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Melting NucleiMelting Nuclei

Christine Nattrass
University of Tennessee at Knoxville

Calculations done on the Titan supercomputer by the CJet collaboration https://sites.google.com/site/cjetsite/
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QCD Phase Diagram

Phys. Rev. C 96, 044904 (2017)

Hadron Gas

Quark Gluon Plasma

https://arxiv.org/abs/1701.07065
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How to make a Quark Gluon Plasma
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The phase transition in the laboratory
Initial State QGP Freeze-out

Hydrodynamical 
flow

Jet quenching
https://physics.aps.org/articles/v7/97

– K, O’Hara, S. Hemmer, M. Gehm, S. 
Granade, J. Thomas    Science 298 2179 
(2002) 
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STARSTAR
PHENIXPHENIX

PHOBOSPHOBOS

BRAHMSBRAHMS

Relativistic Heavy Ion Collider

ALICEALICE

CMSCMS

ATLASATLAS
LHCfLHCf

LHCbLHCb

Large Hadron Collider

Upton, NY
1.2km diameter
p+p, d+Au, Cu+Cu, Au+Au, U+U
√s

NN
 = 9 - 200 GeV

Geneva, Switzerland
8.6km diameter
p+p, p+Pb, Pb+Pb
√s

NN
 = 2.76 GeV, 5.5 TeV

RHIC

RHIC

LHCLHC
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Particle DetectorsParticle Detectors
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STARSTAR PHENIXPHENIX

ALICEALICE

CMSCMS

ATLASATLAS
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9

Size: 16 x 26 meters

Weight: 10,000 tons

Detectors: 18

Trigger detectors:Trigger detectors:  When do we have a collision?When do we have a collision?

Tracking detectors:Tracking detectors:  Where did the particle go?Where did the particle go?

Identification detectors:Identification detectors:  What kind of particle is it?What kind of particle is it?

Calorimeters:Calorimeters:    How much energy does the particle have?How much energy does the particle have?
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p+p collisions

3D image of each collision
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Pb+Pb collisions

5
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Forming the QGPForming the QGP
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How can we estimate the energy 
density?

● Transverse energy (ET)
– sum of particle energies in transverse 

direction

● Volume V = AT τc

● τ = formation time
● Energy density ε

● QGP formation for ε > 0.5 GeV/fm3

AT 

= τc

ϵ=
1
V

dET
dy

=
J

AT τ c

dET
d η
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Energy dependence from dE
T
/dy

➔ Higher than extrapolations of RHIC data

Standard estimate τ
0
 ≈ 1 fm/c

ϵ=
1

A c τ0

dET
dy

QGP formation

RHIC

Collision energy
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Energy dependence from dE
T
/dy

➔ Higher than extrapolations of RHIC data

Standard estimate τ
0
 ≈ 1 fm/c

ϵ=
1

A c τ0

dET
dy

QGP formation

RHIC
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QGP Chemistry
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Chemistry - equilibrium

● Ratios of particles expected from a model
● Even strange quarks are at equilibrium!

Nuclear Physics A Volume 757, 102-183

T~170 
MeV
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QGP Thermometers
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Measuring temperature
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Thermal photons

PHENIX collaboration: Au+Au collisions at √s
NN

=200 GeV

Inverse slope: T = 221 +/- 19 (stat) +/- 19 (syst) MeV

QCD 
processes

T
h

er
m

al
 p

h
ot

on
s

Phys.Rev.Lett.104:132301,2010

ALICE collaboration: 
Pb+Pb collisions at √s

NN
=2.76 TeV

Inverse slope: T = 304 +/-51
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Building a quarkonium-thermometer

Clear hierarchy in RAA of different 
quarkonium states

CMS-PAS HIN-11-011

Npart

b bc c
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Building a quarkonium-thermometer

Clear hierarchy in RAA of different 
quarkonium states

CMS-PAS HIN-11-011

Npart

CMS-PAS HIN-12-014, HIN-12-007

Expected in terms of 
binding energy

Note: 6.5<pT<30 GeV for J/ and (2s)
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QGP Fluid Dynamics
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If we have a fluid...

Au+Au s
NN

 = 200 GeV

b=7 fm

arXiv:nucl-th/0305084

Particles pushed out

Equipotential lines

● Initial overlap asymmetric → pressure gradients
● Momentum anisotropy → Fourier decomposition:

d 2 N
dpT d ϕ

≈1+2 v1 cos(d ϕ )+2 v2 cos(2dϕ )+2v3 cos(3d ϕ )+2 v 4 cos(4dϕ )+2 v5 cos (5d ϕ)+...
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What does this mean?
• Same phenomena observed in gases of strongly interacting atoms

– K, O’Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas    Science 298 2179 (2002) 

High viscosity
Low viscosity
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What does it mean?

