A Search for Neutron/Anti-Neutron Oscillations with Ultra-Cold Neutrons

S.A. Hoedl Princeton University

A.R. Young, B.W. Wehring North Carolina State University

Why UCN?
Present Status of UCN Sources World Wide.
The Proposed NCSU UCN Source.
A Straight Forward UCN Oscillation Detector.

Why use UCN?

• Properties: $E \sim 10^{-7} eV$ $v \sim 8m/s$

$t\sim 1mK$

- •Advantages:
 - •Low Background
 - •Long Free-Flight Time
 - •Relatively Simple (and cheap?)

Current and Future UCN Sources

Institution	Source Type	Density (UCN/cc)
ILL	Reactor	40
LANL	Spallation	400
FRMII	Reactor	104
PSI	Spallation	2.5x10 ³
NCSU	Reactor	1.5x10 ³
1		

Reactor Cross Section

Saturday, July 14, 2001

Top View of Reactor and UCN Source

NCSU UCN Source Design

Saturday, July 14, 2001

NCSU UCN Source Details

NCSU Source Performance Estimates

Expect

- ■1.5x10³ UCN/CC
- ■1.5x10⁷ UCN/s
- Assume UCN production rates measured at LANL.
- Assume a UCN SD₂ lifetime of 35ms (achieved at LANL).
- Assume measured loss rates for Ni⁵⁸ guides.
- Improve by
 - Changing guide material (factor of 2).
 - Increasing reactor power.
 - Increasing SD₂ volume.
 - Increasing UCN SD₂ lifetime.

Saturday, July 14, 2001

S.A. Hoedl Snowmass 2001

Experimental Approach

S. Marsh, K.W. McVoy Phys. Rev. D 28(1983) p. 2793

- Fill a sufficiently large UCN bottle with the greatest UCN density.
- Reduce the magnetic field to less than 10nT.
- Use the Earth's field to confirm a positive result.
- Use a diamond-like wall coating for the bottle walls.
- Anti-neutrons are detected by observing capture in carbon.
- Detector would have a cosmic veto and vertex reconstruction capabilities.
- UCN Density Monitor

Oscillation Experiment Sketch

Guide diameter .16 m Holding volume 2.1x10⁷ cm³

S.A. Hoedl Snowmass 2001

Preliminary Evaluation

- Assume an average coherence (free flight) time of 1sec.
- The Figure of Merit is \sqrt{N}
- N= Flux x Holding Time.
- $N = 1.5 x 10^7 x 560 sec = 9x 10^9$
- Potential Improvement to 1x10¹¹
- "Discovery Potential" N<t2>=10¹¹

Conclusion

- A UCN neutron oscillation experiment at the NCSU reactor is feasible.
- Very conservative estimates indicate such an experiment will easily outperform current limits.
- A UCN experiment maybe competitive with the next generation of cold neutron experiments.