A tale of two jets

Christine Nattrass, University of Tennessee, Knoxville

Acknowledgements

Charles Hughes

What a theorist needs to know about background

- You have background too!
- The distinction between signal and background is somewhat arbitrary
- Experimental background subtraction techniques may lead to non-trivial bias
- The gold standard is treating the model exactly like the data

Background is not just an experimental problem

arXiv:2005.02320

TennGen background generator

Event properties

- Even event planes fixed at $\Psi=0$
- Odd planes at random φ
- Multiplies from ALICE PRC88 (2013) 044910

No jets! No resonances Emulates hydro correlations

PYTHIA Angantyr

JHEP (2018) 2018: 134

- Based on PYTHIA 8

Sjöstrand, Mrenna \& Skands,
JHEP05 (2006) 026
Comput. Phys. Comm. 178 (2008) 852.

- Based on Fritiof \& wounded nucleons
- N-N collisions w/fluctuating radii \rightarrow fluctuating σ

Lots of jets! And resonances! No hydrodynamics, no jet quenching

Area-based background subtraction

Cacciari \& Salam, PLB659:119-126,2008
Particles, clusters

- Combine smallest d_{ij}. If d_{iB} smallest, $\mathrm{d}_{\mathrm{iB}} \rightarrow$ jet
Repeat until n n particles lefl

$$
\begin{gathered}
\text { Jet candidates } \\
\hline 1 \\
\begin{array}{c}
\text { Median } \rho=p_{\mathrm{T}} / \mathrm{A} \\
p_{T}^{\text {jet }}=p_{T}^{\text {reco }}-\rho_{\text {median }}{ }^{\text {jet }}
\end{array}
\end{gathered}
$$

Background density ρ

Random cones

η

Random cones in ALICE

- Estimate ρ
${ }^{\sim} \mathrm{k}_{\mathrm{T}}$ jet finder \rightarrow jet candidates
r $\rho=\operatorname{Median}\left(p_{T} / A\right)$
- Draw Random cone

$$
\delta p_{T}=p_{T}^{r e c o}-\rho A
$$

Random cones

Shape of width of the distribution

Single particle spectra

$$
f_{\Gamma}\left(p_{T}, p, b\right)=\frac{b}{\Gamma(p)}\left(b p_{T}\right)^{p-1} e^{-b x}
$$

$$
\begin{gathered}
\frac{d N}{d y} \propto f_{\Gamma}\left(p_{T}, 2, b\right)=b^{2} p_{T} e^{-k p_{T}} \\
\mu_{p_{T}}=\frac{p}{b}, \sigma_{p_{T}}=\frac{\sqrt{p}}{b}
\end{gathered}
$$

Tannenbaum, PLB(498), 1-2,Pg.29-34(2001)

$\boldsymbol{\Sigma} \mathbf{p}_{\mathrm{T}}$ of \mathbf{N} particles $\rightarrow \mathbf{N}$-fold convolution:

$$
\begin{aligned}
& f_{N}\left(p_{T}, p, b\right)=f_{\Gamma}\left(p_{T}, N p, b\right) \quad \frac{d p T^{\text {total }}}{d y} \propto f_{N}\left(p_{T}, N p, b\right) \\
& N=\frac{N_{\text {total }}}{A_{\text {total }}} \pi R^{2} \quad \mu_{\text {total }}=\frac{N p}{b}=N \mu_{p_{T}}, \sigma_{\text {total }}=\frac{\sqrt{N p}}{b}=\sqrt{N} \sigma_{p_{T}} \\
& \text { Add Poissonian fluctuations in } \mathrm{N}: \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+N \mu_{p_{T}}^{2}}
\end{aligned}
$$

Add non-Poissonian fluctuations in N due to flow

$$
\sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+\left(N+2 \sum v_{n}^{2}\right) \mu_{p_{T}}^{2}}
$$