Fourier decomposition:
d 2 N

dpT d ϕ
≈1+2 v1 cos(d ϕ )+2 v2 cos(2dϕ )+2v3 cos(3d ϕ )+2 v 4 cos(4dϕ )+2 v5 cos(5d ϕ)+...

Time
K, O’Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas    Science 298 2179 (2002) 

Initial state anisotropies converted to final state anisotropies

Offset
measured

Same phenomena observed in gases of strongly interacting atoms
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Does this describe the data?

arXiv: 1108.5323v1

Yes!

Lower 
viscosity
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What does this mean?
• Same phenomena observed in gases of strongly interacting atoms

– K, O’Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas    Science 298 2179 (2002) 

High viscosity
Low viscosity

The Quark Gluon Plasma has a very low viscosity
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More data

Mass ordering:
v2(K) > v2(Λ)  > v2(Ξ)

mT=√pT
2+m2

 Phys. Rev. Lett. 98, 162301 (2007)

v
2
(p

T

hadron) µ n
quark

v
2
(p

T

quark)

We have a liquid of quarks and gluons!
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What do we learn about the QGP?

● Hydrodynamics works →
– (local) thermalization
– image of the initial state

● Really low viscosity
– Near AdS/CFT bound
– η/S ~ 1/4π

The QGP is the perfect liquid!
(not the gas of “free” quarks and gluons we expected)
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QGP Spectroscopy: Jets Part 1
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Probing the Quark Gluon Plasma

Want a probe which traveled through the collision
QGP is very short-lived (~1-10 fm/c) → 

cannot use an external probe

Probe

Medium

Detector
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Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium
QGP is short lived → need a probe created in the collision

nucleusnucleus

nucleusnucleus
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Probes of the Quark Gluon Plasma

Want a probe which traveled through the medium
QGP is short lived → need a probe created in the collision
We expect the medium to be dense → absorb/modify probe

nucleusnucleus

nucleusnucleus



 

35Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

p+p  dijet

pp
a, xa b, xbσab

c,
 x c

d,
 x d

D

D

Jets – hard parton scattering leads to back-to-back quarks 
or gluons, which then fragment as a columnated spray of 
particles

Beam 
pipe

Jets



 

36Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

Jet reconstruction

● Identify all of the particles in the jet → parton energy, 
momentum

● Difficult in heavy ion collisions – but possible!

p+p di-jet event in STAR Central Au+Au collision in STAR
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Jets

nucleusnucleus

nucleusnucleus

ATLASATLAS

Phys.Rev.Lett. 105 (2010) 252303

http://prl.aps.org/abstract/PRL/v105/i25/e252303
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Quenched jets

nucleusnucleus

nucleusnucleus
● One of the jets is absorbed by the medium
● The quark or gluon has equilibrated with 

the medium
● Phys. Rev. Lett. 105, 252303 (2010)

ATLASATLAS

http://arxiv.org/abs/arXiv:1011.6182
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Nuclear modification factor
● Measure spectra of probe (jets) and compare to those 

in p+p collisions or peripheral A+A collisions

● If high-pT probes (jets) are suppressed, this is 
evidence of jet quenching

Enhancement

Suppression



 

40Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

Nuclear modification factor

● Charged hadrons (colored probes) suppressed in Pb—Pb
● Charged hadrons not suppressed in p—Pb at midrapidity
● Electroweak probes not suppressed in Pb—Pb

Control Control

Probe
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Nuclear modification factor R
AA

RHIC LHC

● Electromagnetic probes – consistent with no modification – medium 
is transparent to them

● Strong probes – significant suppression – medium is opaque to 
them - even heavy quarks!

Connors, Nattrass, Reed, Salur
arXiv:1705.01974 [nucl-ex]

https://arxiv.org/abs/1705.01974
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Di-hadron correlations

Phys.Rev.Lett.93:252301,2004

p+p  dijet

nucleusnucleus

nucleusnucleus

Trigger

Associated
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Di-hadron correlations
p+p  dijet

nucleusnucleus

nucleusnucleus

Trigger

Associated

Updated to include latest information about background
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Signal+background

Signal+background Signal only
h-h
√s

NN
 = 2.76 TeV

30-40% PbPb
8<p

T

trigger<10 GeV/c

1<p
T

assoc<2 GeV/c
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QGP Spectroscopy: Jets Part 2
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What is a jet?



