
QUANTUM COMPUTATION OF SCATTERING AMPLITUDES

GEORGE SIOPSIS

Department of Physics and Astronomy,

The University of Tennessee, Knoxville

UT HEP SEMINAR - 2/26/14



QC OF SCATTERING AMPLITUDES 1

QC

George Siopsis UT HEP SEMINAR - 2/26/14



QC OF SCATTERING AMPLITUDES 2

Nature is quantum.

• hard to understand for us classical beings.

• no complete description of what quantum means.
– need (classical) concept of measurement to make sense of

quantum.

By understanding quantum, we hope to be able to take advantage of
everything Nature has to offer.

I One such advantage seems to be in IT.
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Information and entropy

What does information have to do with Physics?

• Computers process information. They need power to operate.
They get hot. Why?

• Thermodynamics: processes in Nature are irreversible.
Entropy always increases, heat flows from hot to cold, etc.

• But laws of Nature are invariant under time reversal.
– At a fundamental level, all processes are reversible (∆S = 0).

Is processing of information an irreversible (dissipative) process?
ANSWER: No!
EXAMPLE: The NAND gate, (a, b) 7→ (a ∧ b)

TRUTH TABLE:

a b a ∧ b (a ∧ b)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

I Irreversible!
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Add a bit and do Toffoli gate, instead..

T : (a, b, c) 7→ (a, b, c⊕ (a ∧ b))

I flips a ∧ b, if c = 1, ∴ NAND gate.

TRUTH TABLE:

a b c a ∧ b c⊕ (a ∧ b)
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 0

I Reversible! (T2 = I, so T−1 = T )
Then what costs energy (entropy)?
ANSWER: The erasure of information.
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Landauer’s principle (1961)

Erasing 1 bit of information requires entropy ∆S = kB log 2.

• Minimum cost in operating a computer.

• Present computers far from this limit (∆S ∼ 500kB log 2).

• As computers get smaller, this limit will become significant.

Do we have to erase information?
ANSWER: No!

I At the end of a reversible computation, computer can reverse all steps
and return to its initial state.
– No junk to dispose of!
– No energy loss!
– No entropy generated!

With computers near Landauer limit, all information processing will have to
be done reversibly, otherwise wires will melt.
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Quantum information
You can extract information from a classical system without disturbing it.

• Can’t do that with a quantum system.

• FOOD FOR THOUGHT: Aren’t all systems quantum?

You measure observable A and system collapses to an eigenstate of A.

I Worse: if [A,B] 6= 0, then measurement of A will influence subse-
quent measurement of B.

Outcome of measurement is random:

I Let A|λi〉 = λi|λi〉.
If system is in state |Ψ〉, then outcome of measurement of A is λi
with probability

Pi = |〈λi|Ψ〉|2

– State |Ψ〉 collapses to |λi〉.
– We have no way of figuring out |Ψ〉.

George Siopsis UT HEP SEMINAR - 2/26/14



QC OF SCATTERING AMPLITUDES 7

Qubits
Classical information comes in bits, which take values 0 or 1.
I Quantum information comes in qubits, i.e.,

|ψ〉 = a|0〉+ b|1〉
Probabilistic outcome: A measurement will project onto |0〉 or |1〉
with probability, respectively,

P0 = |a|2 , P1 = |b|2

EXAMPLES: spin-1/2 particle (|0〉 = | ↑〉, |1〉 = | ↓〉).
EXAMPLES: photon polarization (|0〉 = |L〉, |1〉 = |R〉).
With N qubits, state is superposition of {|x〉, x = 0,1, . . . ,2N − 1}
• x in binary notation, e.g., for N = 3,

x = 000,001,010,011,100,101,110,111

George Siopsis UT HEP SEMINAR - 2/26/14



QC OF SCATTERING AMPLITUDES 8

Quantum computation

1. Prepare initial state of N qubits.

2. Evolve state by applying a string of quantum gates
I evolution operators U (2N × 2N unitary matrices, U†U = I)

3. perform a measurement on the final state.

Efficiency: with N = 100 qubits, we can naturally (through quantum evo-
lution) implement 1030 × 1030 matrices (2100 ∼ 1030).

