Theoretical Insights Into Photochemical Reactions Initiated With Circularly Polarized Light

RICHARD M. PAGNI* and JOHN BARTMESS
Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600

Abstract

A theoretical analysis of several hypothetical photoreactions initiated with circularly polarized light has been carried out to determine the factors influencing the enantiomeric excess of recovered reactant. The anistropic g value is the dominant influence, although quantum yields and F values may be important in certain cases. Chirality 18:419-425, 2006. © 2006 Wiley-Liss, Inc.

KEY WORDS: asymmetric photochemistry; enantiomeric excess; mathematical analysis

Abstract

The ability to carry out organic reactions involving stereogenic centers with high enantiomeric excesses (ee's) is certainly one of the triumphs of modern organic chemistry. There is nonetheless the desire to improve these results by the use of new optically active reagents and catalysts. Circularly polarized light (CPL), a chiral form of light which can be used to initiate photochemical reactions, is potentially such a reagent. Unfortunately, it has rarely been used successfully to generate optically active products (or recovered reactant) with high ee's. ${ }^{1}$ Why is this so? Is there an innate impediment which prevents such photoreactions from working well? The first person to delve into these issues theoretically was Kagan. ${ }^{2}$ He showed that for a reaction of a racemate (R / S), the ee of recovered reactant goes to 1 as the amount of reactant goes to zero [see eq. (1) below]. The rate at which the ee goes to 1 depends on the magnitude of g, which is $2\left(\varepsilon_{R}-\varepsilon_{S}\right) /\left(\varepsilon_{R}+\varepsilon_{S}\right)$, where the epsilons are the extinction coefficients for the enantiomers absorbing CPL. Unfortunately, g is usually small because the numerator, which can be obtained from circular dichroism (CD), is usually small and the denominator, which can be obtained from UV-Vis spectroscopy $\left(\varepsilon_{R}+\varepsilon_{S}=2 \varepsilon\right.$, where ε is the extinction coefficient obtained from UV-Vis spectroscopy), is often large. The situation is no better if chiral products are produced in the reaction. For the photoequilibration of R and S, i.e., $R \rightleftharpoons S$, the situation seems better because R and S are not consumed [see eq. (2) below]. The ee of recovered reactant is still low because it also depends on g.

$$
\begin{align*}
& R \xrightarrow{h \nu\left(\varepsilon_{R}\right)} P_{R} \tag{1}\\
& S \xrightarrow{h V\left(\varepsilon_{S}\right)} P_{S} \\
& R \underset{h v\left(\varepsilon_{S}\right)}{h \nu\left(\varepsilon_{R}\right)} S \tag{2}
\end{align*}
$$

Recently, we published a paper describing a reaction which has characteristics of both of the above systems. ${ }^{3}$ In this reaction, the R and S enantiomers equilibrate © 2006 Wiley-Liss, Inc.
through an achiral intermediate such as a radical pair or ion pair [see eq. (3) below]. This intermediate in turn reacts to give product(s). Mathematical analysis of this system shows that the ee of recovered reactant depends on g, as in the previous two cases, and F, the fraction of the intermediate which reacts to give the product. Because F requires, at least in part, that the components making up the intermediate diffuse into the bulk solution, its value should depend on the viscosity of the solvent. If this is true, one then has a new method for controlling the ee of the recovered substrate. The imagined connection between F and solvent viscosity has been tested experimentally and shown not to hold. ${ }^{4,5}$ This is a consequence of the fact that the radical or ion pair reacts internally to give products far more readily than its components diffuse into the bulk solution.

There are many other photochemical schemes involving R and S which may afford higher predicted ee's of recovered reactant or chiral products than for the three schemes described above. It is the purpose of the present work to describe several of these systems mathematically and deduce if higher ee's indeed are possible. Even for photoreactions where the resultant ee's are low, the results are still useful. The evolution of the R and S enan-

[^0]tiomers and the ee as a function of time may be used to differentiate one mechanistic pathway from another.

RESULTS AND DISCUSSION

In addition to the three systems described above, there are many others involving enantiomers and CPL-some of which may have synthetic utility-that can be used to probe a photochemical mechanism, or probe the prebiotic origin of optically active molecules. Several of these systems have been worked out here in detail mathematically, and the results are shown in the sections below. Unlike our earlier publication in this area where significant mathematical detail was given, ${ }^{3}$ only the final results are given here; suitable graphs are also given when appropriate. The interested reader may consult our earlier paper ${ }^{3}$ to see how the mathematics are developed in detail. In all cases, the photochemical steps were assumed to be 1st order in the substrate, which can usually be attained by manipulation of substrate concentration and/or light intensity. ${ }^{6}$ All of the systems below yield sets of 1st-order simultaneous differential equations whose general solutions can be found in any elementary differential equations book. ${ }^{7}$ In cases where transient species are produced, the steady-state approximation was applied to them.

