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ABSTRACT It has been consistently demonstrated
that human proximal limb elements exhibit negative
allometry, while distal elements scale with positive al-
lometry. Such scaling implies that longer limbs will
have higher intralimb indices, a phenomenon not
borne out by empirical analyses. This, therefore, cre-
ates a paradox within the limb allometry literature.
This study shows that these apparently conflicting
results are the product of two separate phenomena.
First, the use of the geometric mean of limb elements
produces allometry coefficients that are not independ-
ent, and that when using ordinary least squares
regression must yield an average slope of one. This
phenomenon argues against using the geometric mean
as a size variable when examining limb allometry.

Researchers have argued that humans have significant
limb segment length variance. Many studies of hominid
limbs have implicated thermoregulation, nutrition, loco-
motion, and ancestry as influential factors on both intra-
limb proportions (i.e., brachial and crural indices) and
relative limb length (e.g., cormic index). Following
Allen’s “rule” and the “thermoregulatory imperative”
(Mayr, 1956; Ruff, 1991, 1993), studies of samples from a
global distribution have demonstrated an empirical, cli-
nal pattern in intralimb proportions among modern
humans and other hominids (Trinkaus, 1981; Ruff, 1994;
Holliday, 1997, 1999; Auerbach, 2007; Temple et al.,
2008). Moreover, the majority of these studies implicate
climatic factors—especially temperature—as an influen-
tial factor in the development of these clines. Additional
studies have shown, however, that nutritional and stress
factors likely affect total limb length, as well as the pro-
portion of limb length to stature (Takamura et al., 1988;
Jantz and Jantz, 1999; Bogin et al., 2002; Malina et al.,
2004; cf. Auerbach, 2010a), though these may be par-
tially dependent on individual genetics (Golden, 1994).
In fact, recent studies strongly indicate a hereditary
component to the development of intralimb indices dur-
ing primary growth (Eleazer et al., 2010; Temple et al.,
in review), while the relative length of limbs to measures
of body length (stature or torso length) vary throughout
ontogeny (Humphrey, 1998; Bass et al., 1999; Rulff,
2007).

Allen’s rule and thermoregulation, as currently con-
ceived, argue that total surface area relative to vol-
ume—and therefore total extremity length—is the de-
terminant factor in heat dissipation. That is, individu-
als with longer limbs relative to torso length or overall
body size (i.e., mass, stature) dissipate heat more effi-
ciently than individuals with shorter relative limb
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While the employment of relevant dimensions inde-
pendent of those under analysis to calculate the geo-
metric mean—as suggested by Coleman (Am J Phys
Anthropol 135 (2008) 404-415)—may be a partial
method for resolving the problem, an empirically
determined, independent and biologically relevant size
variable is advocated. If stature is used instead of the
geometric mean as an independent size variable, all
major limb elements scale with positive allometry. Sec-
ond, while limb allometry coefficients do indicate dif-
ferential allometry in limb elements, and thus should
lead to some intralimb index allometry, this pattern
appears to be attenuated by other sources of limb
element length variation. Am J Phys Anthropol
144:382-391, 2011. ©2010 Wiley-Liss, Inc.

lengths. This relationship was demonstrated in morpho-
logical changes following migration of modern humans
to Europe (Holliday, 1997), although this pattern has
not been found as clearly in the Americas (Auerbach,
2007; Auerbach and Ruff, 2010). Intralimb indices also
have moderately high correlations with latitude and cli-
matic factors (Holliday, 1997; Auerbach, 2007).
Although both limb lengths and limb indices exhibit
relationships with climate and latitude, limb lengths
and limb indices do not show a strong relationship with
each other (Fig. 1 in Holliday, 1999), with the possible
exception of crural indices among very tall individuals
(see below).

While at first this relationship may appear paradoxi-
cal, as demonstrated by Holliday and Ruff (2001), the
relative scaling and contribution of the proximal versus
distal element in determining indices is obscured in the
calculation of brachial or crural indices. Stated simply, a
great amount of variation in the location of the division
between proximal and distal elements within limbs (e.g.,
the elbow) occurs among individuals, even within a sin-
gle population. Ironically, the Ruff and Holliday (2001)
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Fig. 1. Prediction of bone lengths for individuals following
allometric and isometric trends. The solid line represents the
empirically determined population allometric trend. The dashed
line is the simulated isometric trend between tibial length and
stature. The filled square is the predicted tibial length for an
individual with a given stature given an isometric relationship,
while the open triangle is the tibial length for the same individ-
ual predicted from the observed allometric trend.