− Try that on a classical computer!

− Hilbert spaces are enormous!
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Errors
A quantum algorithm is useful and goes beyond classical, if it can take
advantage of nonlocal correlations (entanglement).

I |01〉 and |10〉 are not entangled.

I 1√
2

(|01〉 − |10〉) is entangled.

– Einstein-Podolsky-Rosen (EPR) paradox.

I Extremely fragile correlations.
– decay very rapidly, due to interactions with environment.
– some (most) information lies in correlations with environment and

cannot be accessed.

Schrödinger’s cat

|cat〉 =
1√
2

(|dead〉+ |alive〉)

Didn’t like it: all cats he had observed were either |dead〉 or |alive〉.
Why?
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Cat interacts with environment and information is immediately transfered
to correlations with environment.

I Environment measures cat continuously, projecting it onto states we
are familiar with (decoherence).

For QC, we need a |cat〉-like state, except not as large.

I Need to deal with errors due to decoherence.
– the state will generically interact with environment and decay very

rapidly
– computer will immediately crash.
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Shor’s algorithm (1994)

A milestone.

• Showed that QC is by far superior to a classical computer, because it
can find prime factors of a given number very efficiently.

Intractable problem: hard to find solution, but easy to verify once found.

• Let N = pq, p ∼ 2m, q ∼ 2n.

• Need ∼ mn ∼ log p log q ∼ (logN)2 steps (time) to verify pq = N .

• Given N , to find p and q, best algorithm (number field sieve) takes
superpolynomial time

t ≈ C exp

{[
64

9
logN(log logN)2

]1/3
}

Experimentally, for N ∼ 10130, using a few hundred workstations,
t ≈ 1 month, so C ≈ 1.5× 10−18 months.
For a 400-digit number, we need

t ≈ 2.6× 1011 months ∼ 1010 years ∼ age of the Universe!
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Shor’s quantum algorithm takes polynomial time to run,

t ≈ C′(logN)3

If a (future!) QC matches the performance of a classical computer for
a 130-digit number, then C′ ≈ 4 × 10−8 months, and for a 400-digit
number, we need

t ≈ 29 months ∼ 2.5 years

Huge (exponential) improvement!
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QFT
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NEWTONIAN SPACE AND TIME

δ

x2

z

x

y

x

0

x1
δs2 = δx2 + δy2 + δz2

invariant under rotations

inertial observers feel no forces.

~F = m~a

invariant under

~x→ ~x− ~vt

(transformation law between inertial observers - Galilean).
F Newton is inertial; apple isn’t (a = −g).

W=mg
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ELECTROMAGNETISM
Unification of electricity and magnetism
(Maxwell)
⇒ waves

∇2 ~A−
1

c2
∂2 ~A

∂t2
= 0

they travel at speed of light

c = 3× 108m/s

regardless of frame of reference
∴ incompatible with Newton’s laws.
Lorentz transformation (boost in x-direction):

x→ γ(x− vt) , t→ γ(t− vx/c2)

(γ < 1 - contraction) known before Einstein.

F Radiation consists of fields.
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SPACETIME

Einstein: space and time mix, form space-
time
Invariant distance:

δs2 = −c2δt2+δx2+δy2+δz2 = −c2δτ2

τ : proper time.

δ

x2

t

x

x

x1

0

SPECIAL RELATIVITY

Far-reaching consequences:

E = mc2
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QUANTUM MECHANICS
Blackbody
spectrum: I(ν) =

8πkTν2

c3
←−WRONG!

Planck in an act of despair proposes
(light emitted as quanta)

E = hν

changes an integral to a sum:

I(ν) =
8πh

c3
ν3

ehν/kT − 1
←− CORRECT!
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Einstein explains photoelectric effect
(1921 Nobel Prize)
I light is absorbed as quanta.

QUESTION: does light travel as particles (photons)?
I hard to swallow: photons can’t be hard balls -

they interfere!