Photoequilibration of Enantiomers through an Achiral or Meso Compound

The photoequilibration of enantiomers R and S via an achiral or meso compound (M) is well known [see eq. (4) below]. The enantiomers of trans-cyclooctene, for example, interconvert photochemically with the achiral cis isomer [see eq. (5) below]. ${ }^{8}$ The trans compound is in fact synthesized by the photolysis of cis-cyclooctene in the presence of $\mathrm{CuCl} .{ }^{9}$ When cis-cyclooctene is photolyzed with CPL from a synchrotron light source, the resulting trans-cyclooctene is optically active. ${ }^{10}$ The reversible photochemically-induced electrocyclic ring closure of stilbenes (achiral compounds) yields chiral dihydrophenanthrenes with C_{2} symmetry [see eq. (6) below]. ${ }^{11}$ The photochemistry of suitable stilbenes with CPL and an oxidizing agent such as iodine has been used to make optically active helicenes. ${ }^{12}$ Certain fullerenes exist in chiral and achiral forms. C_{84}, for example, exists in many isomeric forms including R, S, and meso isomers. ${ }^{13}$ The chiral and meso C_{84} can interconvert, at least theoretically, via the so-called Stone-Wales transformation. ${ }^{13}$

$$
\begin{equation*}
R \underset{k_{1}}{\stackrel{k_{2}}{\rightleftharpoons}} M \underset{k_{2}^{\prime}}{\stackrel{k_{1}}{\rightleftharpoons}} S \tag{4}
\end{equation*}
$$

It is informative to begin the analysis of eq. (4) by considering what happens when the reactions are initiated with unpolarized light. Here, $k_{2}=k_{2}{ }^{\prime}=\varepsilon_{R, S} \phi_{R, S} k$, where $\varepsilon_{R, S}$ is the extinction coefficient of R and S and $\phi_{R, S}$ is the quantum yield for R and S going to M, and $k_{1}=\varepsilon_{M} \phi_{M} k$, where ε_{M} is the extinction coefficient of M and ϕ_{M} is the quantum yield of M going to R and S; k is a phenomeological constant common to $k_{2}, k_{2}{ }^{\prime}$, and $k_{1}{ }^{6}$ If $[M]=\mathrm{C}_{0}$ and $[R]=[S]=0$ at $t=0$, one obtains

$$
\begin{gather*}
{[M]=\frac{k_{2}}{2 k_{1}+k_{2}} C_{0}+\frac{2 k_{1}}{2 k_{1}+k_{2}} C_{0} e^{-\left(2 k_{1}+k_{2}\right) t}} \tag{7}\\
{[R]+[S]=\frac{2 k_{1}}{2 k_{1}+k_{2}} C_{0}-\frac{2 k_{1}}{2 k_{1}+k_{2}} C_{0} \mathrm{e}^{-\left(2 k_{1}+k_{2}\right) t} .} \tag{8}
\end{gather*}
$$

Chirality DOI 10.1002/chir
$[M]$ and $[R]+[S]$ reach their asymptotic values at $t=\infty$, the photostationary state (pss). At the pss we obtain

$$
\begin{equation*}
\left(\frac{[M]}{[R]+[S]}\right)_{\mathrm{pss}}=\frac{k_{2}}{2 k_{1}}=\frac{\varepsilon_{R \cdot S} \phi_{R \cdot S}}{2 \varepsilon_{M} \phi_{M}} \tag{9}
\end{equation*}
$$

which can also be obtained by other methods. ${ }^{14}$ Because $\varepsilon_{R, S}$ and ε_{M} can be obtained from UV spectroscopy, $\phi_{R, S} /$ ϕ_{M} can be obtained from eq. (9).
If one begins instead with $[R]=[S]=1 / 2 C_{0}$ and $[M]=0$ at $t=0$, the evolution of $[R],[S]$, and $[M]$ will of course be different than described in eqs. (7) and (8), but at the pss, the same concentrations of $[M],[R]$ and $[S]$ are obtained as in the previous case. More interesting results are obtained when one starts with optically active substrate: $[R]=C_{0},[S]=[M]=0$
at $t=0$, for example. Solution of the differential equations yields

$$
\begin{gather*}
{[M]=\frac{k_{2}}{2 k_{1}+k_{2}} C_{0}-\frac{k_{2}}{2 k_{1}+k_{2}} C_{0} e^{-\left(2 k_{1}+k_{2}\right) t}} \tag{10}\\
{[R]+[S]=\frac{2 k_{1}}{2 k_{1}+k_{2}} C_{0}+\frac{k_{2}}{2 k_{1}+k_{2}} C_{0} e^{-\left(2 k_{1}+k_{2}\right) t}} \tag{11}\\
{[R]-[S]=C_{0} e^{-k_{2} t}} \tag{12}
\end{gather*}
$$

These starting conditions yield a new time-dependent equation [eq. (12)] from which k_{2} can be obtained directly.