paper and subsequent studies (Sylvester et al., 2008;
Temple et al., 2008; Auerbach, 2010a) have introduced a
paradox in documenting scaling within limbs: proximal
elements have been shown to have negative allometry or
isometry, while distal elements have positive allometry.
Because of the different amounts of variance in proximal
versus distal elements (Holliday and Ruff, 2001), the
allometric patterns lead to a conclusion that longer limbs
inherently have higher intralimb indices; the numera-
tors in indices—distal elements—increase disproportion-
ately relative to the denominator values, the proximal
elements. A derivative paradox resulting from these stud-
ies, as well as previous allometric analysis (Jantz and
Jantz, 1999), suggests that taller individuals should have
higher crural indices due to positive allometry in the tibia,
though this is not always the case (Auerbach, 2010b).

The purpose of this study was to investigate and
resolve this paradox of differential allometry within
limbs that does not result in intralimb index allometry.
This is an issue of body size allometry as defined by
Smith (1993), even though it is intraspecific. In the case
of all of the aforementioned studies that present the par-
adox, allometries were calculated using the geometric
mean of the four limb lengths under consideration (fol-
lowing Mosimann, 1970; Mosimann and James, 1979) or
using dJolicoeur’s (1984) multivariate test. As demon-
strated by Coleman (2008), however, the effects of
dimensions used to calculate the geometric mean can
create bias in studies of scaling. Indeed, the geometric
mean may not be a biologically meaningful, independent
morphological dimension (Jungers et al., 1995). The geo-
metric mean depends on the biological relevance of the
dimensions used in its calculation, and the allometric
relationships of these variables to each other and body
size, as will be explored in this article. That is, any
interpretation about the allometry of dimensions is de-
pendent on the variables used to calculate the geometric
mean. We therefore hypothesize that the apparent para-
dox may, in part, be a product of using the geometric
mean in investigating allometry. For these reasons, the
allometry of limb element lengths is assessed against
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stature as well as the geometric mean. The results of
these two scaling analyses were then compared to eluci-
date the influence different scaling factors have on mod-
els of allometry within the limbs. Furthermore, limb
allometries may be statistically significant but result in
small morphological differences obscured by other sour-
ces of variation (e.g., stochasticity in limb dimensions
arising from asymmetry). These other sources of varia-
tion may obscure allometric patterns between intralimb
indices and limb lengths. Therefore, the morphological
magnitude of any observed allometries will also be
examined.

MATERIALS AND METHODS
Sample and measurements

A total of 1,007 adult indigenous American skeletons
(560 males, 447 females) dating to before European colo-
nization were measured for this study by one of us
(BMA). The majority of these (967 skeletons) are identi-
cal to the sample used in Auerbach and Ruff (2010); see
Table 1 in that paper for a list of sites sampled. The
additional skeletons (25 males, 15 females) were added
from the Huari necropolis located at Ancon, Peru,
housed at the Field Museum of Natural History (Chi-
cago, IL). Limb dimensions used in the calculation of
brachial index (humerus maximum length and radius
maximum length) and crural index (femoral bicondylar
length and tibial maximum length) were taken on all
skeletons, bilaterally where possible to minimize the
effects of directional asymmetry (Auerbach and Ruff,
2006). As demonstrated by various authors in recent
papers, humans in the Americas demonstrate the great-
est range of human intralimb proportions, or at least
ranges comparable with those observed in the Old World
(Auerbach, 2007; Auerbach and Ruff, 2010; King, 2010);
indigenous humans from the Americas are deemed suffi-
ciently diverse to fully assess the allometry paradox. Sex
and age were estimated using the methods described in
Auerbach and Ruff (2010). All skeletons presented the
necessary elements for the estimation of living stature
using the revised Fully anatomical technique (Raxter
et al., 2006, 2007), which were calculated for each.

Although body mass is generally considered to be the
scaling factor of choice in size allometry (Jungers, 1985;
Hens et al., 2000), stature is used herein. Stature was
chosen as it is in the same dimensional space as the lin-
ear limb element dimensions. Body mass may be esti-
mated from the femoral head (Auerbach and Ruff, 2004),
and so the diameter femoral head could be used as an al-
ternative to avoid taking the cube root of a dimension
(body mass) that would itself need to be estimated. How-
ever, the femoral head has its own positive allometry in
relation to body mass (Ruff et al., 1991), making it a
poor choice as an independent scaling factor. In addition,
as the Fully technique takes proportions into account
in its calculation, its use as a stature estimate
minimizes potential tautologies that would arise from
mathematically (regression) derived size measurements,
as well as preventing the use of a nonindependent scal-
ing factor for intralimb indices.