Width vs multiplicity

Small deviations

Width vs multiplicity

Shape of width of the distribution

Single particle spectra

$$
\begin{gathered}
f_{\Gamma}\left(p_{T}, p, b\right)=\frac{b}{\Gamma(p)}\left(b p_{T}\right)^{p-1} e^{-b x} \\
\frac{d N}{d y} \propto f_{\Gamma}\left(p_{T}, 2, b\right)=b^{2} p_{T} e^{-k p_{T}} \\
\mu_{p_{T}}=\frac{P}{b}, \sigma_{p_{T}}=\frac{\sqrt{P}}{b}
\end{gathered}
$$

Tannenbaum, PLB(498),1-2,Pg.29-34(2001)

$\boldsymbol{\Sigma} \mathbf{p}_{\mathrm{T}}$ of \mathbf{N} particles $\rightarrow \mathbf{N}$-fold convolution:

$$
\begin{aligned}
& f_{N}\left(p_{T}, p, b\right)=f_{\Gamma}\left(p_{T}, N p, b\right) \quad \frac{d p T^{\text {total }}}{d y} \propto f_{N}\left(p_{T}, N p, b\right) \\
& N=\frac{N_{\text {total }}}{A_{\text {total }}} \pi R^{2} \quad \mu_{\text {total }}=\frac{N p}{b}=N \mu_{p_{T}}, \sigma_{\text {total }}=\frac{\sqrt{N p}}{b}=\sqrt{N} \sigma_{p_{T}}
\end{aligned}
$$

Add Poissonian fluctuations in $\mathrm{N}: \sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+N \mu_{p_{T}}^{2}}$

Add non-Poissonian fluctuations in N due to flow

$$
\sigma_{\text {total }}=\sqrt{N \sigma_{p_{T}}^{2}+\left(N-2 \sum v_{n}^{2}\right) \mu_{p_{T}}^{2}}
$$

Assumes uncorrelated number fluctuations

Mini-summary

- Jet finders put all input clusters, tracks in a jet candidate
- Background is dominated by random particles

But $\sim 5 \%$ effects from non-Poissonian fluctuations

- Models have background too!

Sensitive to multiplicity, implementation of flow

Signal and background overlap

Signal vs Background:

The standard paradigm

Signal

Signal vs Background:

The standard paradigm

Signal

Signal vs Background:

The standard paradigm

Background

Signal

Signal vs Background:

The standard paradigm

Signal

*Some gray areas
Christine Nattrass (UTK), INT, 28 July 2021

Technique

- Anti- k_{T} jet finder, $\left|\eta_{\text {jet }}\right|<0.5$
- Combinatorial jets: Only contain TennGen particles
- Real jets: Add a PYTHIA pp event. Real jets contain $>80 \%$ of $\mathrm{p}_{\text {Thard }}{ }^{\text {min }}$

Real jets
Area vs. Jet p_T

Corrected Jet p_T

$R=0.2, p_{-} T$ hard $\min =40$
Log z scale

Corrected Jet p_T
Angularity

$$
\alpha=\frac{1}{p_{T}^{j e t}} \sum z_{k}\left(\vec{R}_{k}\right)
$$

Mean p_T vs. Jet p_T

Corrected Jet p_T
Average p_{T}

Leading Hadron p_T vs. Jet

Leading p_{T}

$\log _{\log }$ scale

Mean p_{-}T vs. Jet p_{-}T

Angularity vs. Jet $\mathrm{p} T$

Leading Hadron p_T vs. Jet

Area vs. Jet $p_{-} T$ І!!ołeu!quos

Angularity vs. Jet $p_{-} T$

Corrected Jet p_T

Mean $p_{-} T$ vs. Jet $p_{-} T$

Mean $p_{-} T$ vs. Jet $p_{-} T \quad$ Leading Hadron $p_{-} T$ vs. Jet

Leading Hadron p_ vs. Jet

Log z scale

Silhouette Values

- Define a distance between two jet candidates to determine how similar they are

Silhouette Values

- Average distance between a jet candidate and other jet candidates in its cluster (signal or background) $a_{i}=\left\langle d_{i, j}\right\rangle_{j \neq i}$
- Average distance between jet candidate and jet candidates in the other cluster $\quad b_{i}=\left\langle d_{i, j}\right\rangle$
- Silhouette value