We have examined the photolysis of (-)-trans-cyclooctene in cyclopentane. Both the decay of $[R]-[S]$ and $[R]+[S]$ as a function of time are strictly first order, that is, plots of $\ln \left(\frac{[R]-[S]}{C_{0}}\right)$ versus t and $\ln \left(\frac{[R]+[S]}{C_{0}}\right)$ versus t are linear. In this latter case, this is only possible if $k_{2} \gg$ k_{1} or $\varepsilon_{R, S} \phi_{R, S} \gg \varepsilon_{M} \phi_{M}$. Details of these experiments will be published elsewhere. ${ }^{15}$

We may now consider what happens if the reactions in eq. 4 are initiated with CPL. Here, $k_{2} \neq k_{2}{ }^{\prime}$, with $k_{2}=\varepsilon_{R}$ $\phi_{R, S} k$ and $k_{2}^{\prime}=\varepsilon_{S} \phi_{R, S} k$. If $[M]=C_{0}$ and $[R]=[S]=0$ at $t=0$, the following equations result:

$$
\begin{gather*}
{[M]=\frac{k_{2} k_{2}^{\prime}}{r_{2} r_{3}} C_{0}+\frac{\left(k_{2}+r_{2}\right)\left(k_{2}^{\prime}+r_{2}\right)}{r_{2}\left(r_{2}-r_{3}\right)} C_{0} e^{r_{2} t}} \\
-\frac{\left(k_{2}+r_{3}\right)\left(k_{2}^{\prime}+r_{3}\right)}{r_{3}\left(r_{2}-r_{3}\right)} C_{0} e^{r_{3} t} \tag{13}\\
{[R]=\frac{k_{1} k_{2}^{\prime}}{r_{2} r_{3}} C_{0}+\frac{k_{1}\left(k_{2}^{\prime}+r_{2}\right)}{r_{2}\left(r_{2}-r_{3}\right)} C_{0} e^{r_{2} t}-\frac{k_{1}\left(k_{2}^{\prime}+r_{3}\right)}{r_{3}\left(r_{2}-r_{3}\right)} e^{r_{3} t},} \tag{14}\\
{[S]=\frac{k_{1} k_{2}}{r_{2} r_{3}} C_{0}+\frac{k_{1}\left(k_{2}+r_{2}\right)}{r_{2}\left(r_{2}-r_{3}\right)} C_{0} e^{r_{2} t}-\frac{k_{1}\left(k_{2}+r_{3}\right)}{r_{3}\left(r_{2}-r_{3}\right)} C_{0} e^{r_{3} t},} \tag{15}
\end{gather*}
$$

where

$$
\begin{align*}
r_{+/-}= & -\frac{k_{2}+k_{2}^{\prime}}{2}\left[\left(\frac{2 k_{1}}{k_{2}+k_{2}^{\prime}}\right)+1\right] \\
& \pm \frac{k_{2}+k_{2}^{\prime}}{2}\left[\left(\frac{2 k_{1}}{k_{2}+k_{2}^{\prime}}\right)^{2}+\left(\frac{g}{2}\right)^{2}\right]^{1 / 2} \tag{16}
\end{align*}
$$

with $r_{2}=r_{+}$the positive root, and $r_{3}=r_{-}$the negative root.

Unlike the cases with unpolarized light, the loss of $[M]$ and build up of $[R]+[S]$ are biexpotential. At the pss, where $[R]-[S]$ is at its maximum value, we obtain

$$
\begin{align*}
& \left(\frac{[M]}{[R]}\right)_{\mathrm{pss}}=\frac{\varepsilon_{R} \phi_{R, S}}{\varepsilon_{M} \phi_{M}} \tag{17}\\
& \left(\frac{[M]}{[S]}\right)_{\mathrm{pss}}=\frac{\varepsilon_{S} \phi_{R, S}}{\varepsilon_{M} \phi_{M}} \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{[R]}{[S]}\right)_{\mathrm{pss}}=\frac{\varepsilon_{S}}{\varepsilon_{R}} \tag{19}
\end{equation*}
$$

where ε_{M} is obtained by UV spectroscopy and ε_{R} and ε_{S} from a combination of UV spectroscopy and CD. Because $\phi_{R, S} / \phi_{M}$ can be determined independently from previously described experiments, one can calculate the pss ratios a priori. The maximum value of ee, which is attained at the pss, equals $-g / 2$. Thus, a low ee is expected in these cases because g is normally small. If one initiates the photoreactions with $[R]=[S]=(1 / 2) C_{0}$ and $[M]=0$, the concentrations of the three alkenes evolve differently as a function of time than when one starts with $[\mathrm{M}]=C_{0}$, but identical pss ratios and ee are obtained, as expected.