Analyses

Effect of independent size variables on allometry
coefficients. To explore the effect of using different size
variables as independent variables in allometric regression
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analyses, bone lengths (humerus, radius, femur, tibia) were
regressed against both the geometric mean of the four bone
lengths and statures in natural log space. We used ordinary
least squares (OLS) regression, which is appropriate when
one variable is unquestionably the criterion (Smith, 2009),
and then compared the allometry coefficients using the two
size variables. In all analyses, isometry is indicated by a
slope of one. This and all other analyses were carried out
separately for male and female samples.

Morphological comparison of allometric (empiri-
cal) and isometric (simulated) populations. Another
goal was to assess the morphological consequences of
allometric trends within our populations. To do this, we
used two populations: one in which individuals followed
the empirically determined population allometric trends;
the other in which all individuals were created using
simulated isometric trends.

Each bone length was regressed against stature in natural
log space to determine the empirical allometric slopes. We
then predicted logged bone lengths from the resulting regres-
sion equations and the logged statures from our samples (i.e.,
we calculated expected values) (Fig. 1). As noted earlier, OLS
regression was utilized for this procedure as it has been
shown that Model I regression techniques are preferable in
cases of prediction (Hens et al., 2000; Smith, 2009). We then
simulated an isometric population using the same logged
statures, but under the requirement of isometry. To do this,
we created isometric regression equations relating logged
bone lengths to logged stature, which by definition had
regression slopes of one. Then we established intercepts such
that the regression lines passed through the population
means, and then calculated isometric bone lengths from the
simulated isometry slopes using logged statures (Fig. 1).

The result was two sample populations in which an indi-
vidual (with the same stature in both populations) had two
different simulated lengths for the same bone. One length
was a natural log of the expected value for a given stature
(i.e., falling on the regression line) as determined the em-
pirical population allometric trends; the other length was
predicted under the principle of isometry. As all predictions
were calculated in natural log space, we took the antilog of
predicted values to get actual bone lengths. We then fol-
lowed procedures (smearing estimator, ratio estimate, and
quasi-maximum likelihood estimator) advocated by Smith
(1993) to estimate a correction factor for antilog bias,
although these did not produce an appreciable difference
in estimates (less than 0.5 mm in all cases).

To determine the actual impact of the empirically
determined allometry on bone lengths, we subtracted
bone lengths of the isometrically created individual
within a pair from the allometrically created individual.
Summary statistics for both signed and absolute differ-
ences are reported.

The effect of increasing population variance on
intralimb index correlations. The next goal was to
determine if other unspecified sources of limb bone vari-
ation (e.g. random variation, fluctuating asymmetry, or
measurement error) could obscure allometric signals
when regressing intralimb indices (the quotient of distal
and proximal elements) against limb lengths (the sum of
distal and proximal elements). This was modeled start-
ing with expected values for bone lengths for each indi-
vidual based on the empirically determined allometric
regression equations relating stature to bone lengths in
natural log space (Fig. 2). We then artificially increased
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Fig. 2. Simulations of population variance with increasing
residuals. Residuals are based on different proportions of the
empirically determined standard deviation of the regression
residuals: (A) a proportion of 0; (B) a proportion of 0.1 (i.e., 10%
of the observed standard deviation); (C) a proportion of 1.1 (i.e.,
110% of the observed standard deviation).

variation in bone length by adding modeled residuals to
the expected bone length values. Simulated residual val-
ues were based on the standard deviation of the original
data regression residuals and were generated in Matlab
R2009b using pseudorandom number generator (Matlab
v 7.9; Mathworks). These residuals were modeled such
that they would have a simulated standard deviation
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TABLE 1. Female allometry coefficients

Scaling factor Humerus Radius Femur Tibia
Stature 1.03 1.25 1.12 1.28
Geometric mean 0.89 1.12 0.90 1.08
TABLE 2. Male allometry coefficients
Scaling factor Humerus Radius Femur Tibia
Stature 1.03 1.21 1.17 1.35
Geometric mean 0.89 1.05 0.94 1.11
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Fig. 3. Male allometry coefficients. The dashed line links
the coefficients (open circles) of allometry coefficients calcu-
lated using the geometric mean. Allometry coefficients calcu-
lated using stature as the scaling factor (filled boxes) are con-
nected using a solid line.

that was a specific proportion of the standard deviation
of the original, empirically determined allometry resid-
uals. This proportion was varied from 0 to 2 times the
observed standard deviations at 0.1 increments. For
instance, in the second modeling simulation, the modeled
residuals had a standard deviation that was 0.1 (i.e.
10%) of the standard deviation of the original data resid-
uals (Fig. 2). In the first simulation, when the proportion
of zero was used (i.e., all bone lengths had residuals of
zero, and so plotted on the regression slope), the allomet-
ric trend explained 100% of the variance in the simu-
lated bone lengths. Increasing the magnitude of the
residuals increased the variance in bone length not at-
tributable to the allometric trend.

