Separating signal from background

Christine Nattrass

University of Tennessee, Knoxville

Partly based on Connors, Nattrass, Reed, & Salur arxiv:1705.01974, accepted in RMP

What is a jet?

What is a jet?

 $p+p \rightarrow dijet$

What is a jet?

 $p+p \rightarrow dijet$

"I know it when I see it"

US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Jet finding in pp collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.118
 9]
- Depends on hadronization
- Ideally
 - Infrared safe
 - Colinear safe

Snowmass Accord: Theoretical calculations and experimental measurements should use the same jet finding algorithm. Otherwise they will not be comparable.

A jet is what a jet finder finds.

Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Energy smearing from background
- Large, fluctuating, correlated background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets

Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Energy smearing from background
- Large, fluctuating, correlated background
- Sensitive to methods to suppress combinatorial jets and correct energy
- Focus on narrow/high energy jets

We need an accord on how to treat background

Background is a solved problem. – Unnamed

ATLAS

Background subtraction method:

- Iterative procedure
 - Calorimeter jets: Reconstruct jets with R=0.2. v_2 modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with

$$E_{tower} > \langle E_{tower} \rangle$$

Track jets: Use tracks with p_⊤>4 GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with $p_{\tau}>10$ GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_{τ} >7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to $E_{iet} = 20$ GeV

0.6 0.4 0.2 300 100 200 $\operatorname{Jet} p_{\scriptscriptstyle T} [\operatorname{GeV/c}]$ Constituent biases don't matter that But they do matter much up here

LHC Run1 Data; PbPb (0-10%) $\sqrt{s_{NN}}$ = 2.76 TeV

R = 0.2

down here!

1.4

.80 € 0.8

Phys. Lett. B 719 (2013) 220-241

arXiv:1705.01974

ALICE PLB 746(2015) 1-14

ATLAS PRL 114(2015) no.7

ATLAS

Background subtraction method:

- Iterative procedure
 - Calorimeter jets: Reconstruct jets with R=0.2. v_2 modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with

 $E_{tower} > \langle E_{tower} \rangle$

Track jets: Use tracks with p_⊤>4 GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with $p_T>10$ GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{jet} = 20 GeV

Phys. Lett. B 719 (2013) 220-241

Different jets are different.

Rosi Reed

What you see depends on where you look

What you see depends on where you look

Bias & background

- Experimental background subtraction methods: complex, make assumptions, apply biases
- Survivor bias: Modified jets probably look more like the medium
- Quark/Gluon bias:
 - Quark jets are narrower, have fewer tracks, fragment harder
 [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996),]
 - Gluon jets reconstructed with k_T algorithm have more particles than jets reconstructed with anti- k_T algorithm [Phys. Rev. D 45, 1448 (1992)]
 - Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]
- Fragmentation bias: Experimental measurements explicitly select jets with hard fragments

Jet mass

- Quenching models (JEWEL, Q-PYTHIA) show a larger mass than pp-like PYTHIA jets
- Pb-Pb measurement can discriminate among these predictions

Splitting function

Girth g

Dispersion

LeSub

$$g = \sum_{i \in jet} \frac{p_T^i}{p_T^{jet}} r_i$$

$$p_T D = \frac{\sqrt{\sum_{i \in jet} (p_T^i)^2}}{\sum_{i \in jet} p_T^i}$$

$$LeSub = p_T^{leading} - p_T^{subleading}$$

Jets are slightly more collimated than in pp

Agrees with PYTHIA

[Adjective] [noun] [observable] in [collision system]

Groomed Unfolded Event-engineered Top quark B-jet Z-boson D meson Correlations
Di-jet asymmetries
V₁, V₂, V₃, V₄...

Proton-lead
Ultra-central collisions

[Adjective] [noun] [observable] in [collision system]

Groomed Unfolded Event-engineered Top quark B-jet Z-boson D meson Correlations
Di-jet asymmetries
V₁, V₂, V₃, V₄...

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

[Adjective] [noun] [observable] in [collision system]

Groomed Unfolded Event-engineered Top quark B-jet Z-boson D meson Correlations
Di-jet asymmetries
V₁, V₂, V₃, V₄...

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead

[Adjective] [noun] [observable] in [collision system]

Groomed Unfolded Event-engineered Top quark B-jet Z-boson D meson Correlations
Di-jet asymmetries
V₁, V₂, V₃, V₄...

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead Groomed top jet v₄ in ultra-central collisions

[Adjective] [noun] [observable] in [collision system]

Groomed Unfolded Event-engineered Top quark B-jet Z-boson D meson Correlations
Di-jet asymmetries
V₁, V₂, V₃, V₄...

Proton-lead
Ultra-central collisions

Groomed top quark di-jet asymmetries in ultracentral collisions

Unfolded Z-boson correlations in proton-lead Groomed top jet v₄ in ultra-central collisions

Event-engineered groomed b-jet top quark di-jet asymmetries in ultra-central collisions

Jupiter and the Monkey

Jupiter promised a royal reward to the one whose offspring should be deemed the handsomest.

The monkey came with the rest, and presented a flat-nosed, hairless, ill-featured young monkey.

A general laugh saluted her on the presentation of her son.

She resolutely said; "He is at least in the eyes of me, his mother, the dearest, handsomest, and most beautiful of all."

http://aesopsfables.org/F9_Jupiter-and-the-Monkey.html Abbreviated

I do not care about jets.

I want to learn about the QGP.

JET collaboration

 Qualitative confirmation of our model for partonic energy loss

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.
- Theoretical calculations sensitive to things we might not have under control.

RBRC Workshop on the Definition of Jets in a Large Background

June 25-27 at BNL

Megan Connors, Guilherme Milhano, Christine Nattrass, Rosi Reed, Sevil Salur

Conclusions

- We need to talk about background
- We should try to measure the same things
- We should report correlations between uncertainties
- We should ask whether we're learning something
- We should think about what we're not seeing

Background Fluctuations

Full Jets $\sqrt{s_{NN}} = 2.76 \text{ TeV in PbPb}$

 $\delta p_{_{\mathrm{T}}}$ is not corrected for detector effects – Experiment specific

- •Fluctuations in the background determined via $\delta p_{\scriptscriptstyle T}$
 - Random cones (RC)
 - Depends on
 - Constituent cut R
 - Centrality
 - Event plane
 - Detector

$$\delta p_T = p_T^{rec} - \rho \pi R^2$$

 δp_T is used to construct unfolding response matrix