Einstein realized the consequences (unpredictability)
before Heisenberg’s Uncertainty Principle

∆p∆x ≥ ~

I didn’t like it
“God does not play dice with the Universe”
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QUANTUM MECHANICS + RELATIVITY
Klein-Gordon equation (discovered by Schrödinger)

∇2Ψ−
1

c2
∂2Ψ

∂t2
= m2Ψ

I doesn’t work (negative probabilities)

Dirac equation

iγµ∂µΨ = mΨ

I leads to hole theory nonsense.

Finally, Quantum Field Theory - a triumph!

Ψ is not a wavefunction (probability amplitude), but a field,
similar to electric and magnetic fields.

♦ Explains Pauli exclusion principle

♦ Predicts anti-matter

George Siopsis UT HEP SEMINAR - 2/26/14



QC OF SCATTERING AMPLITUDES 20

F

GRAVITY + RELATIVITY
Einstein: The apple is the inertial observer,
not Newton!
I Newton feels a force, apple doesn’t.

Principle of Equivalence

Apple travels along geodesic

x ≈ −
1

2
gt2

ds2 = −c2dτ2 = −gµνdxµdxν

mass (energy) creates spacetime
I time “warp” factor:

no forces on a satellite

plane going from London to NYC.

g00 ' 1−
2gR

c2
= 1−1.4×10−9 = 0.9999999986
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GENERAL RELATIVITY

Gµν =
8πG

c4
Tµν

Instant success:

F Mercury precession
observed: ∆φ = 5,601′′/century.
geocentric system effects: 5,026′′/century.
other planets: 532′′/century.
Einstein: 43′′/century.

F bending of light by Sun

∆θ '
4GM�
c2R�

' 1.75′′

observed by Eddington (1919)

F Big-bang nucleosynthesis (BBN) (Universe ∼1 sec old)
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QUANTUM MECHANICS + ELECTROMAGNETISM
coupling (fine-structure) constant

α =
e2

2hc
=

1

137
QED - infinities
vacuum polarization modifies Coulomb Law

V (r) =
e(r)

4πr
, e(r) = e

{
1 +

2α

3π
ln
λe

r
+ . . .

}
for r � λe = h/mec (Compton wavelength).

e e

γ γ

F running coupling constant (vacuum is a dielectric)
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OTHER FORCES
WEAK: β decay

n→ p+ e−+ ν̄e

point interaction with coupling (Fermi)

GF = 1.166× 10−5(~c)3/GeV 2

needs modification at high energies (infinite probabilities)

νe

e
p

n

G
F

p

n

e

νe
W

g g

Introduce weak (W ) boson (massive) mediating interaction.

GF
(~c)3

=

√
2 g2

8m2
W c

4
, mW = 80.425 GeV/c2

weak “fine-structure” constant (dimensionless):

αW =
g2~3

4πc
=

1

29

α/αW = sin2 θW (Weinberg angle).
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STRONG: Quantum Chromodynamics (QCD)

u u u

p nd
d

d

nucleons consist of

quarks.

Quarks and gluons have colors
I cannot be free (directly detected)
Only color neutral objects can be “seen”
(nucleons, mesons, etc)
Scale:

ΛQCD = 0.236 GeV

g

du

u d

interaction via gluons.
F asymptotic freedom

At high energies: coupling constant decreases
I spin-1 charged bosons (gluons) make vacuum paramagnetic

[Politzer; Gross and Wilczek - Nobel Prize 2004]

E&M + WEAK + STRONG = STANDARD MODEL
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QUANTUM MECHANICS + GRAVITY

Newton’s constant G is like weak (Fermi) constant GF .
needs to be expressed in terms of a massive boson

G ∼
g2

m2
P

, mP =

√
~c
G
' 1019 GeV/c2

P for Planck.
mP is the scale where quantum effects are expected to become important.
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QC OF QFT
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Scattering
Scattering process

|1, ~k1; · · · ;M, ~kM〉t→−∞ → |1′, ~k′1; · · · ;N′, ~k′N〉t→+∞

Scattering amplitude

A = t→+∞〈M, ~kM ; · · · ; 1, ~k1|1′, ~k′1; · · · ;N′, ~k′N〉t→+∞

To calculate cross section |A|2, apply quantum algorithm:
[S. P. Jordan, et al., Science 336, 1130 (2012).]