 

47Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

What is a jet?

A measurement of a jet is a 
measurement of a parton.
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What is a jet?
p+p  dijet

Beam 
pipe
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Jets in principle
● Jet measures partons
● Hadronic degrees of 

freedom are integrated 
out

● Algorithms are infrared 
and colinear safe

BAD: 2 jets 
are merged 
in one

OK
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Jet finding
● Jet finder: groups final state 

particles into jet candidates
– Anti-kT algorithm

JHEP 0804 (2008) 063 [arXiv:0802.1189]

● Depends on hadronization
● Ideally

– Infrared safe
– Colinear safe

in pp collisions

Snowmass Accord:  Theoretical calculations and experimental 
measurements should use the same jet finding algorithm.  Otherwise 
they will not be comparable.

http://arxiv.org/abs/0802.1189
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What is a jet?
p+p  dijet

Beam 
pipe

“I know it when I see it”

US Supreme Court Justice Potter Stewart, 
Jacobellis v. Ohio
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A jet is what a jet finder finds.
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Jet finding

● Jet finder: groups final state 
particles into jet candidates
– Anti-kT algorithm

JHEP 0804 (2008) 063 [arXiv:0802.1189]

● Combinatorial jet candidates
● Energy smearing from 

background
● Sensitive to methods to suppress 

combinatorial jets and correct 
energy

● Focus on narrow/high energy jets

in AA collisions

http://arxiv.org/abs/0802.1189
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Jet finding algorithms

● Any list of objects works as input
● Use the same algorithm on theory & 

experiment
● Output only as good as input

Tracks

Clusters

Particles

Jet finding 
algorithm

Jet 
candidates

M. Cacciari, G. P. Salam, G.Soyez, JHEP 
0804:063,2008
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Area-based background subtraction

η

E
ne

rg
y 

(a
rb

. 
un

its
)

Cacciari & Salam
Phys.Lett.B641:57-61,2006

Cacciari DIS 
2006

● For all i,j calculate:

● Combine smallest d
ij
.

If d
iB
 smallest, d

iB
→ jet

Repeat until no particles left

d ij=min( pT , i
2 , pT , j

2
)Δ Rij

2

kT=pT ,Δ Rij=√(ηi−ηj)
2
+(ϕi−ϕ j)

2

d iB=pT ,i

k
T
 algorithm

Particles, clusters

Jet candidates

Median ρ=p
T
/A

pT
jet
=pT

reco
−ρmedian A

jet

Cacciari & Salam, PLB659:119–126,2008

https://arxiv.org/abs/hep-ph/0512210
https://arxiv.org/abs/0707.1378
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Focus on smaller angles

● Pros
– Background is smaller
– Background 

fluctuations smaller

● Cons:
– Modifications 

expected at higher R
– Biases sample towards 

quarks

JHEP 03 (2012) 053
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Focus on high p
T

● Pros:
– Reduces combinatorial 

background

● Cons:
– Cuts signal where we expect 

modifications
– Could bias towards partons 

which have not interacted
– Biases sample towards quarks

PoS High-pTphysics09:023,2009
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ALICE/STAR
 

Combinatorial “jets”

Estimate combinatorial jet contributions and its 
fluctuations from data

Require leading track pT > 5 GeV/c

Suppresses combinatorial “jets”

Biases fragmentation

No threshold on constituents

Limited to small R 

Measured spectra:

Where 
comes from FastJet anti-
k

T
 algorithm

pT, jet
unc =pT,jet

rec - ρ A

pT,jet
rec ,A

Full jets
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ATLAS
● Iterative procedure

– Calorimeter jets: Reconstruct jets with R=0.2.  v2 
modulated <Bkgd> estimated by energy in calorimeters 
excluding jets with at least one tower with 
Etower > <Etower>
Track jets: Use tracks with pT>4 GeV/c

– Calorimeter jets from above with E>25 GeV and track 
jets with pT>10 GeV/c used to estimate background 
again.