The modeled bone lengths (expected lengths plus mod-
eled residuals) were regressed against statures in natu-
ral log space to ensure that simulated populations
reflected the original population allometry. Simulated
populations were discarded if the slope of the modeled
data fell outside the 95% confidence interval of the origi-
nal data regression slope. We took the antilog of the
modeled limb lengths and of statures, and then calcu-
lated Spearman’s rho correlation coefficients between
proximal and distal limb element lengths (e.g., humerus
and radius), each bone length and stature, and intralimb
index and limb length (e.g., crural index and the sum of
femoral and tibial length). For each of these compari-
sons, we averaged the correlation coefficient of 1,000
populations simulated at each of the standard deviation
proportions. Thus, in total, 21,000 populations were
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Fig. 4. Female allometry coefficients. The dashed line links
the coefficients (open circles) of allometry coefficients calcu-
lated using the geometric mean. Allometry coefficients calcu-
lated using stature as the scaling factor (filled boxes) are
connected using a solid line.

simulated, 1,000 at each of 21 different magnitudes of
modeled residuals.

All statistics and simulations were conducted using
Matlab R2009b (Matlab v 7.9; Mathworks).

RESULTS

Female and male allometry coefficients for all limb
bone lengths regressed against the geometric mean of
bone lengths and stature are provided in Tables 1 and
2 and in Figures 3 and 4. The allometric patterns for
the limbs are similar using either stature or geometric
mean as the size variable, although absolute values are
quite different. For the male sample, the pattern of rel-
ative allometry among the limbs remains exactly the
same independent of which size variable is used (Fig.
3). The male humerus coefficient is the lowest, followed
increasingly by the femur, radius and tibia. In the
female sample, the relative values of the coefficients
change slightly between the size variables (Fig. 4).
Using stature, the pattern follows the male pattern
(humerus < femur < radius < tibia), but when using
the geometric mean, the radius appears slightly more
positively allometric than the tibia. In both the male
and female sample, the use of the geometric mean as
the size variable changes the absolute value of the al-
lometry coefficients; utilizing the geometric mean
translates the coefficients down from their values rela-
tive to stature. A consequence of this translation is
that they have a mean of one, which has important
implications for the use of the geometric mean (see the
Discussion).

Summary statistics for the morphological difference
between limb lengths predicted based on stature and ei-
ther population allometric trends or isometric scaling
are provided in Tables 3 and 4. Included are results for
both directional (signed) and absolute differences. For
both male and female samples the mean signed differ-
ence is small, less than 0.3 mm. Mean absolute differen-
ces, however, are larger and range from just above 0.3
mm up to approximately 4.5 mm. While mean values are
all subcentimeter, maximum values indicate that in
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TABLE 3. Summary statistics for morphological differences between allometrically and isometrically predicted limb lengths
females (mm)

Humerus Radius Femur Tibia
ABS SIGN ABS SIGN ABS SIGN ABS SIGN
Mean 0.26 0.01 1.77 0.10 1.60 0.09 3.08 0.18
Minimum 0.00 -0.84 0.00 —5.70 0.00 -5.17 0.01 —9.87
Maximum 1.03 1.03 7.21 7.21 6.44 6.44 12.53 12.53
Standard deviation 0.19 0.32 1.34 2.22 1.20 2.00 2.33 3.86

ABS, absolute differences; SIGN, signed differences. Signed differences = allometric predicted — isometric predicted.

TABLE 4. Summary statistics for morphological differences
between allometrically and isometrically predicted limb lengths
males (mm)

Humerus Radius Femur Tibia
ABS SIGN ABS SIGN ABS SIGN ABS SIGN
Mean 0.33 0.02 1.75 0.10 242 0.14 4.35 0.27
Minimum 0.00 —1.17 0.00 —6.19 0.01 —8.60 0.01 —15.24
Maximum 1.41 141 7.66 7.66 10.57 10.57 19.22 19.22
Standard 0.25 0.41 1.34 2.20 1.85 3.05 3.34 5.48
deviation

ABS, absolute differences; SIGN, signed differences.
Signed differences = allometric predicted — isometric predicted.

some cases the difference between allometrically and iso-
metrically generated individuals is quiet large, close to
20 mm. This is, however, an extreme case, if the largest
1% of absolute differences are removed, then the largest
value is approximately 13 mm.