1. Prepare initial state |1, ~k1; · · · ;M, ~kM〉t→−∞
(eigenstate of free theory).

2. Adiabatically evolve it to an interacting theory eigenstate.

3. Evolve it for the duration of scattering with (unitary) quantum gates.

4. Adiabatically evolve it back to free theory state.

5. Measure the number of momentum modes (detector simulation).

Exponential improvement over lattice field theory on classical computers!
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Harmonic oscillator
Set ~ = c = 1.
Operators q (position) and p (momentum) satisfy commutation relations

[q, p] = i

The Hamiltonian is (setting the mass m = 1, for simplicity)

H =
1

2
p2 +

ω2

2
q2

where I added a constant to shift the ground state energy to zero.
Next, introduce

a ≡
√
ω

2
q +

i√
2ω
p

We have

[a, a†] = 1

q =
1√
2ω

(a+ a†) , p = −i
√
ω

2
(a− a†)
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Therefore, with normal ordering

H = ωa†a

Eigenvalue problem solved

H|n〉 = En|n〉 , En = nω

Can be simulated with N qubits, if mapped onto basis states

|n〉, n = 0,1, . . . ,2N − 1.
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Alternative simulation
Working in the q representation, we have

p = −i
d

dq
, a =

√
ω

2
q +

1√
2ω

d

dq

The ground state obeys

aΨ0(q) =
√
ω

2
qΨ0(q) +

1√
2ω

Ψ′0(q) = 0

∴ Ψ0(q) = Ce−ωq
2/2.

This Gaussian can be simulated by N qubits.
Other states can then be generated.
For 1st excited state, introduce ancillary qubit and define

H1 = a†|1〉〈0|+ a|0〉〈1|
We have

H1Ψ0|0〉 = Ψ1|1〉 , H1Ψ1|1〉 = Ψ0|0〉
therefore

e−iH1π/2Ψ0|0〉 = −iΨ1|1〉
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Free scalar field theory
Now consider a free scalar field φ(~x), where ~x ∈ Ω, which is a cubic lattice
in d spatial dimensions with length L and lattice spacing a

Ω = aZdL/a
Let ~ai (i = 1, . . . , d) denote the basis of the lattice Ω (|~ai| = a).

I To compare with Nature, presumably we need to take the continuum
limit

a→ 0

Let π(~x) be the conjugate field, satisfying commutation relations

[φ(~x), π(~y)] =
i

ad
δ~x,~y

The discretized gradient is defined by

∇iφ(~x) =
φ(~x+ ~ai)− φ(~x)

a
(i = 1, . . . , d)
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The discretized Laplacian is

∇2φ(~x) =
d∑

i=1

∇2
i φ(~x) =

d∑
i=1

φ(~x+ ~ai) + φ(~x− ~ai)− 2φ(~x)

a2

The Hamiltonian is

H0 =
ad

2

∑
~x∈Ω

(
π2(~x) + φ(~x)(−∇2 +m2)φ(~x)

)
Next, introduce the dual lattice Γ = 2π

L ZdL/a
and the annihilation operator

a(~k) = ad
∑
~x∈Ω

e−i
~k·~x


√
ω(~k)

2
φ(~x) +

i√
2ω(~k)

π(~x)


where ~k ∈ Γ, and

ω2(~k) = e−i
~k·~x(−∇2 +m2)ei

~k·~x

= m2 +
4

a2

d∑
i=1

sin2 kia

2
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We have

[a(~k), a†(~k′)] = Ldδ~k,~k′

φ(~x) =
1

Ld

∑
~k∈Γ

ei
~k·~x 1√

2ω(~k)
[a(~k) + a†(−~k)]

π(~x) = −
i

Ld

∑
~k∈Γ

ei
~k·~x
√
ω(~k)

2
[a(~k)− a†(−~k)]

Therefore,

H0 =
∑
~k∈Γ

H(~k) , H(~k) =
1

Ld
ω(~k)a†(~k)a(~k)

• All terms commute with each other.