● Calorimeter tracks matching one track with pT>7 
GeV/c or containing a high energy cluster E >7 
GeV are used for analysis down to Ejet = 20 GeV

Phys. Lett. B 719 (2013) 220-241

Definitely imposes a bias, especially at 20 GeV!
We should treat that bias as a tool, not a handicap

Constituent biases 
don't matter that much 

up here

But they do matter 
down here!
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Jet R
AA

● Jet RAA also demonstrates suppression

● Similar suppression of heavy quark jets?

 arXiv:1705.01974

 arXiv:1705.01974

https://arxiv.org/abs/1705.01974
https://arxiv.org/abs/1705.01974
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Jet R
AA

● Jet RAA also demonstrates suppression

● Similar suppression of heavy quark jets?

 arXiv:1705.01974

 arXiv:1705.01974

Tension between ATLAS & ALICE/CMS

https://arxiv.org/abs/1705.01974
https://arxiv.org/abs/1705.01974
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JETSCAPE
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JET collaboration
Phys. Rev. C 90, 014909 (2014)              

HTBW

HTM

McGill

Martini

QGP brick + jet

Data

χ
2minimization

200 GeV Au+Auq̂=1.2±0.3 GeV 2

q̂=1.9±0.7 GeV 2 2.76 TeV Pb+Pb

https://arxiv.org/abs/1312.5003
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Bayesian Statistical Analysis
Models and Data Analysis Initiative

http://madai.us

Model emulation
1) Run full model ~1000 times
2) MCMC parameter search uses 

emulator (interpolator)  in lieu of 
full model

Data

Monte Carlo 
models

Prior

Posterior

Optimization

Constraint of 
QGP properties

Novak et al, Phys.Rev. C89 (2014
) no.3, 034917

http://madai.us/
http://arxiv.org/abs/arXiv:1303.5769
http://arxiv.org/abs/arXiv:1303.5769
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JETSCAPE
Event generator

Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope
http://jetscape.wayne.edu/

Realistic medium

Realistic jets

Realistic Monte 
Carlo Model

Realistic
theoretical
calculations

Experimental
techniques
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Event Generator + Bayesian Statistical analysis

Realistic theoretical 
calculations

Constraint of QGP 
properties

Data
Bayesian 

Statistical Analysis
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RIVET
Robust Independent Validation of Experiment and Theory

Realistic Monte 
Carlo Model

Realistic
theoretical
calculations

Experimental
techniques

Works here
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UTK JETSCAPE Group
James Neuhaus
Jerrica Wilson
Mariah McCreary
Ricardo Santos (Berea)
Austin Schmier
4 undergrads + 1 beginning grad student
Redmer Bertens (post doc)

Before: 3 heavy ion analyses implementedBefore: 3 heavy ion analyses implemented
After: 9 heavy ion analyses, 2 more in progressAfter: 9 heavy ion analyses, 2 more in progress
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Take home messages

● If we get nuclear matter dense 
enough, we make a new phase of 
matter, which we produce in high 
energy heavy ion collisions.

● This medium is extremely hot and 
dense...

● ...and opaque to colored probes and 
translucent to electromagnetic probes.
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About me
● BS, Colorado State University, 2003
● PhD, Yale University, 2009
● Postdoc, University of Tennessee, 

Knoxville, 2009-2012
● Assistant prof, University of 

Tennessee, Knoxville 2012 –

● Active on issues related to 
women in physics and working 
on being a more effective ally for 
people of color

● Parent
● Brew beer & wine, keep bees, 

avid cook, cyclist
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Careers in high energy physics
● You should consider high energy physics if...

– You like programming and working with computers
– You're a people person – and don't mind working with 1000 people
– You like to travel around the world – and work
– You enjoy giving talks

● Common career options for people with a Ph.D. in high 
energy physics
– Academia – research and teaching universities
– Research at a National Laboratory
– National security
– Finance
– Computer programming
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What I spend my time doing
● Programming (c++) - analyzing data
● Writing and giving talks – 3 research talks, 1 

seminar, 2 posters, 1 software tutorial, and lots of 
talks (>30) at internal meetings in 2010

● Hardware work:  assembling & testing the detector
● Outreach: blogging for ALICE, giving tours of 

PHENIX to the public...
● Writing papers and conference proceedings
● Reviewing the work of my collaborators
● Reading papers
● Taking shifts – including being on call 24/7
● Teaching, advising students (undergrad & grad)
● Committee work



 

73Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

Resources
● US LHC blog and Facebook page
● Experiments

– Relativistic Heavy Ion Collider:  STAR  PHENIX
– Large Hadron Collider: ALICE ATLAS CMS LHCb 

TOTEM

● Event displays and pretty pictures from ALICE
● Really cool ATLAS event animation
● Links to articles in the press on PHENIX 
● Scientific American article 

http://blogs.uslhc.us/
http://www.facebook.com/uslhc
http://www.star.bnl.gov/
http://www.phenix.bnl.gov/
http://aliceinfo.cern.ch/
http://atlas.ch/
http://cms.web.cern.ch/cms/
http://lhcb-public.web.cern.ch/lhcb-public/
http://totem.web.cern.ch/Totem/
http://aliceinfo.cern.ch/Public/Welcome.html
http://www.atlas.ch/multimedia/html-nc/animation-heavy-ion-event.html
http://www.phenix.bnl.gov/headlines.html
http://www.scientificamerican.com/article.cfm?id=the-first-few-microsecond-2006-05&page=1
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US Universities with graduate programs in experimental heavy ion physics