$$
s_{i}=\frac{b_{i}-a_{i}}{\max \left[b_{i}, a_{i}\right]}
$$

Looks more like another cluster

Indistinguishable from other clusters

Looks more like its own cluster

Silhouette values

Example from Wikipedia

Silhouette values

s<0: look more like background

$$
R=0.2, p_{-} T \text { hard } \min =40
$$

Real jets look more real if PYTHIA p_{T} is higher

Combinatorial Jets vs. Jet pT

s~0: look similar to signal

Silhouette values - decreasing p_{T}

Real jets look more like combinatorial jets

These aren't random jets!

Combinatorial jets look more like real jets

Silhouette values - increasing R

Silhouette values - increasing R

Silhouette values - increasing R

Silhouette values - increasing R

Silhouette values - increasing R

These aren't random jets!

$$
\mathrm{R}=0.6, \mathrm{p}_{-} \mathrm{T} \text { hard } \min =30
$$

Real jets look more like real jets

Tail in distribution of real jets gets smaller

Combinatorial jets look more like real jets

Mini-summary

- "Signal" and "background" have different properties, but...
- Always overlap somewhat
- Any procedure to remove "background" will also cut signal

How to compare to models

Iterative procedure

Constituent biases

- Used by ATLAS \& CMS
- ATLAS

Calorimeter jets: Reconstruct jets with $\mathrm{R}=0.2$. v_{2} modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with

$$
E_{\text {tower }}><E_{\text {tower }}>
$$

Track jets: Use tracks with $p_{T}>4 \mathrm{GeV} / \mathrm{c}$
Calorimeter jets from above with $\mathrm{E}>25 \mathrm{GeV}$ and track jets with $p_{T}>10 \mathrm{GeV} / \mathrm{c}$ used to estimate background again.
Calorimeter tracks matching one track with $p_{\mathrm{T}}>7$ $\mathrm{GeV} / \mathrm{c}$ or containing a high energy cluster $\mathrm{E}>7 \mathrm{GeV}$ are used for analysis down to $\mathrm{E}_{\text {jet }}=20 \mathrm{GeV}$
don't matter that much up here

But they do matter down_here!

Survivor bias

- WWII Example: holes planes returning indicate where it's safer to get hit
- We're looking at the jets which remain

Bias

- Experimental background subtraction methods: complex, make assumptions, apply biases
- Survivor bias: Modified jets probably look more like the medium
- Quark/Gluon bias:

Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179201 (1995), Z Phys C 70, 179-196 (1996),]
~ Gluon jets reconstructed with \mathbf{k}_{T} algorithm have more particles than jets reconstructed with anti- k_{T} algorithm [Phys. Rev. D 45, 1448 (1992)]
Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]

- Fragmentation bias: Experimental measurements explicitly select jets with hard fragments

Snowmass Accord: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

Rivet: Apply the same algorithm to data and your model. Then the measurement and the calculation are the same.

What is Rivet?

Why use Rivet?

- Facilitates comparisons between Monte Carlos and data
- It's not that hard
- It preserves analysis details

Analysis steps

$\xrightarrow[\text { Clusters }]{\text { Tracks }}$| Jet finding |
| :--- |
| algorithm |\longrightarrow| Jet |
| :---: |
| candidates |\longrightarrow| Background |
| :---: |
| subtraction |

Jets in ALICE: Response Matrix Construction

$\mathrm{Pb}-\mathrm{Pb} \mid S_{\mathrm{NN}}=2.76 \mathrm{TeV}$ 0-10\% Centrality

ALICE
PERFORMANCE 15/10/2012
$R M_{\text {bkg }}$ and $R M_{\text {det }}$ are approximately factorizable