Interconversion of Enantiomers, Each Leading to a Product

The reaction scheme in which two species interconvert and also react to give products has been solved exactly. ${ }^{16}$ Of interest here is that when the interconverting species are enantiomers, each of which reacts photochemically to give a product [see eq. (20) below]. The enantiomers of binaphthyls, helicenes, biphenyls, and sulfoxides are known to interconvert thermally, ${ }^{17}$ as do the enantiomers of trans-cyclooctene $\left(k_{1}=k_{1}^{\prime}\right) .{ }^{18}$

$$
\begin{array}{ccc}
R & \stackrel{k_{1}}{\rightleftharpoons} & S \\
k_{2} \downarrow & & \downarrow k_{2}^{\prime} \tag{20}\\
P_{R} & & P_{S}
\end{array}
$$

When the photoreactions in eq. (20) are initiated with unpolarized light ($k_{2}=k_{2}^{\prime}=\varepsilon_{R, S} \phi_{R, S} k$) and $[R]=C_{0}$ and $[S]=0$ at $t=0$, the following solutions result:

$$
\begin{gather*}
{[R]+[S]=C_{0} e^{-k_{2} t},} \tag{21}\\
{[R]-[S]=C_{0} e^{-\left(2 k_{1}+k_{2}\right) t},} \tag{22}\\
\text { ee }=e^{-2 k_{1} t} \tag{23}
\end{gather*}
$$

Suitable plots give k_{1} and k_{2} directly. k_{1} can also be obtained from the kinetics of racemization of the substrate.

When the photoreactions in eq. (20) are initiated with $\operatorname{CPL}\left(k_{2}=\varepsilon_{R} \phi_{R, S} k ; k_{2}^{\prime}=\varepsilon_{S} \phi_{R, S} k\right)$, a more complicated time-dependent behavior of the various species results. If $[R]=[S]=(1 / 2) C_{0}$ at $t=0$, we obtain

$$
\begin{equation*}
\mathrm{ee}=\frac{\frac{g}{2}\left(-1+e^{\left(r_{2}-r_{1}\right) t}\right)}{\left\{\left(\frac{2 k_{1}}{k_{2}+k_{2}^{\prime}}\right)+Q^{1 / 2}\right\}-\left\{\left(\frac{2 k_{1}}{k_{2}+k_{2}^{\prime}}\right)-Q^{1 / 2}\right\} e^{\left(r_{2}-r_{1}\right) t}}, \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
r_{2}-r_{1}=-\left(k_{2}+k_{2}^{\prime}\right) Q^{1 / 2} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\left[\left(\frac{2 k_{1}}{k_{2}+k_{2}^{\prime}}\right)^{2}+\left(\frac{g}{2}\right)^{2}\right] \tag{26}
\end{equation*}
$$

It is clear from eq. (24) that the g value and the ratio $2 k_{1} /\left(k_{2}+k_{2}\right)$, dominate the time-dependent enantiomeric excess. For a given value of g and $2 k_{1} /\left(k_{2}+k_{2}{ }^{\prime}\right)$, ee reaches its maximum value at $t=\infty$. The behavior of eq. (24) is best illustrated in two graphs. In Figure 1, ee is plotted against time, with g kept constant at 0.1 but $2 k_{1} /\left(k_{2}+k_{2}{ }^{\prime}\right)$ varied. Because of the manner in which ee is defined, it can have positive or negative values between 0 and 1 . Here, ee becomes dramatically more negative as $2 k_{1} /\left(k_{2}+k_{2}{ }^{\prime}\right)$ decreases. Any equilibration of R and S. (i.e., $k_{1} \neq 0$) will inevitably reduce the absolute value of ee. One still can control the situation to a certain extent because the value of k_{1} is temperature dependent. In Figure $2,2 k_{1} /\left(k_{2}+k_{2}^{\prime}\right)$ is kept constant at 0.5 with g varied. In this case, ee increases as g increases. Thus, the ee of the system described in eq. (24) is still dominated by g, which (as noted above) is usually small.