As described in the Materials and Methods, correlation
coefficients were determined between various dimensions
using simulations of different data dispersions around the
allometric regression slope; these consist of regression
residuals calculated from proportions of the standard devi-
ation of the empirically determined residuals. The mean of
these, calculated from 1,000 simulated populations, are
presented in Tables 5 and 6, as well as Figures 5 through
8. Table 5 have the correlations for the female upper limb
and lower limb simulations (visually demonstrated in Figs.
5 and 6), while Table 6 have the correlations for the male
simulations (shown in Figs. 7 and 8). In all cases it is appa-
rent that although proximal and distal limb elements can
maintain relatively high correlations with stature (Spear-
man’s p = 0.6-0.8), correlations between proximal and dis-
tal limb elements decline more rapidly as the modeled
residuals become larger. Even more striking is the precipi-
tous decline in correlations between intralimb index and
limb length. When the simulated residuals are only 0.5
(50% of the standard deviation) of that observed in the em-
pirical data, the correlations between intralimb index and
limb length are already at or below 0.40. These correlations
continue to decline rapidly approaching approximately p =
0.15. Even when the modeled residuals are of the same
magnitude as the original data (proportion = 1, or the
observed standard deviation), the correlation between
intralimb index and total limb length is about 0.20.

DISCUSSION

Allometric coefficients calculated using the geometric
mean corroborate the patterns shown by all of the previ-
ous studies of limb allometry discussed in the Introduc-
tion. The results also show that the choice of the scaling
factor has an important effect on the concluded pattern
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of allometry within limbs. Allometry coefficients of scal-
ing limb element lengths against stature and against the
geometric mean yield similar patterns overall, though
the actual coefficients differ notably. Importantly, when
scaled against the geometric mean, the allometry coeffi-
cients yield positive (e.g., radius) and negative (e.g., hu-
merus) values, while these same bones all demonstrate
positive allometries when scaled against stature. As stat-
ure is at least partially independent of the lengths of
limb bone elements, and therefore what we argue to be a
better indicator of size, this discrepancy is striking. Yet,
which pattern reflects biological reality?

While the geometric mean is regarded a good approxi-
mation of size in the absence of empirically measured
dimensions, such as body mass (Mosimann, 1970; Falsetti
et al., 1993), it is fundamentally a mathematical construct
of the dimensions that are employed in its calculation.
The results presented above indicate that scaling by the
geometric mean of the dimensions of interest may gener-
ate allometric coefficient patterns that match those calcu-
lated using other scaling factors, though the values are
transposed due to the nature of the geometric mean. That
is, all of the coefficients calculated using the geometric
mean as the size variable must average to one when
using OLS regression; the mathematical proof for this
phenomenon is provided in the Appendix at the end of
this article. The general conclusion from this proof is that
any positive slopes for dimensions calculated against the
geometric mean necessitate negative slopes from other
dimensions. This result would be true using other regres-
sion procedures (e.g. reduced major axis) or multivariate
techniques (principal components analysis) although the
mathematical relationship would be different. Coleman
(2008) also demonstrated that the choice of dimensions
could bias the results of analyses when using the geomet-
ric mean. His recommendation was to choose dimensions
that are independent of dimensions under analysis (while
remaining relevant to the representation of size) to calcu-
late the geometric mean. While this offers a potential so-
lution, the dimensions used to calculate the geometric
mean may have their own allometric relationship relative
to real biological size. As noted in the Materials and
Methods, for example, femoral head—though a linear
dimension—would be a poor scaling factor as it has a
known (positive) allometry relative to body mass. In such
a case, it would be difficult to determine which variable
was driving any found allometry, the variables of interest
or the variables used to calculate the geometric mean.

The implications of the proof and of the observed pattern
argue against the use of the coefficient values generated
using the geometric mean. Stature, which is used as an al-
ternative dimension, provides an independent and biologi-
cally meaningful measurement against which linear dimen-
sions may be scaled. Indeed, the resulting coefficients from
scaling against stature are more easily interpreted: all limb
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TABLE 5. Female simulation results for brachial index and crural index

Correlation coefficient (p)