• Each represents a harmonic oscillator.
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Eigenvalue problem solved

H|{n(~k), ~k ∈ Γ}〉 = E{n(~k),~k∈Γ}|{n(~k), ~k ∈ Γ}〉

where

E{n(~k),~k∈Γ} =
∑
~k∈Γ

n(~k)ω(~k)

Physical interpretation: n(~k) particles with momentum ~k

(total of
∑
~k∈Γ

n(~k) particles).

Ground state has no particles and zero energy,

H0|0〉 = 0

One-particle states

|~k〉 ≡
1

Ld/2
a†(~k)|0〉

have energy

H0|~k〉 = ω(~k)|~k〉
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Lowest energy level: ω(~0) = m (mass gap!) with corresponding normal-
ized eigenstate

|~k = ~0〉 =
ad

Ld/2

∑
~x∈Ω

[√
m

2
φ(~x) +

i√
2m

π(~x)

]
|0〉

System can be simulated with a register of N qubits for each ~k ∈ Γ,

if mapped onto basis states |n(~k)〉, n(~k) = 0,1, . . . ,2N − 1.
Alternative simulation
Working in the φ representation, we have

π(~x) = −
i

ad
∂

∂φ(~x)
, a(~k) = ad

∑
~x∈Ω

e−i
~k·~x


√
ω(~k)

2
φ(~x) +

1√
2ω(~k)

∂

∂φ(~x)


Define

a(~x) =
1

Ld

∑
~k∈Γ

ei
~k·~x 1√

2ω(~k)
a(~k)
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The ground state obeys

a(~x)Ψ0[φ] =
1

2
φ(~x)Ψ[φ] +

1

2
√
−∇2 +m2

∂Ψ[φ]

∂φ(~x)
= 0 , ∀x ∈ Ω

therefore

Ψ0[φ] = C exp

−ad2 ∑
~x∈Ω

φ(~x)
√
−∇2 +m2φ(~x)


This Gaussian can be simulated by N -qubit registers at each site ~x ∈ Ω.
Other states can then be generated.
For one-particle states, introduce ancillary qubit and define

H1 = a†(~k)|1〉〈0|+ a(~k)|0〉〈1|
We have

H1Ψ0|0〉 = Ψ1|1〉 , H1Ψ1|1〉 = Ψ0|0〉

where Ψ1 = a†(~k)Ψ0 is a one-particle state of momentum ~k, therefore

e−iH1π/2Ψ0|0〉 = −iΨ1|1〉
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Simple interacting field theory
Let us add an interaction with an external “charge” distribution ρ(~x), so

H = H0 +Hρ , Hρ = ad
∑
~x∈Ω

ρ(~x)φ(~x)

In this case, the spectrum can be calculated exactly.
We have

Hρ =
1

Ld

∑
~k∈Γ

[ρ̃∗(~k)a(~k) + ρ̃(~k)a†(~k)]

where

ρ̃(~k) = ad
∑
~x∈Ω

1√
2ω(~k)

ρ(~x)ei
~k·~x

By defining new annihilation operator

b(~k) ≡ a(~k) +
1

ω(~k)
ρ̃(~k)
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we obtain

H =
1

Ld

∑
~k∈Γ

[
ω(~k)b†(~k)b(~k)−

|ρ̃(~k)|2

ω(~k)

]

The spectrum is as before, but with energy levels shifted by the new ground
state energy

E0 = −
1

Ld

∑
~k∈Γ

|ρ̃(~k)|2

ω(~k)

In the limit m → 0, a → 0, this is simply the electrostatic energy of an
electric charge distribution.
The eigenstates can be found from the eigenstates of the non-interacting
system by switching on Hρ adiabatically, or by acting with the new creation
operators b†(~k) on the new ground state. The latter is easily shown to be
the coherent state (not normalized)

|0〉ρ = exp

− 1

Ld

∑
~k∈Γ

ρ̃(~k)

ω(~k)
a†(~k)

 |0〉
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Quartic interaction
Hamiltonian

H = ad
∑
~x∈Ω

(
1

2
π2(~x) +

1

2
φ(~x)(−∇2 +m2

0)φ(~x) +
λ0

4!
φ4(~x)

)
To prepare an initial state, start with the ground state of H0, and adiabati-
cally evolve it with H(t/τ), where H(0) = H0 and H(1) = H.
One ends up with the ground state of H, if τ is long enough. The minimum
τ is determined by the mass gap m0.