Analysis steps: Full Monte Carlo

Christine Nattrass (UTK), INT, 28 July 2021

Closure

- Methods
~ Use δp_{T} method to measure width of fluctuations with varying numbers of leading jets (LJ) discarded
- Embed PYTHIA pp event into PYTHIA heavy ion event
~ The PYTHIA pp event is "true"
- Only embedding leads to full closure

Conclusions

- "Background" is not just an experimental problem!
- "Signal" and "background" jets overlap \rightarrow impossible to suppress background without biasing jets
- Gold standard is to use Rivet

But it requires treating the model exactly like data
A number of issues specific to jets need to be discussed in the field Recorded tutorials from Rivetizing Heavy Ion Collisions at RHIC

Backup: undergraduates

Undergraduates!*

Course-based undergraduate research experience Ask me if you want more info!

CBE-Life Sciences Education, Vol. 15, No. 2 | Articles
-1. Free Ac
Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees

Stacia E. Rodenbusch, Paul R. Hernandez, Sarah L. Simmons, and Erin L. Dolan Jennifer Knight, Monitoring Editor:

Published Online: 13 Oct 2017 | https://doi.org/10.1187/cbe.16-03-0117
: Sections $\underline{\underline{q} \text { View Article }}$

Abstract

National efforts to transform undergraduate biology education call for research experiences to be an integral homponent learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engagi students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are f students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are f
if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduatir from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score-matching to control for student-level differences, we tested the effect of participating in FRI on students probability of graduating with a STEM degree, probability of graduating within 6 yr , and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr . FRI had no significant effect on students' GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research.

Phys 494 - Course-based Undergraduate Research Experience in Relativistic Heavy Ion Physics

Instructor:

Dr. Christine Nattrass
Office: SERF 609
Phone: 974-6211
Email: christine.nattrass@utk.edu
Office hours: TBA
Teaching assistant: N/A
Class time \& Location: TR 12:40-1:55 SERF 210
Course Description:
This course will incorporate undergraduates into a research project in high energy nuclear physics in a course setting. Each student will be responsible for implementing a heavy ion analysis in the program RIVET so that it can be used by the JETSCAPE collaboration to make comparisons between Monte Carlo models and data. Each student's project will be incorporated into a public software repository so that it is available to the field and, if possible, it will be validated by the relevant experiment and incorporated into the official RIVET software.

3 semesters
15 students 8 women
3 minorities 3 non-traditional

All Rivet students

 22 students 11 women 7 minorities 4 non-traditional

Learn Rivet yourself! Or send your students \& postdocs!

https://indico.bnl.gov/event/8843/
https://indico.bnl.gov/event/8840
10-17 November 2020
Oline
USIEastem umezorone

Overview
Remote connection
Announcement
RHIC@RHIC
YAML_Maker
Timetable
My Conference
L My Contributions
Registration
Participant List
Organizing Committee
Code of Conduct
About YAML_Maker
Support
\square christine.natrass@utk.edu
\square antonio.silva@cern.ch

Workshop to implement RHIC analyses in Rivet

Backup: jet properties

$\mathrm{p}_{\text {Thard }}>40 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.2$

Angularity vs. Jet $p_{-} T$

$\mathrm{p}_{\text {Thard }}>30 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.2$

Area vs. Jet $p_{-} T$

Angularity vs. Jet p_T

Mean p_T vs. Jet p_T

Angularity vs. Jet p_T

ןе!лоұеи!qயоэ

_ ajet p_T

Corrected Jet p_T

Corrected Jet p_T

$\mathrm{p}_{\text {Thard }}>40 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.2$

Angularity vs. Jet $p_{-} T$

$\mathrm{p}_{\text {Thard }}>40 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.4$
Angularity vs. Jet p T

Mean p_T vs. Jet p_-

Log z scale Leading Hadron p T vs. Jet

$\mathrm{p}_{\text {Thard }}>40 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.5$
Log z scale