Between radius
and humerus

Proportion of
standard deviation

Between humerus
and stature

Between brachial index
and upper limb length

Between radius
and stature

0.0 1.00 1.00 1.00 1.00
0.1 0.99 1.00 1.00 0.88
0.2 0.98 0.99 0.99 0.68
0.3 0.95 0.98 0.97 0.53
0.4 0.92 0.96 0.96 0.43
0.5 0.88 0.94 0.93 0.36
0.6 0.84 0.92 0.91 0.32
0.7 0.79 0.90 0.88 0.28
0.8 0.74 0.87 0.85 0.25
0.9 0.69 0.84 0.82 0.24
1.0 0.65 0.82 0.79 0.22
1.1 0.60 0.79 0.76 0.21
1.2 0.56 0.76 0.74 0.20
1.3 0.52 0.74 0.71 0.19
14 0.48 0.71 0.68 0.18
1.5 0.45 0.69 0.66 0.18
1.6 0.42 0.66 0.63 0.17
1.7 0.39 0.64 0.61 0.17
1.8 0.36 0.62 0.59 0.17
1.9 0.34 0.60 0.57 0.17
Correlation coefficient (p)
Between tibia Between femur Between tibia Between crural index
and femur and stature and stature and lower limb length
0.0 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 0.86
0.2 0.99 0.99 0.99 0.65
0.3 0.97 0.99 0.99 0.50
0.4 0.95 0.98 0.97 0.40
0.5 0.93 0.97 0.96 0.33
0.6 0.90 0.95 0.95 0.29
0.7 0.87 0.94 0.93 0.26
0.8 0.84 0.92 0.91 0.24
0.9 0.81 0.90 0.89 0.22
1.0 0.77 0.89 0.87 0.20
1.1 0.73 0.87 0.85 0.19
1.2 0.70 0.85 0.82 0.18
1.3 0.66 0.83 0.80 0.17
14 0.63 0.81 0.78 0.17
1.5 0.60 0.79 0.76 0.16
1.6 0.57 0.77 0.74 0.16
1.7 0.54 0.75 0.72 0.15
1.8 0.51 0.73 0.70 0.15
1.9 0.48 0.71 0.68 0.15

elements demonstrate some positive allometry, and thus
taller individuals have proportionately longer limbs overall
as shown in previous studies (e.g., Takamura et al., 1988;
Jantz and Jantz, 1999; Auerbach, 2010b).

Although a partial explanation of the paradox has
been shown to be a consequence of the mathematics
behind the geometric mean, the use of stature as a scal-
ing factor continues to demonstrate more positive allom-
etry in distal elements compared to proximal elements.
This differential allometry would still lead to changes in
intralimb indices with changes in limb length. As such,
the question remains whether the morphological mani-
festations of the allometry in bone dimensions are suffi-
cient to create observable allometry in intralimb indices?

Comparisons of observed deviations from isometry (Tables
3 and 4) indicate that mean absolute differences are gener-
ally below 0.5 cm (matching the results of Sylvester et al.,
2008). In specific cases, however, the limb length deviations
are as great as 2 cm, a difference much larger than that

found by Sylvester et al. (2008). Even excluding the largest
1% of differences, those found here are higher than those
reported by Sylvester et al. (2008), who report values from
+3 standard deviations of size, and thus should be compara-
ble to the maximum values presented here. There are three
possibilities that may contribute to these different results.
First, Sylvester et al. (2008) used principal components
analysis to create their isometric and allometric individuals,
and so used the geometric mean as the size-scaling variable,
whereas stature estimates were used as the size-scaling
variable here. Although the use of the different size varia-
bles produces similar relative allometry coefficients, their
precise values change slightly; coefficients calculated using
stature may be slightly greater. Second, Sylvester et al.
(2008) created individuals that represent up to three stand-
ard deviations of size. The analysis in this article includes
individuals that are beyond three standard deviations, as
they were modeled from the total sample and thus provided
extreme cases. Finally, and likely the most important con-
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TABLE 6. Male simulation results for brachial index and crural index

Correlation coefficient (p)

Between radius
and humerus

Proportion of
standard deviation

Between humerus
and stature

Between brachial index
and upper limb length

Between radius
and stature

0.0 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 0.87
0.2 0.98 0.99 0.99 0.66
0.3 0.96 0.98 0.98 0.51
0.4 0.94 0.97 0.97 0.41
0.5 0.90 0.95 0.95 0.34
0.6 0.87 0.93 0.93 0.29
0.7 0.83 0.91 0.91 0.26
0.8 0.79 0.89 0.88 0.23
0.9 0.74 0.87 0.86 0.21
1.0 0.70 0.84 0.83 0.19
1.1 0.66 0.82 0.80 0.18
1.2 0.62 0.79 0.78 0.17
1.3 0.58 0.77 0.75 0.16
14 0.55 0.75 0.73 0.15
1.5 0.51 0.72 0.71 0.14
1.6 0.48 0.70 0.68 0.14
1.7 0.45 0.68 0.66 0.14
1.8 0.42 0.66 0.64 0.13
1.9 0.39 0.64 0.62 0.13
Correlation coefficient (p)
Between tibia Between femur Between tibia Between crural index
and femur and stature and stature and lower limb length
0.0 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 0.91
0.2 0.99 1.00 1.00 0.75
0.3 0.98 0.99 0.99 0.60
0.4 0.97 0.98 0.98 0.49
0.5 0.95 0.97 0.97 0.41
0.6 0.93 0.96 0.96 0.36
0.7 0.90 0.95 0.95 0.31
0.8 0.88 0.94 0.94 0.28
0.9 0.85 0.92 0.92 0.25
1.0 0.82 0.90 0.90 0.23
1.1 0.79 0.89 0.89 0.21
1.2 0.76 0.87 0.87 0.19
1.3 0.73 0.85 0.85 0.18
14 0.70 0.83 0.83 0.17
1.5 0.67 0.82 0.82 0.16
1.6 0.64 0.80 0.80 0.15
1.7 0.61 0.78 0.78 0.15
1.8 0.58 0.76 0.76 0.14
1.9 0.55 0.75 0.74 0.13