♣ What to do if m0 = 0?

The Path. Need to determine H(s) (0 ≤ s ≤ 1). Define

H(s) = ad
∑
~x∈Ω

(
1

2
π2(~x) +

1

2
φ(~x)(−∇2 +m2

0(s))φ(~x) +
λ0(s)

4!
φ4(~x)

)

Simple choice: m2
0(s) = m2

0 , λ0(s) = sλ0

Problem: this choice does not span the entire physical parameter space.

I m2
0 is not the physical mass. In fact, we can have m2

0 < 0.

Solution: Use perturbation theory for an educated guess of the path.
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Perturbation theory

Write H = H0 +HI , where unperturbed

H0 =
ad

2

∑
~x∈Ω

(
π2(~x) + φ(~x)(−∇2 +m2)φ(~x)

)
(m2 is physical mass), and interaction Hamiltonian (perturbation)

HI = ad
∑
~x∈Ω

(
δm

2
φ2(~x) +

λ0

4!
φ4(~x)

)

mass counterterm: δm = m2
0 −m

2.
A (somewhat involved) calculation of the mass gap yields

m2a2 =


m2

0a
2 + λ0a

2

8π

(
1− λ0a

2

8πm2
0a

2

)
log 64

m2
0a

2 −
(λ0a

2)2

384m2
0a

2 + . . . , d = 1

m2
0a

2 + A2
16π2

(
1− λ0a

16πm0a

)
λ0a+

λ2
0a

2

48 logm2
0a

2 + . . . , d = 2

m2
0a

2 + A3
32π3

(
1 + λ0

32π2 logm2
0a

2
)
λ0 − B3

1536π7λ
2
0 + . . . , d = 3
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where (one-loop contribution)

Ad =
∫
· · ·

∫ π
−π

ddk

2
√∑d

i=1 sin2 ki
2

and (two-loop contribution)

B3 =
∫ 1

0
dα

∫ 1−α

0
dβ

1√
α(1− α) + β(1− α− β)

∫
· · ·

∫ π
−π

d3kd3k′

∆2

∆ = 4
d∑

i=1

[
α sin2 ki

2
+ β sin2 k

′
i

2
+ (1− α− β) sin2 ki + k′i

2

]

Numerically, A2 = 25.379 . . . , A3 = 112.948 . . . .
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Second-order phase transition at m2 = 0, λ0 = λc(m2
0).

• Symmetric phase (φ→ −φ) above curvem2 = 0 (in (λ0,m
2
0) plane).

• Symmetry breaking below curve m2 = 0.

• Need to choose path entirely above phase transition.
– Efficient choice for weak coupling λ0, using 1st-order (one-loop)

perturbative result (0 ≤ s ≤ 1),

λ0(s) = sλ0 , m2
0(s) =


m2

0 + (1−s)λ0
8π log 64

m2
1a

2 , d = 1

m2
0 + A2

16π2
(1−s)λ0

a , d = 2

m2
0 + A3

32π3
(1−s)λ0

a2 , d = 3

where m2
1 is the one-loop estimate of the physical mass in d = 1,

m2
1 = m2

0 +
λ0

8π
log

64

m2
1a

2

Works even if m2
0 < 0.
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– For strong coupling λ0, we always have m2
0 > 0, so choose

λ0(s) = sλ0 , m2
0(s) = m2

0

Near phase transition,

m2 ∼ |λ0 − λc|2ν , d < 3

critical exponent ν universal.
Numerically: ν = 1 (d = 1), ν = 0.63 . . . (d = 2).
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QED
Lagrangian

L =
ad

2

∑
~x∈Ω

(
~E2 − ~B2

)
where

~E = −~∇A0 − ∂0
~A , ~B = ~∇× ~A

Four fields, but we know photon is transverse, therefore only two degrees
of freedom are physical.
System has gauge symmetry (local)

A0 → A0 − ∂0χ , ~A→ ~A+ ~∇χ
Fix gauge by imposing

∂0A0 + ~∇ · ~A = 0

Introduce arbitrary parameter λ > 0, and modify Lagrangian

Lλ =
ad

2

∑
~x∈Ω

[
~E2 − ~B2 − λ(∂0A0 + ~∇ · ~A)2

]
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Conjugate momenta to fields (A0, ~A),

π0(~x) =
1

ad
∂Lλ

∂(∂0A0(~x))
= −λ(∂0A0+~∇· ~A) , πi(~x) =

1

ad
∂Lλ

∂(∂0Ai(~x))
= −Ei

Notice π0 = 0, if λ = 0 (constrained system).
No physical results should depend on λ.

