Reduces combinatorial background
- Cons:
- Cuts signal where we expect modifications
- Could bias towards partons which have not interacted
- Biases sample towards quark jets

> "Quark" and "gluon" jets only defined at leading order!

Area-based subtraction

-ALICE/STAR

\bullet Require leading track $\mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$

- Suppresses combinatorial "jets"
- Biases fragmentation
${ }^{\circ}$ No threshold on constituents ${ }^{\bullet}$ Limited to small R

Combinatorial "jets"

Survivor bias

- WWII Example: holes planes returning indicate where it's safer to get hit - We're looking at the jets which remain

What you see depends on what you're

looking for

Bias \& background

- Experimental background subtraction methods: complex, make assumptions, apply biases
- Survivor bias: Modified jets probably look more like the medium
- Quark/Gluon bias:
- Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996), I
- Gluon jets reconstructed with k_{T} algorithm have more particles than jets reconstructed with anti- k_{T} algorithm [Phys. Rev. D 45, 1448 (1992)]
- Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]
- Fragmentation bias: Experimental measurements explicitly select jets with hard fragments

What you see depends on where you look

Christine Nattrass (UTK), uBNL 2020

Mini-summary

- Most studies do one or more of the following:
- Explicitly apply a (non-purturbative) bias
- Implicitly apply a (non-purturbative) bias
- Focus on small R
- Focus on high pT
- May also \rightarrow survivor bias
- Background subtraction should be part of definition of algorithm

What are the dominant uncertainties?

Analysis steps

Unfolding

$\cdot \vec{\mu}$: the "true" histogram
$\vec{v}=R \vec{\mu}+\vec{\beta} \quad \cdot \vec{v}$: the actual data we measure

- $\vec{\beta}$: background
- R : the response matrix

$$
v_{i}=\sum_{j=1}^{M}\left(R_{i j} \mu_{j}\right)+\beta_{i}
$$

Simple Solution (Inversion)

- Rearrange $\vec{v}=R \vec{\mu}+\vec{\beta}$ to get $\vec{\mu}=R^{-1}(\vec{v}-\vec{\beta})$
- Problem: we don't have \vec{v}, we have \vec{n}, the measured data, which is subject to statistical fluxuations.
- We assume n_{i} is the maximum likelihood estimator for v_{i}, then solve for the estimator $\hat{\mu}=R^{-1}(\vec{n}-\vec{\beta})$.
- R^{-1} is obtained from R through simple matrix inversion

Iterative Bayesian Method

- Using prior knowledge, start with an initial guess for the distribution of true histograms $P^{0}(\hat{\mu})$
- Use Bayes' Theorem to invert the response matrix $P\left(\hat{\mu}_{i} \mid v_{j}^{s i g}\right)=\frac{P\left(v_{j}^{s i g} \mid \widehat{\mu}_{i}\right) P^{0}\left(\widehat{\mu}_{i}\right)}{\sum_{l=1}^{M} P\left(v_{j}^{s i g} \mid \widehat{\mu}_{l}\right) P^{0}\left(\widehat{\mu}_{l}\right)}$
- $\hat{\mu}_{i}=\frac{1}{\epsilon_{i}} \sum_{j=1}^{N} v_{j}^{\text {sig }} P\left(\hat{\mu}_{i} \mid v_{j}^{\text {sig }}\right)$ where ϵ_{i} is the detector efficiency
- Plug in the newly obtained $P\left(\hat{\mu}_{i} \mid v_{j}^{\text {sig }}\right)$ and $\hat{\mu}_{i}$ as new priors, then repeat
-Terminate before the wildly oscillating true inverse is reached (usually ~ 4 iterations) to preserve some smoothness

RooUnfold-Bayes

Training

- method = Bayes
- Exponential training and testing

Jets in ALICE: Response Matrix Construction

$\mathrm{Pb}-\mathrm{Pb} \mid \mathrm{S}_{\mathrm{NN}}=2.76 \mathrm{TeV}$ 0-10\% Centrality

ALICE
performance 15/10/2012

RM $M_{\text {bkg }}$ and $R M_{\text {det }}$ are approximately factorizable

Jets in ALICE: Response Matrix Construction

Anti- $\boldsymbol{k}_{\mathrm{T}} \mathrm{R}=0.2$
$p_{\mathrm{T}, \text { track }}>0.15 \mathrm{GeV} / \mathrm{c}$
$E_{\mathrm{T}, \text { cluster }}>0.30 \mathrm{GeV}$
$p_{\text {T,track }}^{\text {leading }}>5 \mathrm{GeV} / \boldsymbol{c}$
(a) $R M_{\text {det }}$ Detector response matrix
(b) $\mathrm{RM}_{\text {bkg }}$ Background fluctuation matrix
(c) $\mathrm{RM}_{\text {tot }}=\mathrm{RM}_{\text {bkg }} \times \mathrm{RM}_{\text {det }}$

$\mathrm{Pb}-\mathrm{Pb} \mid s_{\mathrm{NN}}=2.76 \mathrm{TeV}$ 0-10\% Centrality

ALICE
performance 15/10/2012
$R M_{b k g}$ and $R M_{\text {det }}$ are approximately factorizable

Jets in ALICE: Response Matrix Construction

$R M_{b k g}$ and $R M_{\text {det }}$ are approximately factorizable

About unfolding...