tributing factor, is that Sylvester et al. (2008) created indi-
viduals using sex-combined samples whereas this paper’s
analyses were conducted by sex. Sylvester et al. (2008) dem-
onstrate that while males and females often share common
allometry coefficients, they have different intercepts in mul-
tivariate space. Allometry coefficients for sex-combined sam-
ples where males and females have different intercepts (de-
spite common allometry coefficients) will produce a sex-com-
bined allometry coefficient that differs from each of the sex-
specific samples.

The reason interlimb indices do not exhibit strong allomet-
ric patterns is demonstrated by the effect that the variance
around the slopes have on intralimb correlations. In all sim-
ulations (Tables 5 and 6), as variance increases, the correla-
tion coefficient between stature and individual limb elements
does not decrease below 0.57, even with twice the standard
deviation observed in the actual data. Importantly, when the
modeled residuals reach the magnitude of the original em-
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pirical data, the simulated data have correlations that mirror
those of the empirical data. We conclude, then, that the para-
dox is fully resolved by these simulations.

It is not surprising that the relationship between prox-
imal and distal elements decrease more precipitously, as
increasing the standard deviation results in more inde-
pendent variation between element lengths. Longer
humeri may necessitate longer radii, for example, but
there is considerable autonomy in the relationship
between these lengths. Indeed, the slightly lower correla-
tions between distal elements and stature than the cor-
relations between proximal elements and stature may be
a consequence of greater variance in distal elements, as
shown by Holliday and Ruff (2001). This also likely con-
tributes to some of the greater independence in the
lengths of elements within the same limb, assuming
the higher variance in distal element lengths decreases
the covariance of these with proximal element lengths.
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Fig. 5. Correlations for female upper limb relationships with
simulated proportions of the observed standard deviation (Table
5): closed boxes, humerus length and stature; open boxes, radius
length and stature; closed circles, humerus length and radius
length; closed diamonds, brachial index and upper limb length.
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Fig. 6. Correlations for female lower limb relationships with
simulated proportions of the observed standard deviation (Table
5): closed boxes, femur length and stature; open boxes, tibia
length and stature; closed circles, femur length and tibia length;
closed diamonds, crural index and upper limb length.

The relationship between intralimb indices and total limb
length in the simulations provide the most crucial evidence
to explain Holliday’s low correlations (Figure 1 in Holliday,
1999). The results of this study present correlations between
intralimb indices and total limb length nearly identical to
those reported by Holliday, with correlations at or below 0.2.
At only half the observed variance (a proportion of 0.5), the
correlation between intralimb indices and total limb length
are already below 0.5. Therefore, although relationships
between limb elements and among elements and stature are
higher than 0.6 in the observed data, and therefore indicate
only moderate dispersion around the regression slope, there
is only a weak relationship between intralimb indices and
total limb length due to high variance in intralimb indices
relative to total limb length.

These results, then, demonstrate the independence of
intralimb proportions and absolute limb lengths. This is
due to some independence in the lengths of proximal and
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Fig. 7. Correlations for male upper limb relationships with
simulated proportions of the observed standard deviation (Table
5): closed boxes, humerus length and stature; open boxes, radius
length and stature; closed circles, humerus length and radius
length; closed diamonds, brachial index and upper limb length.
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Fig. 8. Correlations for male lower limb relationships with
simulated proportions of the observed standard deviation (Table
5): closed boxes, femur length and stature; open boxes, tibia
length and stature; closed circles, femur length and tibia length;
closed diamonds, crural index and upper limb length.

distal elements. Population differences in intralimb pro-
portions arising from ancestral or developmental sources
also contribute to the pattern. Two individuals may have
equal total upper limb length, for example, but the radius
may be proportionally longer in one. What makes the
results reported in Tables 5 and 6 interesting in this light
is that variance in the intralimb indices compared to total
limb length would need to be nearly zero to maintain cor-
relations as high as those observed between element
lengths and among elements and stature.