I For simplicity, set λ = 1 (Feynman gauge).

Commutation relations

[A0(~x), π0(~y)] =
i

ad
δ~x,~y , [Ai(~x), πj(~y)] =

i

ad
δijδ~x,~y

Hamiltonian

H = ad
∑
~x∈Ω

[
−π0∂0A0 + ~π · ∂0

~A
]
− Lλ

=
ad

2

∑
~x∈Ω

[
−(π0 + ~∇ · ~A)2 +A0∇2A0 + (~π − ~∇A0)2 − ~A · ∇2 ~A

]
Hints of trouble:

• wrong sign of kinetic term (π0 + . . . )2, and in π0 = −∂0A0 + . . . .
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As in scalar case, attempt to define “annihilation” operator for A0,

a0(~k) = ad
∑
~x∈Ω

e−i
~k·~x


√
ω(~k)

2
A0(~x) +

i√
2ω(~k)

(
π0(~x) + ~∇ · ~A(~x)

)
where ω(~k) = 2

a

√∑d
i=1 sin2 kia

2 . We have

Ha
†
0(~k)|0〉 = −ω(~k)a†0(~k)|0〉

Negative energy!

∴ We must define a0(~k) to be the creation operator!

|~k,0〉 =
1

Ld/2
a0(~k)|0〉

But then 〈~k,0|~k,0〉 = −1. Negative norm state!

I Need to restrict to transverse polarizations and reject unphysical states
by imposing gauge fixing condition ∂0A0 + ~∇ · ~A = 0.
We shall do this on the average:

〈Ψ|π0|Ψ〉 = 0
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Introduce annihilation operators for ~A,

~a(~k) = ad
∑
~x∈Ω

e−i
~k·~x


√
ω(~k)

2
~A(~x) +

i√
2ω(~k)

(
~π(~x)− ~∇A0(~x)

)
Hamiltonian (normal-ordered)

H =
∑
~k∈Γ

H(~k) , H(~k) =
1

Ld
ω(~k)

[
~a†(~k) · ~a(~k)− a0(~k)a†0(~k)

]
Consider the general one-particle state (not normalized)

|Ψ〉 =
(
ζ0a0(~k) + ~ζ · ~a†(~k)

)
|0〉

We have

〈Ψ|π0(~x)|Ψ〉 ∝ ω(~k)ζ0 −
2

a

d∑
i=1

sin
kia

2
ζi = 0

⇒ ζ0 constrained.
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Positive norm!

〈Ψ|Ψ〉 ∼ −|ζ0|2 + |~ζ|2 = |~ζ|2 −
|~κ · ~ζ|2

~κ2
≥ 0

where κi = 2
a sin kia

2 .

Zero norm when ~ζ = ~κ, ζ0 = ω(~k).

• Longitudinal polarization.

• Redundancy: if |Ψ0〉 has zero norm, then |Ψ〉 and |Ψ〉 + |Ψ0〉 de-
scribe same physical system (due to gauge invariance).

• 2 physical degrees of freedom!
� � �

Addition of fixed charge (current) is handled as in the case of a scalar field.
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OUTLOOK

• Quantum computation of high energy scattering amplitudes is faster
than any classical algorithm (lattice field theory).

• What is the computational power of our Universe (QFTs)?

• Wilson discovered deep insights (renormalization group) in QFTs think-
ing about simulations on classical computers.
– What insights will we gain with QC?

• Can QFC (quantum field computation) go beyond QC?

• Can we understand quantum gravity better with QC, or by thinking
about information loss into a black hole?
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