- d'Agostini (author of Bayesian unfolding algorithm) says you should avoid it if you can
- Necessary when experimental resolution is poor
- Ex: Single particle spectra $\frac{\sigma_{p}}{p} \ll w_{\text {bin }} \rightarrow$ unfolding unnecessary
- Ex: Jet spectra $\frac{\sigma_{p}}{p} \approx w_{b i n} \rightarrow$ unfolding necessary
- Algorithm assumes ${ }^{p}$ response matrix is correct
- Matching reconstructed and simulated jets is non-trivia!!
- Corrects for multiple experimental effects simultaneously
- Difficult to disentangle different effects
- Leads to non-trivial uncertainty correlations between data points due to algorithm
- May not handle systematic correlations between effects correctly

Mini-summary

- Jet energy resolution is fundamentally large
- Unfolding is complicated, often unstable, and hard
- Construction of response matrix includes several assumptions

Jets in A+A collisions: How to compare to models

Snowmass Accord: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

Rivet: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

What is Rivet?

Why use Rivet?

- Facilitates comparisons between Monte Carlos and data
- It's not that hard
- It preserves analysis details

Jets in ALICE: Response Matrix Construction

Anti- $\boldsymbol{k}_{\mathrm{T}} \mathrm{R}=\mathbf{0 . 2}$
$p_{\mathrm{T}, \text { track }}>0.15 \mathrm{GeV} / \mathrm{c}$
$E_{\mathrm{T}, \text { cluster }}>0.30 \mathrm{GeV}$
$\boldsymbol{p}_{\mathrm{T}, \text { track }}^{\text {leading }}>5 \mathrm{GeV} / \mathrm{c}$
(a) $\mathrm{RM}_{\text {det }}$ Detector response matrix
(b) $\mathrm{RM}_{\text {bkg }}$ Background fluctuation matrix
(c) $\mathrm{RM}_{\text {tot }}=\mathrm{RM}_{\mathrm{bkg}} \times \mathrm{RM}_{\text {det }}$

$\mathrm{Pb}-\mathrm{Pb} \mid \mathrm{s}_{\mathrm{NN}}=2.76 \mathrm{TeV}$ 0-10\% Centrality

ALICE
PERFORMANCE
15/10/2012

RM $M_{\text {bkg }}$ and $R M_{\text {det }}$ are approximately factorizable

Analysis steps: Full Monte Carlo

Mini-summary

- Experimental techniques can bias measurement in subtle ways
- Background subtraction
- Kinematic cuts
- Choice of jet finder, R
- Centrality determination
- Technique for finding reaction plane
- Unclear how these influence the measurement
- Safest to do the same analysis on data and model
- But unfolding is necessary in a full Monte Carlo model!

Backup

Random cones in ALICE

- Estimate ρ
- k_{T} jet finder \rightarrow jet candidates
- $\rho=\operatorname{Median}\left(\mathrm{p}_{\mathrm{T}} / \mathrm{A}\right)$
- Draw Random cone

$$
\delta p_{T}=p_{T}^{\text {reco }}-\rho A
$$

Random cones

Shape of width of the distribution

Single particle spectra

$$
\begin{gathered}
f_{\Gamma}\left(p_{T}, p, b\right)=\frac{b}{\Gamma(p)}\left(b p_{T}\right)^{p-1} e^{-b x} \\
\frac{d N}{d y} \propto f_{\Gamma}\left(p_{T}, 2, b\right)=b^{2} p_{T} e^{-k p_{T}} \\
\mu_{p_{T}}=\frac{p}{b}, \sigma_{p_{T}}=\frac{\sqrt{p}}{b}
\end{gathered}
$$

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)

$\Sigma \mathbf{p}_{\mathrm{T}}$ of \mathbf{N} particles $\rightarrow \mathbf{N}$-fold convolution:

$$
\begin{aligned}
& f_{N}\left(p_{T}, p, b\right)=f_{\Gamma}\left(p_{T}, N p, b\right) \quad \frac{d p T^{\text {total }}}{d y} \propto f_{N}\left(p_{T}, N p, b\right) \\
& N=\frac{N_{\text {total }}}{A_{\text {total }}} \pi R^{2} \quad \mu_{\text {total }}=\frac{N p}{b}=N \mu_{p_{T}}, \sigma_{\text {total }}=\frac{\sqrt{N p}}{b}=\sqrt{N} \sigma_{p_{T}} \\
& \text { Add Poissonian fluctuations in } \mathrm{N}: \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+N \mu_{p_{T}}^{2}}
\end{aligned}
$$