The specific implications for this relationship when
applying Allen’s rule to total limb length versus intra-
limb indices among hominids is beyond the scope of this
study. However, it does suggest that the relationships
between intralimb proportions and relative limb length
with climatic factors are not necessarily equivalent.
High correlations between intralimb indices and climate,
or between relative limb length and climate do not
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necessitate high correlations between intralimb indices
and relative limb length. One important caveat that this
study reinforces from previous studies (Jantz and Jantz,
1999; Sylvester et al., 2008; Auerbach, 2010b) is that
taller individuals will have proportionately longer distal
limb elements. This, in turn, may mean that higher limb
proportions observed in some especially tall human
groups (e.g., the Arikara) are the result of allometric and
not thermoregulatory effects, especially as stature has
not been indicated to directly covary with climatic fac-
tors (Ruff, 1994; Auerbach, 2007; King, 2010).

CONCLUSIONS

In conclusion, this study supports the hypothesis that
the apparent paradox introduced in the Introduction is a
mathematical consequence of the use of the geometric
mean as a scaling factor. In addition, the results show
that overall variation in limb lengths among individuals
is sufficient to mask allometric trends between intralimb
indices and limb lengths. More generally, however, this
article demonstrates the following broad reaching
results:

e Using the geometric mean as a scaling factor may
obscure real allometric coefficients, at least for linear
dimensions, as all coefficients must average to one
(OLS regression). Although it is possible that using
dimensions that are independent of those utilized in
analyses while remaining biologically relevant to size
to calculate the geometric mean (following Coleman,
2008) may in part resolve this problem, it is suggested
that an appropriate, empirical biological dimension
(e.g., stature or body mass) be used as a scaling factor
whenever practical.

e All limb elements demonstrate positive scaling relative
to stature in humans. Distal elements have higher
allometric coefficients than proximal elements. These
allometries may result in deviations as great as 2 cm
from isometry, though they are on average less than
0.5 cm. In addition, distal elements have higher var-
iance, as shown previously in other studies (e.g., Holli-
day and Ruff, 2001).

e Intralimb indices do not correlate with total limb
length due to the independent variance of element
lengths within limbs. However, there is a general
trend for proximal and distal limb elements to have
positive allometry, although at different magnitudes.
This is in part a consequence of populations with simi-
lar variance in total limb lengths having dissimilar
variance in intralimb proportions.

e Higher intralimb indices may be the result of allomet-
ric effects in especially tall human populations.
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APPENDIX

This proof demonstrates algebraically why the use of the
geometric mean as a scaling factor automatically yields
positive and negative allometries, even when all allome-
tries may be negative or positive when scaled against an
independent biological factor. Given the nature of all calcu-
lations made from the geometric mean (see below), the
slopes of scaling trends will equal a mean slope of 1.

Definitions:

B,, = the slope of the nth variable against the geomet-
ric mean

391

X = vector of deviations of x; from the mean of x (inde-
pendent variable)

y. = vector of deviations of nth variable y from its
mean (dependent variable)

n = number of variables

~1 = inverse

T = transpose

PROOF: Mean B = 1 (The mean slope of allometries
calculated using the geometric mean equals 1).

1. The matrix definition of an OLS slope is:

B, = (X" X)X 1y,

2. X is the average of the y, variables [as the log(geo-
metric mean) equals the mean of the logged data]

X=01+y2+ys+...+yn)¥n
3. This can be rearranged to:

Yn=X n—y1—y2—Y3—...—¥Yn-1

4. Substitute the equation for y, into the matrix defini-
tion of the OLS slope

B,=(X"X)"" X" (X -n—y1-y2—y3— .. —¥n1)
5. Distributive Law:
B,=X"X)'.XT. X n-X"-X)' X" .y
~XT X)Xy (XT X)Xy
6. Simplifying the first part of the equation (up to n)

using linear algebra, using the principle that (XT - X)
1. XT.X = (the 1 X 1 identity matrix), yields:

B,=1n—XT"-X) ' X"y - (XT-X) 1 XT .y,
- XXXy,

7. Substitute the matrix definition of the OLS slope
(step one, above):

Bn:nﬁ—Bl—Bg—Bg—.“—Bn—l

8. Rearranging this equation yields:

n:Bl+Bz+B3+,..+anl+Bn
9. Dividing though by n yields:

1= (Bl +BQ—|—Bg+...+Bn —1+Bn)+n
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