A more interesting case develops if the equilibration of R and S is also photochemically induced. The more likely scenario here is that a single excited state of R or S is responsible for both the isomerization to the other enantiomer and the irreversible reaction to a product. If one defines ϕ_{1} as the quantum yield for $R \rightarrow S$ and $S \rightarrow R$ and ϕ_{2} as the quantum yield for $R \rightarrow P_{R}$ and $S \rightarrow P_{S}$, it follows that in eq. (20), $k_{1}=k_{1}^{\prime}=\phi_{1} \varepsilon_{R, S} k$ and $k_{2}=k_{2}^{\prime}=$ $\phi_{2} \varepsilon_{R, s} k$ when unpolarized light is used to initiate the reaction. Thus,

$$
\begin{gather*}
\frac{d[R]}{d t}=-\left(\phi_{1}+\phi_{2}\right) \varepsilon_{R, S} k[R]+\phi_{1} \varepsilon_{R, S} k[S], \tag{27}\\
\frac{d[S]}{d t}=\phi_{1} \varepsilon_{R, S} k[R]-\left(\phi_{1}+\phi_{2}\right) \varepsilon_{R, S} k[S] . \tag{28}
\end{gather*}
$$

If $[R]=R_{0}$ and $[S]=0$ at $t=0$, it follows that

$$
\begin{gather*}
{[R]+[S]=R_{0} e^{-\left(2 \phi_{1}+\phi_{2}\right) \varepsilon_{R, S} k t}} \tag{29}\\
{[R]-[S]=R_{0} e^{-\phi_{2} \varepsilon_{R, S} k t}} \tag{30}\\
\text { ee }=e^{-2 \phi_{1} \varepsilon_{R, S} k t} \tag{31}
\end{gather*}
$$

From suitable plots of eqs. (29) and (30), it is a simple matter to deduce ϕ_{1} / ϕ_{2}, which will be useful in the case described immediately below.

When the photoequilibration and irreversible photoreactions of R and S are initiated with CPL, $k_{1}=\phi_{1} \varepsilon_{R} k$, $k_{1}^{\prime}=\phi_{1} \varepsilon_{S} k, k_{2}=\phi_{2} \varepsilon_{R} k$, and $k_{2}^{\prime}=\phi_{2} \varepsilon_{s} k$. If at $t=0$, $[R]=[S]=1 / 2 C_{0}$, the following time-dependent ee of Chirality DOI 10.1002/chir

Fig. 1. ee vs. t^{\prime} in units of $\sec /\left(k_{2}+k_{2}{ }^{\prime}\right)$ for the reaction scheme in equation with $g=0.1$ and $2 k_{1} /\left(k_{2}+k_{2}{ }^{\prime}\right)$ varied from 0 to 10 .
recovered R / S is obtained:

$$
\begin{gather*}
\mathrm{ee}=\frac{\frac{g}{2}\left(2 \phi_{1}+\phi_{2}\right)\left(-1+e^{\left(r_{2}-r_{1}\right) t}\right)}{\left(\phi_{1}+T^{1 / 2}\right)-\left(\phi_{1}-T^{1 / 2}\right) e^{\left(r_{2}-r_{1}\right) t}}, \tag{32}\\
r_{2}-r_{1}=-k\left(\varepsilon_{R}+\varepsilon_{S}\right) T^{1 / 2} \tag{33}\\
T=\left[\phi_{1}^{2}+\phi_{2}\left(2 \phi_{1}+\phi_{2}\right)\left(\frac{g}{2}\right)^{2}\right] . \tag{34}
\end{gather*}
$$

In Figures 3 and 4, where ee is plotted versus time in units of $k\left(\varepsilon_{R}+\varepsilon_{S}\right) \quad(=100)$, eq. (33) is displayed graphically. From Figure 3, where ϕ_{1} and ϕ_{2} are each kept constant at 0.1 but g is varied, it is clear that ee goes up with g at a given time. Again, a large g value is essential in order to obtain a synthetically useful ee of recovered reactant. From Figure 4, where ϕ_{1} and ϕ_{2} are varied but the ratio ϕ_{1} / ϕ_{2} and g are held constant, it is apparent that one always obtains the same limiting ee.

Reaction Proceeding through Chiral Intermediates

In our earlier paper we assumed that the intermediate radical or ion pair is achiral. It is more likely, however, that the intermediate is chiral. There are various schemes

Fig. 2. ee vs. t^{\prime} in units of $\mathrm{sec} /\left(k_{2}+k_{2}^{\prime}\right)$ for the reaction scheme in equation with $2 k_{1} /\left(k_{2}+k_{2}^{\prime}\right)=0.5$ and g varied from 0.2 to 1.8 .