Add non-Poissonian fluctuations in N due to flow

$$
\sigma_{\text {total }}=\sqrt{N \sigma_{p_{r}}^{2}+\left(N+2 \sum_{n} v_{n}^{2}\right) \mu_{p_{r}}^{2}}
$$

Width vs multiplicity

Small deviations

Mixed events

- Gets background up to a normalization factor
- Good agreement with the data... but 20\% discrepancies still within uncertainties
- In measurement with background suppressed (hjet correlations)
- Did not see such agreement at the LHC

Shape of width of the distribution

Single particle spectra

$$
\begin{gathered}
f_{\Gamma}\left(p_{T}, p, b\right)=\frac{b}{\Gamma(p)}\left(b p_{T}\right)^{p-1} e^{-b x} \\
\frac{d N}{d y} \propto f_{\Gamma}\left(p_{T}, 2, b\right)=b^{2} p_{T} e^{-k p_{T}} \\
\mu_{p_{T}}=\frac{P}{b}, \sigma_{p_{T}}=\frac{\sqrt{P}}{b}
\end{gathered}
$$

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)
Assumes shape

$\boldsymbol{\Sigma} \mathbf{p}_{\mathrm{T}}$ of \mathbf{N} particles $\rightarrow \mathbf{N}$-fold convolution:

$$
\left\{\begin{array}{l}
f_{N}\left(p_{T}, p, b\right)=f_{\Gamma}\left(p_{T}, N p, b\right) \quad \frac{d p T^{\text {total }}}{d y} \propto f_{N}\left(p_{T}, N p, b\right) \\
N=\frac{N_{\text {total }}}{A_{\text {total }}} \pi R^{2} \quad \mu_{\text {total }}=\frac{N p}{b}=N \mu_{p_{T}}, o_{\text {total }}=\frac{\sqrt{N p}}{b}=\sqrt{N} \sigma_{p_{T}}
\end{array}\right.
$$

Add Poissonian fluctuations in $\mathrm{N}: \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+N \mu_{p_{T}}^{2}}$

Add non-Poissonian fluctuations in N due to flow

$$
\sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+\left(N+2 \sum_{n} v_{n}^{2}\right) \mu_{p_{T}}^{2}}
$$

Assumes uncorrelated number fluctuations

TennGen background generator

Emulates hydro correlations

PYTHIA Angantyr

JHEP (2018) 2018: 134

- Based on PYTHIA 8

Sjöstrand, Mrenna \& Skands,
JHEP05 (2006) 026
Comput. Phys. Comm. 178 (2008) 852.

- Based on Fritiof \& wounded nucleons
- N-N collisions w/fluctuating radii \rightarrow fluctuating σ

Lots of jets! And resonances! No hydrodynamics, no jet quenching

Area-based background subtraction

Cacciari \& Salam, PLB659:119-126,2008
Particles, clusters
\mathbf{k}_{T} algorithm
$k_{T}=p_{T}, \Delta R_{i j}=\sqrt{\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}}$

- For all i, j calculate:

$$
\begin{aligned}
& d_{i j}=\min \left(p_{T, i}^{2}, p_{T, j}^{2}\right) \Delta R_{i j}^{2} \\
& d_{i B}=p_{T, i}
\end{aligned}
$$

- Combine smallest d_{ij}. If d_{iB} smallest, $\mathrm{d}_{\mathrm{iB}} \rightarrow$ jet Repeat until no particles left

$$
\begin{gathered}
\hline \text { Jet candidates } \\
\hline \text { Median } \rho=\mathrm{p}_{\mathrm{T}} / \mathrm{A} \\
p_{T}^{\text {jet }}=p_{T}^{\text {reco }}-\rho_{\text {median }} A^{\text {jet }}
\end{gathered}
$$

Theoretical calculations

Factorization theorem

- Assumption: Parton distribution functions, perturbative cross section, fragmentation function factorize
- What people really mean by "perturbatively calculable"
- D and f are explicitly nonperturbative!
- D is for parton $c \rightarrow$ hadron h Not what is experimentally measured
- Most theories for jet quenching modify fragmentation function D

$$
\frac{d^{3} \sigma^{h}}{d y d^{2} p_{T}}=\frac{1}{\pi} \int d x_{a} \int d x_{b} f_{a}^{A}\left(x_{a}\right) f_{b}^{B}\left(x_{b}\right) \frac{d \sigma_{a b \rightarrow c X}}{d \hat{t}} \frac{D_{c}^{h}(z)}{z}
$$

Jet finders