● STAR
– University of California at Davis
– University of California Los Angelos
– University of Houston
– University of Illinois at Chicago
– Creighton University (masters only)
– Kent State University
– Michigan State University
– Ohio State University
– Purdue University
– Texas A&M University
– University of Texas Austin
– University of Washington
– Wayne State University
– Yale University

● PHENIX
– University of California Riverside
– University of Colorado Boulder
– Columbia University
– Florida State University
– Georgia State University 
– Iowa State University
– Ohio University
– State University of New York 

(Chemistry & Physics departments)
– University of Tennessee at Knoxville
– Vanderbilt University

Relativistic Heavy Ion Collider
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US Universities with graduate programs in experimental heavy ion physics

● ALICE
– University of Texas Austin
– Chicago State University
– Ohio State University
– Wayne State University
– University of Texas Houston
– University of Tennessee Knoxville
– Yale University
– Creighton University (masters only)
– Purdue University

● ALICE
– University of Texas Austin
– Chicago State University
– Ohio State University
– Wayne State University
– University of Texas Houston
– University of Tennessee Knoxville
– Yale University
– Creighton University (masters only)
– Purdue University

● CMS
– University of California Davis
– University of Illinois Chicago
– University of Kansas
– University of Maryland
– University of Iowa
– Rutgers University
– Massachusetts Institute of Technology
– Vanderbilt University

● ATLAS
– Columbia University

Large Hadron Collider
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Quantifying
Phys. Rev. C 90, 014909 (2014)

Jet Collaboration: For a 10 GeV 
quark traveling 4 fm

   ≈1.2±0.3 GeV2/fm at τ
0
=0.6 fm/

c in Au+Au at √s
NN

=200 GeV 

→loses 2.2 Gev

  ≈1.9±0.7 GeV2/fm in Pb+Pb 
collisions at √s

NN
=2.76 TeV 

→loses 2.8 Gev

q̂

q̂

q̂

q̂=Q2
/L Q = Momentum transfer from parton to medium

L = path length
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QGP Chemistry
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Chemistry - equilibrium

● Ratios of particles expected from a model
● Even strange quarks are at equilibrium!

Nuclear Physics A Volume 757, 102-183

T~170 
MeV

arXiv:1701.07065 

https://arxiv.org/abs/1701.07065
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QCD Phase Diagram

arXiv:1701.07065 

Hadron Gas

Quark Gluon Plasma

https://arxiv.org/abs/1701.07065


 

80Christine Nattrass, University of Tennessee, Knoxville, Intro to Heavy Ion Physics

arXiv:1701.07065 

trajec tory 
of sys tem

https://arxiv.org/abs/1701.07065
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QGP Thermometers
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Measuring temperature
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Thermal photons

PHENIX collaboration: Au+Au collisions at √s
NN

=200 GeV

Inverse slope: T = 221 +/- 19 (stat) +/- 19 (syst) MeV

QCD 
processes

T
h

er
m

al
 p

h
ot

on
s

Phys.Rev.Lett.104:132301,2010

ALICE collaboration: 
Pb+Pb collisions at √s

NN
=2.76 TeV

Inverse slope: T = 304 +/-51
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Building a quarkonium-thermometer

Clear hierarchy in RAA of different 
quarkonium states

CMS-PAS HIN-11-011

Npart

b bc c
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Building a quarkonium-thermometer

Clear hierarchy in RAA of different 
quarkonium states

CMS-PAS HIN-11-011

Npart

CMS-PAS HIN-12-014, HIN-12-007

Expected in terms of 
binding energy

Note: 6.5<pT<30 GeV for J/ and (2s)
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arXiv:1701.07065 

trajec tory 
of sys tem

~600

https://arxiv.org/abs/1701.07065
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QGP Energy Density
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How can we estimate the energy 
density?

● Transverse energy (ET)
– sum of particle energies in transverse 

direction

● Volume V = AT τc

● τ = formation time
● Energy density ε

● QGP formation for ε > 0.5 GeV/fm3

AT 

= τc

ϵ=
1
V

dET
dy

=
J

AT τ c

dET
d η
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Energy density

Standard estimate τ
0
 ≈ 1 fm/c

ϵ=
1

A c τ0

dET
dy

QGP 
formation

RHIC
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