Fig. 3. ee vs. t^{\prime} in units of $\sec / \varepsilon_{R}+\varepsilon_{S} k$ for the reaction scheme in equation 20 (all steps photochemical) with $\phi_{1}=\phi_{2}=0.1$ and g varied from 0.2 to 1.8 .
one can imagine involving chiral intermediates, including the following, for which there is experimental evidence. Consider the case in which a racemate R / S reacts reversibly to give chiral intermediates I_{R} and I_{S}, respectively, which in turn equilibrate and yield products P_{R} and P_{S} [see eq. (35) below]. The solvolysis of 1-(4-methylphenyl) ethyl pentafluorobenzoate in trifluoroethanol-water in fact follows this reaction pathway. ${ }^{19}$ Here, I_{R} and I_{S} represent chiral ion pairs. In the photochemical case, I_{R} and I_{S} may also represent chiral radical pairs.

$$
R \begin{array}{cccc}
\underset{k_{1}}{\stackrel{k_{1}}{\rightleftharpoons}} & I_{R} & \stackrel{k_{2}}{\rightleftharpoons} & I_{S} \tag{35}\\
& k_{3} \downarrow & \stackrel{k_{-1}}{\rightleftharpoons} \\
& & \downarrow k_{3} & \\
& P_{R} & & P_{S} \\
& &
\end{array}
$$

As in the previous cases, let us first consider what happens when unpolarized light is used to initiate the photoreaction of an optically active substrate. Here, $k_{1}=k_{1}{ }^{\prime}=$ $\varepsilon_{R, S} \phi_{R, S} k$. If $[R]=C_{0}$ and $[S]=0$ at $t=0$, eqs. (36) and

Fig. 4. ee vs. t^{\prime} in units of $\sec /\left(\varepsilon_{R}+\varepsilon_{S}\right) k$ for the reaction scheme in equation 20 (all steps photochemical) with g and ϕ_{1} / ϕ_{2} held constant (at $0.3)$ and ϕ_{1} and ϕ_{2} varied.
(37) result. Suitable log plots versus time will give slopes that yield information on how I_{R} and I_{S} partition themselves between each other and to the product respectively. This is perhaps better seen in the following fashion: $F=k_{3} /\left(k_{-1}+k_{2}+k_{3}\right)=$ the fraction of I_{R} or I_{S} going to product, and $F^{\prime}=k_{2} /\left(k_{-1}+k_{2}+k_{3}\right)=$ the fraction of I_{R} going to I_{S} and vice versa, one can then reformulate eqs. (36) and (37) in terms of F and F^{\prime} [see eqs. (38) and (39) below]. If k_{1} can be determined independently, it is then possible to deduce F and F^{\prime} directly:

$$
\begin{gather*}
{[R]+[S]=C_{0} e^{-k_{1}\left(\frac{k_{3}}{k_{-1}+k_{3}}\right) t}} \tag{36}\\
{[R]-[S]=C_{0} e^{-k_{1}\left(\frac{2 k_{2}+k_{3}}{k_{-1}+2 k_{2}+k_{3}}\right) t}} \tag{37}\\
{[R]+[S]=C_{0} e^{-k_{1}\left(\frac{F}{1-F^{\prime}}\right) t}} \tag{38}\\
{[R]-[S]=C_{0} e^{-k_{1}\left(\frac{F+2 F^{\prime}}{1+F^{\prime}}\right) t}} \tag{39}
\end{gather*}
$$

When CPL is used to initiate the photoreaction of the racemic reactant, $k_{1}=\varepsilon_{R} \phi_{R, S} k$ and $k_{1}{ }^{\prime}=\varepsilon_{s} \phi_{R,}$. k. If $[R]=$ $[S]=C_{0} / 2$ at $t=0$, the following ee is obtained as a function of time [see eqs. (40)-(44) below]. A careful scrutiny of these equations shows that ee has the same formalism as seen in previous cases but is somewhat more complicated because ee now depends on g, F, and F^{\prime} :

$$
\begin{equation*}
\mathrm{ee}=\frac{\frac{g}{2}[a+2(1-a) b]\left[-1+e^{\left(r_{2}-r_{1}\right) t}\right]}{\left[(1-a) b+Q^{1 / 2}\right]-\left[(1-a) b-Q^{1 / 2}\right] e^{\left(r_{2}-r_{1}\right) t}}, \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\left[(1-a)^{2} b^{2}+\left(\frac{g}{2}\right)^{2} a\{a+2(1-a) b\}\right] \tag{41}
\end{equation*}
$$

$$
\begin{gather*}
r_{2}-r_{1}=-\left(k_{1}+k_{1}^{\prime}\right) Q^{1 / 2}, \tag{42}\\
a=\frac{k_{3}}{k_{-1}+k_{3}}=\frac{F}{1-F^{\prime}}, \tag{43}\\
b=\frac{k_{2}}{k_{-1}+2 k_{2}+k_{3}}=\frac{F^{\prime}}{1+F^{\prime}} . \tag{44}
\end{gather*}
$$