Angularity vs. Jet $p_{-} \top$

Mean p_{-}T vs. Jet $p_{-} T$

Mean p_{-}T vs. Jet $p_{-} T$ Leading Hadron $p_{-} T$ vs. Jet

Leading Hadron p_T vs. Jet

$\mathrm{p}_{\text {Thard }}>40 \mathrm{GeV} / \mathrm{c}, \mathrm{R}=0.6$

Area vs. Jet $p_{-} T$ г!иоңеи!qшоэ

Angularity vs. Jet $\mathrm{p}_{-} \top$

Mean $p_{-} T$ vs. Jet $p_{-} T$ Leading Hadron $p_{-} T$ vs. Jet

Leading Hadron p_T vs. Jet

Backup: silhouette scores

Silhouette values - decreasing p_{T}

$$
\mathrm{R}=0.2, \mathrm{p}_{-} \mathrm{T} \text { hard } \min =10
$$

Real jets look more like combinatorial jets

Combinatorial jets look more like real jets

Silhouette values - increasing R

Backup: jet definition

Jets in principle

Hard scattering

Parton Hadronization shower
Image from http://www.gk-eichtheorien.physik.uni-mainz.de/Dateien/Zeppenfeld-3.pdi

- Jet measures partons
- Hadronic degrees of freedom are integrated out
- Algorithms are infrared and colinear safe

- OK

- BAD: 2 jets are merged in one

k_{T} jet finding algorithm

Particles, clusters
k_{T} algorithm
$k_{T}=p_{T}, \Delta R_{i j}=\sqrt{ }\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$

- For all i, j calculate. $\Delta R_{i j}^{2}$ $d_{i j}=\min \left[p_{T, i}^{2}, p_{T, j}^{2}\right] \frac{\Delta R_{i j}}{d_{i B}=p_{T, i}^{2}}$
- Combine smallest d_{ij}. If $d_{i B}$ smallest, $d_{i B} \rightarrow$ jet
Repeat untill n n particles lef
Jet candidates

anti- K_{T} jet finding algorithm

Cambridge/Aachen jet finding algorithm

Backup: misc

Unfolding

$\bullet \vec{\mu}$: the "true" histogram

$$
\begin{array}{cc}
\vec{v}=R \vec{\mu}+\vec{\beta} & \bullet \vec{v}: \text { the actual data we measure } \\
{ }^{\bullet} \vec{\beta}: \text { background } \\
v_{i}=\sum_{j=1}^{M}\left(R_{i j} \mu_{j}\right)+\beta_{i} & \cdot \mathrm{R}: \text { the response matrix }
\end{array}
$$

Mixed events

- Gets background up to a normalization factor
- Good agreement with the data... but 20\% discrepancies still within uncertainties
- In measurement with background suppressed (h-jet correlations)
- Did not see such agreement at the LHC for jet spectra

Mini-summary

- Experimental techniques can bias measurement in subtle ways
- Background subtraction
~ Kinematic cuts
~ Choice of jet finder, R
~ Centrality determination
~ Technique for finding reaction plane
- Larger influence at low momentum
- Safest to do the same analysis on data and model
~ But unfolding is necessary in a full Monte Carlo model!

Experimental techniques for background

Focus on smaller angles

- Pros

Background is smaller
Background fluctuations smaller

- Cons:

Modifications expected at higher R
Biases sample towards quarks

Aside: "quark" and "gluon" jet only defined at leading order.

Focus on high p_{T}

- Pros:

Reduces combinatorial background

- Cons:

Cuts signal where we expect modifications

Could bias towards partons which have not interacted
Biases sample towards quark jets
"Quark" and "gluon" jets only defined at leading order!

Area-based subtraction

- ALICE/STAR

- Require leading track $\mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$
- Suppresses combinatorial "jets"
- Biases fragmentation
- No threshold on constituents
- Limited to small R - unstable unfolding

Combinatorial jets

Jet $R_{A A}$

Jet $R_{A A}$

Tension between ATLAS \& ALICE/CMS

Mini-summary

- Most studies do one or more of the following:

Explicitly apply a (non-purturbative) bias
Implicitly apply a (non-purturbative) bias
Focus on small R
Focus on high pT

- May also \rightarrow survivor bias
- Background subtraction should be part of definition of algorithm

