Measurements of jets in heavy ion collisions

Christine Nattrass University of Tennessee, Knoxville Largely based on Connors, Nattrass, Reed, & Salur arxiv:1705.01974, accepted in RMP

I do not care about jets.

Paraphrased from Sevil Salur

I want to learn about the QGP.

Paraphrased from Sevil Salur

Fragmentation

Energy loss

Jet structure Fragmentation

Energy loss

THE LIVING DESERT

1

Nuclear modification factor

- Charged hadrons (colored probes) suppressed in Pb—Pb
- Charged hadrons not suppressed in p—Pb at midrapidity
- Electroweak probes not suppressed in Pb—Pb

Nuclear modification factor R RHIC

- Electromagnetic probes consistent with no modification medium is transparent to them
- Strong probes significant suppression medium is opaque to them - even heavy quarks!

- Jet R_{AA} also demonstrates suppression

Fragmentation

THE LIVING DESERT

Fragmentations from γ-hadron correlations

Slight suppression at high z

The invisible gorilla

copyright (c) 1999 Daniel J. Simons. All rights reserved.

Christine Nattrass (UTK), CIPANP 2018

What is a jet?

What is a jet?

A measurement of a jet is a measurement of a parton.

What is a jet? $p+p \rightarrow dijet$

What is a jet? $p+p \rightarrow dijet$

"I know it when I see it" US Supreme Court Justice Potter Stewart, Jacobellis v. Ohio

Jet finding in pp collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.118 9]
- Depends on hadronization
 - Ideally
 - Infrared safe
 - Colinear safe

Snowmass Accord: Theoretical calculations and experimental measurements should use the same jet finding algorithm. Otherwise they will not be comparable.

A jet is what a jet finder finds.

Jet finding in AA collisions

- Jet finder: groups final state particles into jet candidates
 - Anti-k_T algorithm
 JHEP 0804 (2008) 063 [arXiv:0802.1189]
- Combinatorial jet candidates
- Energy smearing from background
 - Sensitive to methods to suppress combinatorial jets and correct energy
 - Focus on narrow/high energy jets

What you see depends on what you're looking for

http://walkthewilderness.net/animals-of-india-72-asiatic-elephant/

Bias & background

- Experimental background subtraction methods: complex, make assumptions, apply biases
- Survivor bias: Modified jets probably look more like the medium
- Quark/Gluon bias:
 - Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996),]
 - Gluon jets reconstructed with k_T algorithm have more particles than jets reconstructed with anti-k_T algorithm [Phys. Rev. D 45, 1448 (1992)]
 - Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]
- Fragmentation bias: Experimental measurements explicitly select jets with hard fragments

http://walkthewilderness.net/animals-of-india-72-asiatic-elephant/

Background is a solved problem. – Unnamed

Wiki: "A **white elephant** is a possession which its owner cannot dispose of and whose cost, particularly that of maintenance, is out of proportion to its usefulness.

Workshop on the Definition of Jets in a Large Background https://www.bnl.gov/jets18/index.php June 25-27

We don't fully understand the background

Christine Nattrass (UTK), CIPANP 2018

ATLAS

Background subtraction method:

- Iterative procedure
 - **Calorimeter jets:** Reconstruct jets with R=0.2. v_2 modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with $E_{tower} > <E_{tower} >$

Track jets: Use tracks with $p_T > 4$ GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with p_T >10 GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{jet} = 20 GeV

Phys. Lett. B 719 (2013) 220-241

ATLAS

Background subtraction method:

- Iterative procedure
 - **Calorimeter jets:** Reconstruct jets with R=0.2. v_2 modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with $E_{tower} > <E_{tower} >$

Track jets: Use tracks with $p_T > 4$ GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with p_T >10 GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{jet} = 20 GeV

Phys. Lett. B 719 (2013) 220-241

Different jets are different. – Rosi Reed

What you see depends on where you look

What you see depends on where you look

Jupiter and the Monkey

Jupiter promised a royal reward to the one whose offspring should be deemed the handsomest.

- The monkey came with the rest, and presented a flat-nosed, hairless, ill-featured young monkey.
- A general laugh saluted her on the presentation of her son.
- She resolutely said; "He is at least in the eyes of me, his mother, the dearest, handsomest, and most beautiful of all."

http://aesopsfables.org/F9_Jupiter-and-the-Monkey.html Abbreviated

Blind men and the elephant

Christine Nattrass (UTK), CIPANP 2018

Christine Nattrass (UTK), CIPANP 2018

Christine Nattrass (UTK), CIPANP 2018

Everything

We don't fully understand the background

We need to look at the whole picture

Christine Nattrass (UTK), CIPANP 2018

Everything

...but we don't know which observables are most sensitive.

 Qualitative confirmation of our model for partonic energy loss

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.

- Qualitative confirmation of our model for partonic energy loss
- Reasonable constraints on \hat{q}
 - Using mostly hadron spectra
- We have not gotten many quantitative constraints out of other observables.
- We don't *truly* know if they are actually sensitive to the physics we want to measure.
- Theoretical calculations sensitive to things we might not have under control.

Christine Nattrass (UTK), CIPANP 2018

The way forward

- Understand bias and background
 - What you see depends on what you look for
 - Listen to the data not what you want to hear
- Make quantitative comparisons to theory
 - Need realistic models where we can apply experimental methods to models
- Make more differential measurements
 - But figure out which observables are most sensitive

JETSCAPE