As also seen in previous cases, ee is strongly correlated with the value of g, the anistropic factor. Interestingly, the magnitudes of F and F^{\prime} have a complicated effect on the size of ee. As seen in Figure 5, for given values of g and F^{\prime}, as F becomes larger, the absolute value of ee by and large goes up, but not monotonically. For example, $F=0.45$ yields a larger absolute value of ee at all times than when $F=0.50$. A similar effect is seen in Figure 6, where g and F are held constant while F^{\prime} is varied. When comparing $F^{\prime}=0.1$ and 0.5 , for example, the absolute value of ee is smaller for $F^{\prime}=0.1$ at shorter times

Fig. 5. ee vs. t^{\prime} in units of $\mathrm{sec} /\left(k_{1}+k_{1}^{\prime}\right)$ for reaction scheme equation 35 with $F^{\prime}=0.45$ while F^{\prime} is varied.
but larger at longer times. The effect that viscosity will have on this system is thus hard to predict. Viscosity will influence F because it involves the components of I_{R} and I_{S} diffusing into the bulk solvent. Viscosity may not influence F^{\prime}, however, because this involves the interconversion of R and S without diffusion of their components diffusing into the bulk solution.

CONCLUDING REMARKS

In any asymmetric synthesis initiated with circularly polarized light which involves recovery of reactant, it is clearly desirable to maximize both ee and the amount of recovered reactant. For a reversible reaction, the reactant is not consumed, thus, ee reaches its maximum value at $t=\infty$. Unfortunately, this usually occurs at ee $=-g / 2$. For an irreversible reaction this is seemingly impossible, because ee $(=[R-S] /[R+S])$ increases as a function of time while recovered reactant $([R+S])$ decreases. One plausible way to handle this situation is to maximize the product of these two functions which is, of course, [$R-S]$. The greatest disparity between R and S normally occurs when ee is also equal to $-g / 2$. This analysis shows that there is no mathematical way to find an

Fig. 6. ee vs. t^{\prime} in units of $\mathrm{sec} /\left(k_{1}+k_{1}^{\prime}\right)$ for reaction scheme in equation 35 with $g=1.0$ and $F=0.1$ held constant while F^{\prime} is varied.

Chirality DOI 10.1002/chir
acceptable compromise between ee and the recovered reactant and that an empirical approach is likely to be required. For example, it may be acceptable to obtain an ee of -.90 and a recovery of $5-10 \%$ of starting material if alternate synthetic procedures are not available.

More can be done, however. Because g is so dominant in determining the size of ee, it is important to maximize g by careful selection of wavelength. Doubling the value of g will have a pronounced influence on the value of ee. When F values (which are partly viscosity dependent) are involved, it may be worthwhile to study the photoreaction as a function of temperature in a given solvent, because viscosity is temperature dependent, or in several solvents of similar polarity but of varying viscosity. Because quantum yields often appear in the mathematical expressions of ee as a function of time, it may be appropriate to vary the temperature of the photoreaction because quantum yields may also be temperature dependent.

There is also a potentially significant way to improve the ee greatly by considerably increasing the value of g. Shimizu has studied the photochemistry of racemic tartaric acid and several amino acids with very intense circularly polarized light generated from a XeF excimer laser. ${ }^{20-23}$ For example, with tartaric acid, which undergoes a two-photon photochemistry, one enantiomer is consumed while the other is unaffected when left-handed circularly polarized light is used while the opposite is observed when right-handed circularly polarized light is used. ${ }^{20-22}$ Similar behavior is seen with the amino acids. ${ }^{23}$ These observations are only possible if the multiphoton g values of the substrates are very large and approaching their maximum values of 2 . If Shimizu's observations are general, this will revolutionize asymmetric synthesis with circularly polarized light. Further research in the use of intense circularly polarized light in asymmetric synthesis is warranted.

Even if photochemistry initiated with circularly polarized light never becomes a general tool in asymmetric synthesis, it still may prove useful for proving reaction mechanisms. Different mechanisms will yield different ee-versus-time behaviors. Matching the theory to experiment will then reenforce one mechanic pathway at the expense of others.

ACKNOWLEDGMENT

This research was supported by the National Science Foundation.

LITERATURE CITED

1. Pagni RM, Compton RN. Is circularly polarized light an effective reagent for asymmetric synthesis? Mini-Reviews in Organic Chemistry 2005;2:203.
2. Balavone G, Moradpour A, Kagan HB. Preparation of chiral compounds with circularly polarized light: a model reaction for the prebiotic generation of optical activity. J Am Chem Soc 1974;96:5152.
3. Pagni RM, Bartmess J. Photochemistry of a racemate proceeding through radical or ion pairs. The effect of circularly polarized light on the enantiomeric excess of recovered reactant. Chirality 2003; 15:772. Erratum: Chirality 2004;16:137.
4. Gao F, Boyles D, Sullivan R, Compton RN, Pagni RM. The photochemistry of racemic and resolved 2-iodooctane. The effect of solvent polarity and viscosity on the chemistry. J Org Chem 2002;67:9361.
5. Gao F, Pagni RM, Compton RN. The multiphoton photochemistry of 2-iodooctane in methanol. Chem Commun 2003;1584.
6. Mauser M, Gauglitz G. Photokinetics: theoretical fundamentals and applications. In Compton RN, Hancock G, editors. Comprehensive chemical kinetics, Vol. 36. Amsterdam: Elsevier: 1998.
7. Martin WT, Reissner E. Elementary differential equations, 2nd ed. Reading, MA: Addision-Wesley; 1961.
8. Srinivasan R, Brow KH. Organic photochemistry with high energy (6.7 eV) photons: Cis \rightleftharpoons trans isomerism in cyclooctene. J Am Chem Soc 1978;100:2589.
9. Deyrup JA, Betkouski M. Alkene isomerization: an improved onestep synthesis of trans-cyclooctene. J Org Chem 1972;37:3561.
10. Inoue Y, Tsuneishi H, Haksushi T, Yagi K, Awazu K, Onuki H. First absolute asymmetric synthesis with circularly polarized synchotron radiation in the vacuum ultraviolet region: direct photoderacemization of (E)-cyclooctene. Chem Commun 1996;2627.
11. Horspool W, Armesto D. Organic photochemistry. New York: Ellis Horwood-PTR Prentice Hall; 1992, p. 91.
12. Bernstein WJ, Calvin M, Buchardt O. Absolute asymmetric synthesis. I. Mechanism of the photochemical synthesis of nonracemic helicenes with circularly polarized light. Wavelength dependence of the optical yield of octahelicene. J Am Chem Soc 1972;94:494.
13. Fowler PW, Manolopoulos DE, Ryan RP. Stone-Wales pyracylene transformations of the isomers of C_{84}. Chem Commun 1992;408.
14. Gilbert A, Baggott J. Essentials of Molecular Photochemistry. Boca Raton, FL. CRC Press: 1991. p 230.
15. Gao F, Li RH, Compton RN, Pagni RM. The photochemistry of optically active (E)-cyclooctene: lamp versus laser. Mendeleev Commun 2004;14:297.
16. Seeman JI. Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett/Winstein-Holness kinetics. Chem Rev 1983;83: 83.
17. Eliel EL, Wilen SH. Stereochemistry of organic compounds. New York: Wiley: 1994. p 426-440.
18. Cope AC, Pawson BA. Molecular asymmetry of olefins. IV. Kinetics of racemization of (+ or -)-trans-cyclooctene. J Am Chem Soc 1965; 87:3649.
19. Tsuji Y, Mori T, Totera MM, Richard JP. Dynamics of reaction of ion pairs in aqueous solution: racemization of the chiral ion pair intermediate of solvolysis of (S)-1-(4-methylphenyl)ethyl pentafluorobenzoate. J Phys Org Chem 2003;16:484.
20. Shimizu T, Kuwanishi S. An efficient enantiomeric enrichment of tartaric acid with a highly intense circularly polarized light. Chem Commun 1996;819.
21. Shimizu Y, Kawanishi S. Laser-induced enantio-differentiating reaction of tartaric acid using high-intensity circularly polarized light. Chem Commun 1996;1333.
22. Shimizu Y. Laser-induced enantio-enrichment of tartaric acid via a multiphoton absorption process. Perkin Trans 1997;1:1275.
23. Shimizu Y. Enantioenrichment of α-amino acids with high-intensity excimer laser. Laser Chem 1999;18:143.

[^0]: This research was funded by the National Science Foundation.
 *Correspondence to: Richard M. Pagni, University of Tennessee, Knoxville, TN 37996-1600. E-mail: rpagni@utk.edu
 Received for publication 29 March 2005; Accepted 22 December 2005 DOI: 10.1002/chir. 20275
 Published online 12 April 2006 in Wiley InterScience (www.interscience.wiley.com).

